|
1
|
Ghoncheh M, Pournamdar Z and Salehiniya H:
Incidence and mortality and epidemiology of breast cancer in the
world. Asian Pac J Cancer Prev. 17:43–46. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
DeSantis CE, Bray F, Ferlay J,
Lortet-Tieulent J, Anderson BO and Jemal A: International variation
in female breast cancer incidence and mortality rates. Cancer
Epidemiol Biomarkers Prev. 24:1495–1506. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
American Cancer Society: Cancer Facts
& Figures. American Cancer Society, Inc.; Atlanta, GA: 2015
|
|
4
|
Gazdar AF, Kurvari V, Virmani A, Gollahon
L, Sakaguchi M, Westerfield M, Kodagoda D, Stasny V, Cunningham HT,
Wistuba II, et al: Characterization of paired tumor and non-tumor
cell lines established from patients with breast cancer. Int J
Cancer. 78:766–774. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Holen I, Speirs V, Morrissey B and Blyth
K: In vivo models in breast cancer research: Progress, challenges
and future directions. Dis Model Mech. 10:359–371. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Levenson AS and Jordan VC: MCF-7: The
first hormone-responsive breast cancer cell line. Cancer Res.
57:3071–3078. 1997.PubMed/NCBI
|
|
7
|
Osborne CK, Hobbs K and Trent JM:
Biological differences among MCF-7 human breast cancer cell lines
from different laboratories. Breast Cancer Res Treat. 9:111–121.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Burdall SE, Hanby AM, Lansdown MR and
Speirs V: Breast cancer cell lines: Friend or foe? Breast Cancer
Res. 5:89–95. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Amadori D, Bertoni L, Flamigni A, Savini
S, De Giovanni C, Casanova S, De Paola F, Amadori A, Giulotto E and
Zoli W: Establishment and characterization of a new cell line from
primary human breast carcinoma. Breast Cancer Res Treat.
28:251–260. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yong JW, Choong ML, Wang S, Wang Y, Lim SQ
and Lee MA: Characterization of ductal carcinoma in situ cell lines
established from breast tumor of a Singapore Chinese patient.
Cancer Cell Int. 14:942014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Meltzer P, Leibovitz A, Dalton W, Villar
H, Kute T, Davis J, Nagle R and Trent J: Establishment of two new
cell lines derived from human breast carcinomas with HER-2/neu
amplification. Br J Cancer. 63:727–735. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cailleau R, Olivé M and Cruciger QV:
Long-term human breast carcinoma cell lines of metastatic origin:
Preliminary characterization. In vitro. 14:911–915. 1978.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Engel LW and Young NA: Human breast
carcinoma cells in continuous culture: A review. Cancer Res.
38:4327–4339. 1978.PubMed/NCBI
|
|
14
|
Nayak SK, Kakati S, Harvey SR, Malone CC,
Cornforth AN and Dillman RO: Characterization of cancer cell lines
established from two human metastatic breast cancers. In vitro Cell
Dev Biol Anim. 36:188–193. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kurebayashi J, Otsuki T, Tang CK, Kurosumi
M, Yamamoto S, Tanaka K, Mochizuki M, Nakamura H and Sonoo H:
Isolation and characterization of a new human breast cancer cell
line, KPL-4, expressing the Erb B family receptors and
interleukin-6. Br J Cancer. 79:707–717. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Rye PD, Norum L, Olsen DR, Garman-Vik S,
Kaul S and Fodstad O: Brain metastasis model in athymic nude mice
using a novel MUC1-secreting human breast-cancer cell line, MA11.
Int J Cancer. 68:682–687. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zoli W, Roncuzzi L, Flamigni A, Gruppioni
R, Sensi A, Zini N, Amadori D and Gasperi-Campani A: A new cell
line from human infiltrating ductal carcinoma of the breast:
Establishment and characterization. J Cancer Res Clin Oncol.
122:237–242. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Engel LW, Young NA, Tralka TS, Lippman ME,
O'Brien SJ and Joyce MJ: Establishment and characterization of
three new continuous cell lines derived from human breast
carcinomas. Cancer Res. 38:3352–3364. 1978.PubMed/NCBI
|
|
19
|
Engebraaten O and Fodstad O: Site-specific
experimental metastasis patterns of two human breast cancer cell
lines in nude rats. Int J Cancer. 82:219–225. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lacroix M and Leclercq G: Relevance of
breast cancer cell lines as models for breast tumours: An update.
