Open Access

Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report

  • Authors:
    • Lennart Hardell
    • Michael Carlberg
    • Lena K. Hedendahl
  • View Affiliations

  • Published online on: March 16, 2018     https://doi.org/10.3892/ol.2018.8285
  • Pages: 7871-7883
  • Copyright: © Hardell et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Exposure to radiofrequency (RF) radiation was classified in 2011 as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer of the World Health Organisation. Evidence of the risk of cancer risk has since strengthened. Exposure is changing due to the rapid development of technology resulting in increased ambient radiation. RF radiation of sufficient intensity heats tissues, but the energy is insufficient to cause ionization, hence it is called non‑ionizing radiation. These non‑thermal exposure levels have resulted in biological effects in humans, animals and cells, including an increased cancer risk. In the present study, the levels of RF radiation were measured in an apartment close to two groups of mobile phone base stations on the roof. A total of 74,531 measurements were made corresponding to ~83 h of recording. The total mean RF radiation level was 3,811 µW/m2 (range 15.2‑112,318 µW/m2) for the measurement of the whole apartment, including balconies. Particularly high levels were measured on three balconies and 3 of 4 bedrooms. The total mean RF radiation level decreased by 98% when the measured down‑links from the base stations for 2, 3 and 4 G were disregarded. The results are discussed in relation to the detrimental health effects of non‑thermal RF radiation. Due to the current high RF radiation, the apartment is not suitable for long‑term living, particularly for children who may be more sensitive than adults. For a definitive conclusion regarding the effect of RF radiation from nearby base stations, one option would be to turn them off and repeat the measurements. However, the simplest and safest solution would be to turn them off and dismantle them.

References

1 

Cardis E, Deltour I, Mann S, Moissonnier M, Taki M, Varsier N, Wake K and Wiart J: Distribution of RF energy emitted by mobile phones in anatomical structures of the brain. Phys Med Biol. 53:2771–2783. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Gandhi OP, Morgan LL, de Salles AA, Han YY, Herberman RB and Davis DL: Exposure limits: The underestimation of absorbed cell phone radiation, especially in children. Electromagn Biol Med. 31:34–35. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Baan R, Grosse Y, Secretan Lauby B, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Islami F, Galichet L and Straif K: WHO International Agency for Research on Cancer Monograph Working Group: Carcinogenicity of radiofrequency electromagnetic fields. Lancet Oncol. 12:624–626. 2011. View Article : Google Scholar : PubMed/NCBI

4 

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Non-Ionizing RadiationPart 2: Radiofrequency Electromagnetic Fields. 102. IARC; Lyon: 2013, simplehttp://monographs.iarc.fr/ENG/Monographs/vol102/mono102.pdfNovember 9–2017

5 

Hardell L, Carlberg M and Mild Hansson K: Pooled analysis of case-control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. Int J Oncol. 38:1465–1474. 2011. View Article : Google Scholar : PubMed/NCBI

6 

INTERPHONE Study Group: Brain tumour risk in relation to mobile telephone use: Results of the INTERPHONE international case-control study. Int J Epidemiol. 39:675–694. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Hardell L, Carlberg M, Söderqvist F and Mild Hansson K: Pooled analysis of case-control studies on acoustic neuroma diagnosed 1997–2003 and 2007–2009 and use of mobile and cordless phones. Int J Oncol. 43:1036–1044. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Coureau G, Bouvier G, Lebailly P, Fabbro-Peray P, Gruber A, Leffondre K, Guillamo JS, Loiseau H, Mathoulin-Pélissier S, Salamon R and Baldi I: Mobile phone use and brain tumours in the CERENAT case-control study. Occup Environ Med. 71:514–522. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Hardell L and Carlberg M: Mobile phone and cordless phone use and the risk for glioma-Analysis of pooled case-control studies in Sweden, 1997–2003 and 2007–2009. Pathophysiology. 22:1–13. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Carlberg M and Hardell L: Evaluation of mobile phone and cordless phone use and glioma risk using the Bradford Hill viewpoints from 1965 on association or causation. Biomed Res Int. 2017:92184862017. View Article : Google Scholar : PubMed/NCBI

11 

Hardell L and Carlberg M: Using the Hill viewpoints from 1965 for evaluating strengths of evidence of the risk for brain tumors associated with use of mobile and cordless phones. Rev Environ Health. 28:97–106. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Hill AB: The environment and disease: Association or causation? Proc R Soc Med. 58:295–300. 1965.PubMed/NCBI