Breast Cancer Res Treat. 83:249–289. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Nelson-Rees WA, Daniels DW and
Flandermeyer RR: Cross-contamination of cells in culture. Science.
212:446–452. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rivenbark AG, O'Connor SM and Coleman WB:
Molecular and cellular heterogeneity in breast cancer: Challenges
for personalized medicine. Am J Pathol. 183:1113–1124. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Weiswald LB, Bellet D and Dangles-Marie V:
Spherical cancer models in tumor biology. Neoplasia. 17:1–15. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ethier SP, Mahacek ML, Gullick WJ, Frank
TS and Weber BL: Differential isolation of normal luminal mammary
epithelial cells and breast cancer cells from primary and
metastatic sites using selective media. Cancer Res. 53:627–635.
1993.PubMed/NCBI
|
|
25
|
Wistuba II, Behrens C, Milchgrub S, Syed
S, Ahmadian M, Virmani AK, Kurvari V, Cunningham TH, Ashfaq R,
Minna JD and Gazdar AF: Comparison of features of human breast
cancer cell lines and their corresponding tumors. Clin Cancer Res.
4:2931–2938. 1998.PubMed/NCBI
|
|
26
|
Latimer JJ, Nazir T, Flowers LC, Forlenza
MJ, Beaudry-Rodgers K, Kelly CM, Conte JA, Shestak K,
Kanbour-Shakir A and Grant SG: Unique tissue-specific level of DNA
nucleotide excision repair in primary human mammary epithelial
cultures. Exp Cell Res. 291:111–121. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Freshney RI: Animal cell culture: a
practical approach. IRL Press (Oxford University Press); Oxford:
1992
|
|
28
|
Kim IS and Baek SH: Mouse models for
breast cancer metastasis. Biochem Biophys Res Commun. 394:443–447.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Allred DC and Medina D: The relevance of
mouse models to understanding the development and progression of
human breast cancer. J Mammary Gland Biol Neoplasia. 13:279–288.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lewis MT and Porter WW: Methods in mammary
gland biology and breast cancer research: An update. J Mammary
Gland Biol Neoplasia. 14:3652009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Perez C, Parker-Thornburg J, Mikulec C,
Kusewitt DF, Fischer SM, Digiovanni J, Conti CJ and Benavides F:
SKHIN/Sprd, a new genetically defined inbred hairless mouse strain
for UV-induced skin carcinogenesis studies. Exp Dermatol.
21:217–220. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Borowsky A: Special considerations in
mouse models of breast cancer. Breast Dis. 28:29–38. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Shen Q and Brown PH: Novel agents for the
prevention of breast cancer: Targeting transcription factors and
signal transduction pathways. J Mammary Gland Biol Neoplasia.
8:45–73. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huijbers IJ, Krimpenfort P, Berns A and
Jonkers J: Rapid validation of cancer genes in chimeras derived
from established genetically engineered mouse models. Bioessays.
33:701–710. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ruggeri BA, Camp F and Miknyoczki S:
Animal models of disease: Pre-clinical animal models of cancer and
their applications and utility in drug discovery. Biochem
Pharmacol. 87:150–161. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Du Z and Li Y: RCAS-TVA in the mammary
gland: An in vivo oncogene screen and a high fidelity model for
breast transformation? Cell Cycle. 6:823–826. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Balmain A and Harris CC: Carcinogenesis in
mouse and human cells: Parallels and paradoxes. Carcinogenesis.
21:371–377. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Barrett JC: Mechanisms of multistep
carcinogenesis and carcinogen risk assessment. Environ Health
Perspect. 100:9–20. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Steele VE, Moon RC, Lubet RA, Grubbs CJ,
Reddy BS, Wargovich M, McCormick DL, Pereira MA, Crowell JA,
Bagheri D, et al: Preclinical efficacy evaluation of potential
chemopreventive agents in animal carcinogenesis models: Methods and
results from the NCI chemoprevention drug development program. J
Cell Biochem Suppl. 20:32–54. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Abel EL, Angel JM, Kiguchi K and
DiGiovanni J: Multi-stage chemical carcinogenesis in mouse skin:
Fundamentals and applications. Nat Protoc. 4:1350–1362. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tsukamoto T, Mizoshita T and Tatematsu M:
Animal models of stomach carcinogenesis. Toxicol Pathol.
35:636–648. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Takahashi M, Hori M, Mutoh M, Wakabayashi
K and Nakagama H: Experimental animal models of pancreatic
carcinogenesis for prevention studies and their relevance to human
disease. Cancers (Basel). 3:582–602. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shoushtari AN, Michalowska AM and Green
JE: Comparing genetically engineered mouse mammary cancer models
with human breast cancer by expression profiling. Breast Dis.
28:39–51. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pichon MF, Broet P, Magdelenat H, Delarue
JC, Spyratos F, Basuyau JP, Saez S, Rallet A, Courriere P, Millon R
and Asselain B: Prognostic value of steroid receptors after
long-term follow-up of 2257 operable breast cancers. Br J Cancer.
73:1545–1551. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Schernhammer ES, Holly JM, Hunter DJ,
Pollak MN and Hankinson SE: Insulin-like growth factor-I, its
binding proteins (IGFBP-1 and IGFBP-3), and growth hormone and
breast cancer risk in the nurses health study II. Endocr Relat
Cancer. 13:583–592. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kleinberg DL, Wood TL, Furth PA and Lee
AV: Growth hormone and insulin-like growth factor-I in the
transition from normal mammary development to preneoplastic mammary
lesions. Endocr Rev. 30:51–74. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Selman PJ, Mol JA, Rutteman GR, van
Garderen E and Rijnberk A: Progestin-induced growth hormone excess
in the dog originates in the mammary gland. Endocrinology.
134:287–292. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Mehta RR, Graves JM, Hart GD, Shilkaitis A
and Das Gupta TK: Growth and metastasis of human breast carcinomas
with Matrigel in athymic mice. Breast Cancer Res Treat. 25:65–71.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Gandhi A, Holland PA, Knox WF, Potten CS
and Bundred NJ: Effects of a pure antiestrogen on apoptosis and
proliferation within human breast ductal carcinoma in situ. Cancer
Res. 60:4284–4288. 2000.PubMed/NCBI
|
|
51
|
Chan KC, Knox WF, Gee JM, Morris J,
Nicholson RI, Potten CS and Bundred NJ: Effect of epidermal growth
factor receptor tyrosine kinase inhibition on epithelial
proliferation in normal and premalignant breast. Cancer Res.
62:122–128. 2002.PubMed/NCBI
|
|
52
|
Shanks N, Greek R and Greek J: Are animal
models predictive for humans? Philos Ethics Humanit Med. 4:22009.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ericsson AC, Crim MJ and Franklin CL: A
brief history of animal modeling. Mo Med. 110:201–205.
2013.PubMed/NCBI
|
|
54
|
Russo J, Gusterson BA, Rogers AE, Russo
IH, Wellings SR and van Zwieten MJ: Comparative study of human and
rat mammary tumorigenesis. Lab Invest. 62:244–278. 1990.PubMed/NCBI
|
|
55
|
Russo J and Russo IH: Atlas and histologic
classification of tumors of the rat mammary gland. J Mammary Gland
Biol Neoplasia. 5:187–200. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Szpirer C: Cancer research in rat models.
Methods Mol Biol. 597:445–458. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Russo IH and Russo J: Developmental stage
of the rat mammary gland as determinant of its susceptibility to
7,12-dimethylbenz[a]anthracene. J Natl Cancer Inst. 61:1439–1449.
1978.PubMed/NCBI
|
|
58
|
Thompson HJ, Adlakha H and Singh M: Effect
of carcinogen dose and age at administration on induction of
mammary carcinogenesis by 1-methyl-1-nitrosourea. Carcinogenesis.
13:1535–1539. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Thompson HJ and Meeker LD: Induction of
mammary gland carcinomas by the subcutaneous injection of
1-methyl-1-nitrosourea. Cancer Res. 43:1628–1629. 1983.PubMed/NCBI
|
|
60
|
Russo J, Balogh GA, Heulings R, Mailo DA,
Moral R, Russo PA, Sheriff F, Vanegas J and Russo IH: Molecular
basis of pregnancy-induced breast cancer protection. Eur J Cancer
Prev. 15:306–342. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nandi S, Guzman RC and Yang J: Hormones
and mammary carcinogenesis in mice, rats, and humans: A unifying
hypothesis. Proc Natl Acad Sci USA. 92:3650–3657. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Holliday R: Neoplastic transformation: The
contrasting stability of human and mouse cells. Cancer Surv.