13 

Hardell L, Koppel T, Carlberg M, Ahonen M and Hedendahl L: Radiofrequency radiation at Stockholm central railway station in Sweden and some medical aspects on public exposure to RF fields. Int J Oncol. 49:1315–1324. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Hardell L, Carlberg M, Koppel T and Hedendahl L: High radiofrequency radiation at Stockholm Old Town: An exposimeter study including the Royal Castle, Supreme Court, three major squares and the Swedish Parliament. Mol Clin Oncol. 6:462–476. 2017. View Article : Google Scholar : PubMed/NCBI

15 

Hardell L: World Health Organization, radiofrequency radiation and health-a hard nut to crack (Review). Int J Oncol. 51:405–413. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Estenberg J and Augustsson T: Extensive frequency selective measurements of radiofrequency fields in outdoor environments performed with a novel mobile monitoring system. Bioelectromagnetics. 35:227–230. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Calvente I, Pérez-Lobato R, Núñez MI, Ramos R, Guxens M, Villalba J, Olea N and Fernández MF: Does exposure to environmental radiofrequency electromagnetic fields cause cognitive and behavioral effects in 10-year-old boys? Bioelectromagnetics. 37:25–36. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Frei P, Mohler E, Neubauer G, Theis G, Bürgi A, Fröhlich J, Braun-Fahrländer C, Bolte J, Egger M and Röösli M: Temporal and spatial variability of personal exposure to radio frequency electromagnetic fields. Environ Res. 109:779–785. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Roser K, Schoeni A, Struchen B, Zahner M, Eeftens M, Fröhlich J and Röösli M: Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. Environ Int. 99:303–314. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Vermeeren G, Markakis I, Goeminne F, Samaras T, Martens L and Joseph W: Spatial and temporal RF electromagnetic field exposure of children and adults in indoor micro environments in Belgium and Greece. Prog Biophys Mol Biol. 113:254–263. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Verlock L, Joseph W, Goeminne F, Martens L, Verlack M and Constandt K: Assessment of radiofrequency exposures in schools, homes, and public places in Belgium. Health Phys. 107:503–513. 2014. View Article : Google Scholar : PubMed/NCBI

22 

International Commission on Non-Ionizing Radiation Protection: Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 74:494–522. 1998.PubMed/NCBI

23 

International Commission on Non-Ionizing Radiation Protection: ICNIRP statement on the ‘Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)’. Health Phys. 97:257–258. 2009. View Article : Google Scholar : PubMed/NCBI

24 

BioInitiative Working Group: BioInitiative Report 2007: A Rationale for a Biologically-based Public Exposure Standard for Electromagnetic Fields (ELF and RF), . Sage C and Carpenter DO: Bioinitiative. 2007.simplehttp://www.bioinitiative.org/table-of-contents/November 9–2017

25 

BioInitiative Working Group: BioInitiative Report 2012: A Rationale for Biologically-based Public Exposure Standards for Electromagnetic Radiation. Sage C and Carpenter DO: simplehttp://www.bioinitiative.orgNovember 9–2017

26 

Hardell L and Sage C: Biological effects from electromagnetic field exposure and public exposure standards. Biomed Pharmacother. 62:104–109. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Salford LG, Brun AE, Eberhardt JL, Malmgren L and Persson BR: Nerve cell damage in mammalian brain after exposure to microwaves from GSM mobile phones. Environ Health Perspect. 111:881–883, Discussion A408. 2003. View Article : Google Scholar : PubMed/NCBI

28 

Nittby H, Brun A, Eberhardt J, Malmgren L, Persson BR and Salford LG: Increased blood-brain barrier permeability in mammalian brain 7 days after exposure to the radiation from a GSM-900 mobile phone. Pathophysiology. 16:103–112. 2009. View Article : Google Scholar : PubMed/NCBI

29 

Eberhardt JL, Persson BR, Brun AE, Salford LG and Malmgren LO: Blood-brain barrier permeability and nerve cell damage in rat brain 14 and 28 days after exposure to microwaves from GSM mobile phones. Electromagn Biol Med. 27:215–229. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Sırav B and Seyhan N: Effects of GSM modulated radio-frequency electromagnetic radiation on permeability of blood-brain barrier in male & female rats. J Chem Neuroanat. 75:123–127. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Tang J, Zhang Y, Yang L, Chen Q, Tan L, Zuo S, Feng H, Chen Z and Zhu G: Exposure to 900 MHz electromagnetic fields activates the mkp-1/ERK pathway and causes blood-brain barrier damage and cognitive impairment in rats. Brain Res. 1601:92–101. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Nittby H, Grafström G, Tian DP, Malmgren L, Brun A, Persson BR, Salford LG and Eberhardt J: Cognitive impairment in rats after long-term exposure to GSM-900 mobile phone radiation. Bioelectromagnetics. 29:219–232. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Grafström G, Nittby H, Brun A, Malmgren L, Persson BR, Salford LG and Eberhardt J: Histopathological examinations of rat brains after long-term exposure to GSM-900 mobile phone radiation. Brain Res Bull. 77:257–263. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Gerner C, Haudek V, Schandl U, Bayer E, Gundacker N, Hutter HP and Mosgoeller W: Increased protein synthesis by cells exposed to a 1,800-MHz radio-frequency mobile phone electromagnetic field, detected by proteome profiling. Int Arch Occup Environ Health. 83:691–702. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Markovà E, Malmgren LO and Belyaev IY: Microwaves from mobile phones inhibit 53BP1 focus formation in human stem cells stronger than in differentiated cells: Possible mechanistic link to cancer risk. Environ Health Perspect. 118:394–399. 2010.PubMed/NCBI

36 

Fragopoulou AF, Samara A, Antonelou MH, Xanthopoulou A, Papadopoulou A, Vougas K, Koutsogiannopoulou E, Anastasiadou E, Stravopodis DJ, Tsangaris GT and Margaritis LH: Brain proteome response following whole body exposure of mice to mobile phone or wireless DECT base radiation. Electromagn Biol Med. 31:250–274. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, Yilmaz SG, Tasdelen B and Yegin K: Effects of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on microRNA expression in brain tissue. Int J Radiat Biol. 91:555–561. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Dasdag S, Tas M, Akdag MZ and Yegin K: Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 34:37–42. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Avendaño C, Mata A, Samiento Sanchez CA and Doncel GF: Use of laptop computers connected to internet through Wi-Fi decreases human sperm motility and increases sperm DNA fragmentation. Fertil Steril. 97:39–45.e2. 2012. View Article : Google Scholar : PubMed/NCBI

40 

Atasoy HI, Gunal MY, Atasoy P, Elgun S and Bugdayci G: Immunohistopathologic demonstration of deleterious effects on growing rat testes of radiofrequency waves emitted from conventional Wi-Fi devices. J Pediatr Urol. 9:223–229. 2013. View Article : Google Scholar : PubMed/NCBI

41 

Akdag MZ, Dasdag S, Canturk F, Karabulut D, Caner Y and Adalier N: Does prolonged radiofrequency radiation emitted from Wi-Fi devices induce DNA damage in various tissues of rats? J Chem Neuroanat. 75:116–122. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O and Kyrylenko S: Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 35:186–202. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Burlaka A, Tsybulin O, Sidorik E, Lukin S, Polishuk V, Tsehmistrenko S and Yakymenko I: Overproduction of free radical species in embryonal cells exposed to low intensity radiofrequency radiation. Exp Oncol. 35:219–225. 2013.PubMed/NCBI

44 

Megha K, Deshmukh PS, Banerjee BD, Tripathi AK and Abegaonkar MP: Microwave radiation induced oxidative stress, cognitive impairment and inflammation in brain of Fischer rats. Indian J Exp Biol. 50:889–896. 2012.PubMed/NCBI

45 

Megha K, Deshmukh PS, Banerjee BD, Tripathi AK, Ahmed R and Abegaonkar MP: Low intensity microwave radiation induced oxidative stress, inflammatory response and DNA damage in rat brain. Neurotoxicology. 51:158–165. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Tsybulin O, Sidorik E and Yakymenko I: Oxidative effect of low-intensity microwave radiation in the model of developing quail embryos. Oxid Antioxid Med Sci. 6:9–13. 2017. View Article : Google Scholar

47 

Megha K, Deshmukh PS, Ravi AK, Tripathi AK, Abegaonkar MP and Banerjee BD: Effect of low-intensity microwave radiation on monoamine neurotransmitters and their key regulating enzymes in rat brain. Cell Biochem Biophys. 73:93–100. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Deshmukh PS, Nasare N, Megha K, Banerjee BD, Ahmed RS, Singh D, Abegaonkar MP, Tripathi AK and Mediratta PK: Cognitive impairment and neurogenotoxic effects in rats exposed to low-intensity microwave radiation. Int J Toxicol. 34:284–290. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Deshmukh PS, Banerjee BD, Abegaonkar MP, Megha K, Ahmed RS, Tripath AK and Mediratta PK: Effect of low level microwave radiation exposure on cognitive function and oxidative stress in rats. Indian J Biochem Biophys. 50:114–119. 2013.PubMed/NCBI