28:103–115. 1996.PubMed/NCBI
|
|
63
|
Holt MP, Shevach EM and Punkosdy GA:
Endogenous mouse mammary tumor viruses (mtv): New roles for an old
virus in cancer, infection and immunity. Front Oncol. 3:2872013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wong M, Pagano JS, Schiller JT, Tevethia
SS, Raab-Traub N and Gruber J: New associations of human
papillomavirus, Simian virus 40, and Epstein-Barr virus with human
cancer. J Natl Cancer Inst. 94:1832–1836. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Newbold RF: Genetic control of telomerase
and replicative senescence in human and rodent cells. Ciba Found
Symp. 211:177–197. 1997.PubMed/NCBI
|
|
66
|
Greenberg RA, Allsopp RC, Chin L, Morin GB
and DePinho RA: Expression of mouse telomerase reverse
transcriptase during development, differentiation and
proliferation. Oncogene. 16:1723–1730. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cabuy E, Newton C, Roberts T, Newbold R
and Slijepcevic P: Identification of subpopulations of cells with
differing telomere lengths in mouse and human cell lines by flow
FISH. Cytometry A. 62:150–161. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Cardiff RD, Anver MR, Gusterson BA,
Hennighausen L, Jensen RA, Merino MJ, Rehm S, Russo J, Tavassoli
FA, Wakefield LM, et al: The mammary pathology of genetically
engineered mice: The consensus report and recommendations from the
Annapolis meeting. Oncogene. 19:968–988. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Cardiff RD: Validity of mouse mammary
tumour models for human breast cancer: Comparative pathology.
Microsc Res Tech. 52:224–230. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Savage VM, Allen AP, Brown JH, Gillooly
JF, Herman AB, Woodruff WH and West GB: Scaling of number, size,
and metabolic rate of cells with body size in mammals. Proc Natl
Acad Sci USA. 104:4718–4723. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Helczynska K, Kronblad A, Jögi A, Nilsson
E, Beckman S, Landberg G and Påhlman S: Hypoxia promotes a
dedifferentiated phenotype in ductal breast carcinoma in situ.
Cancer Res. 63:1441–1444. 2003.PubMed/NCBI
|
|
72
|
Walrath JC, Hawes JJ, Van Dyke T and
Reilly KM: Genetically engineered mouse models in cancer research.
Adv Cancer Res. 106:113–164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gomez-Cuadrado L, Tracey N, Ma R, Qian B
and Brunton VG: Mouse models of metastasis: Progress and prospects.
Dis Model Mech. 10:1061–1074. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Frese KK and Tuveson DA: Maximizing mouse
cancer models. Nat Rev Cancer. 7:645–658. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Rahman M and Mohammed S: Breast cancer
metastasis and the lymphatic system. Oncol Lett. 10:1233–1239.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Kucherlapati R: Genetically modified mouse
models for biomarker discovery and preclinical drug testing. Clin
Cancer Res. 18:625–630. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Olive KP and Tuveson DA: The use of
targeted mouse models for preclinical testing of novel cancer
therapeutics. Clin Cancer Res. 12:5277–5287. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Huang G, Ashton C, Kumbhani DS and Ying
QL: Genetic manipulations in the rat: Progress and prospects. Curr
Opin Nephrol Hypertens. 20:391–399. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Cheung A, Young L, Chen P, Chao C, Ndoye
A, Barry P, Muller W and Cardiff R: Microcirculation and metastasis
in a new mouse mammary tumor model system. Int J Oncol. 11:69–77.