50 

Topsakal S, Ozmen O, Cicek E and Comlekci S: The amelioratove effect of gallic acid on pancreas lesions induced by 2,45 GHz electromagnetic radiation (Wi-Fi) in young rats. J Rad Res Appl Sci. 10:233–240. 2017.

51 

Wyde M, Cesta M, Blystone C, Elmore S, Foster P, Hooth M, Kissling G, Malarkey D, Sills R, Stout M, et al: Report of Partial findings from the National Toxicology Program Carcinogenesis Studies of Cell Phone Radiofrequency Radiation in Hsd: Sprague Dawley® SD rats (Whole Body Exposure). US National Toxicology Program (NTP). 2016.simplehttp://biorxiv.org/content/biorxiv/early/2016/05/26/055699.full.pdfNovember 9–2017

52 

Smith-Roe SL, Wyde ME, Stout MD, Winters JW, Hobbs CA, Shepard KG, Green AS, Kissling GA and Tice RR: Evaluation of the genotoxicity of cell phone radiofrequency radiation in male and female rats and mice following subchronic exposureProceedings of the Environmental Mutagenesis and Genomics Society, 48th Annual Meeting. Raleigh, NC: 2017

53 

Lai H and Singh NP: Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells. Bioelectromagnetics. 18:446–454. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Buchner K and Eger H: Changes of clinically important neurotransmitters under the influence of modulated RF-fields-a long term study under real-life conditions. Umwelt Med Ges. 24:44–57. 2011.

55 

Khurana VG, Hardell L, Everaert J, Bortkiewicz A, Carlberg M and Ahonen M: Epidemiological evidence for a health risk from mobile phone base stations. Int J Occup Environ Health. 16:263–267. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Levitt BB and Lai H: Biological effects from exposure to electromagnetic radiation emitted by cell tower base stations and other antenna arrays. Environ Rev. 18:369–395. 2010. View Article : Google Scholar

57 

Augner C, Hacker GW, Oberfeld G, Florian M, Hitzl W, Hutter J and Pauser G: Effects of exposure to GSM mobile phone base station signals on salivary cortisol, alpha-amylase, and immunoglobulin A. Biomed Environ Sci. 23:199–207. 2010. View Article : Google Scholar : PubMed/NCBI

58 

Eskander EF, Estefan SF and Abd-Rabou AA: How does long term exposure to base stations and mobile phones affect human hormone profiles? Clin Biochem. 45:157–161. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Zothansiama, Zosangzuali M, Lalramdinpuii M and Jagetia GC: Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn Biol Med. 36:295–305. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Hedendahl L, Carlberg M and Hardell L: Electromagnetic hypersensitivity-an increasing challenge to the medical profession. Rev Environ Health. 30:209–215. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Hardell L, Söderqvist F, Carlberg M, Zetterberg H and Mild K: Exposure to wireless phone emissions and serum beta-trace protein. Int J Mol Med. 26:301–306. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Söderqvist F, Carlberg M, Zetterberg H and Hardell L: Use of wireless phones and serum β-trace protein in randomly recruited persons aged 18–65 years: A cross-sectional study. Electromagn Biol Med. 31:416–424. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Morgan LL, Kesari S and Davis DL: Why children absorb more microwave radiation than adults: The consequences. J Microsc Ultrastruct. 2:197–204. 2014. View Article : Google Scholar

Related Articles

Journal Cover

May 2018
Volume 15 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hardell, L., Carlberg, M., & Hedendahl, L.K. (2018). Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report. Oncology Letters, 15, 7871-7883. https://doi.org/10.3892/ol.2018.8285
MLA
Hardell, L., Carlberg, M., Hedendahl, L. K."Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report". Oncology Letters 15.5 (2018): 7871-7883.
Chicago
Hardell, L., Carlberg, M., Hedendahl, L. K."Radiofrequency radiation from nearby base stations gives high levels in an apartment in Stockholm, Sweden: A case report". Oncology Letters 15, no. 5 (2018): 7871-7883. https://doi.org/10.3892/ol.2018.8285