1997.PubMed/NCBI
|
|
80
|
Wiese DA, Thaiwong T, Yuzbasiyan-Gurkan V
and Kiupel M: Feline mammary basal-like adenocarcinomas: A
potential model for human triple-negative breast cancer (TNBC) with
basal-like subtype. BMC Cancer. 13:4032013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
De Maria R, Olivero M, Iussich S, Nakaichi
M, Murata T, Biolatti B and Di Renzo MF: Spontaneous feline mammary
carcinoma is a model of HER2 overexpressing poor prognosis human
breast cancer. Cancer Res. 65:907–912. 2005.PubMed/NCBI
|
|
82
|
Burrai GP, Mohammed SI, Miller MA, Marras
V, Pirino S, Addis MF, Uzzau S and Antuofermo E: Spontaneous feline
mammary intraepithelial lesions as a model for human estrogen
receptor- and progesterone receptor-negative breast lesions. BMC
Cancer. 10:1562010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Weijer K, Head KW, Misdorp W and Hampe JF:
Feline malignant mammary tumors. I. Morphology and biology: Some
comparisons with human and canine mammary carcinomas. J Natl Cancer
Inst. 49:1697–1704. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li W, Xiao C, Vonderhaar BK and Deng CX: A
role of estrogen/ERalpha signaling in BRCA1-associated
tissue-specific tumor formation. Oncogene. 26:7204–7212. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Lin SC, Lee KF, Nikitin AY, Hilsenbeck SG,
Cardiff RD, Li A, Kang KW, Frank SA, Lee WH and Lee EY: Somatic
mutation of p53 leads to estrogen receptor alpha-positive and
-negative mouse mammary tumors with high frequency of metastasis.
Cancer Res. 64:3525–3532. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jang JW, Boxer RB and Chodosh LA:
Isoform-specific ras activation and oncogene dependence during MYC-
and Wnt-induced mammary tumorigenesis. Mol Cell Biol. 26:8109–8121.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Owen LN: A comparative study of canine and
human breast cancer. Invest Cell Pathol. 2:257–275. 1979.PubMed/NCBI
|
|
88
|
Queiroga FL, Raposo T, Carvalho MI, Prada
J and Pires I: Canine mammary tumours as a model to study human
breast cancer: Most recent findings. In vivo. 25:455–465.
2011.PubMed/NCBI
|
|
89
|
Glass AG, Lacey JV Jr, Carreon JD and
Hoover RN: Breast cancer incidence, 1980–2006: combined roles of
menopausal hormone therapy, screening mammography, and estrogen
receptor status. J Natl Cancer Inst. 99:1152–1161. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Pollan M, Pastor-Barriuso R, Ardanaz E,
Argüelles M, Martos C, Galcerán J, Sánchez-Pérez MJ, Chirlaque MD,
Larrañaga N, Martínez-Cobo R, et al: Recent changes in breast
cancer incidence in Spain, 1980–2004. J Natl Cancer Inst.
101:1584–1591. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dobson JM, Samuel S, Milstein H, Rogers K
and Wood JL: Canine neoplasia in the UK: Estimates of incidence
rates from a population of insured dogs. J Small Anim Pract.
43:240–246. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Misdorp W: Armed Forces Institute of
Pathology (U.S.); American Registry of Pathology.; WHO
Collaborating Center for Worldwide Reference on Comparative
Oncology: Histological classification of mammary tumors of the dog
and the cat. Washington: Armed Forces Institute of Pathology in
cooperation with the American Registry of Pathology and the World
Health Organization Collaborating Center for Worldwide Reference on
Comparative Oncology. Comp Oncol. 7:591999.
|
|
93
|
Antuofermo E, Miller MA, Pirino S, Xie J,
Badve S and Mohammed SI: Spontaneous mammary intraepithelial
lesions in dogs-a model of breast cancer. Cancer Epidemiol
Biomarkers Prev. 16:2247–2256. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Schneider R: Comparison of age, sex, and
incidence rates in human and canine breast cancer. Cancer.
26:419–426. 1970. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Rutteman GR, Misdorp W, Blankenstein MA
and van den Brom WE: Oestrogen (ER) and progestin receptors (PR) in
mammary tissue of the female dog: different receptor profile in
non-malignant and malignant states. Br J Cancer. 58:594–599. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Fisher ER, Sass R and Fisher B: Pathologic
findings from the national surgical adjuvant breast project.
Correlations with concordant and discordant estrogen and
progesterone receptors. Cancer. 59:1554–1559. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lamote I, Meyer E, Massart-Leen AM and
Burvenich C: Sex steroids and growth factors in the regulation of
mammary gland proliferation, differentiation, and involution.
Steroids. 69:145–159. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Elston CW: Classification and grading of
invasive breast carcinoma. Verh Dtsch Ges Pathol. 89:35–44.
2005.PubMed/NCBI
|
|
99
|
de las Mulas Martín J, Ordás J, Millán MY,
Chacón F, De Lara M, de los Monteros Espinosa A, Reymundo C and
Jover A: Immunohistochemical expression of estrogen receptor beta
in normal and tumoral canine mammary glands. Vet Pathol.
41:269–272. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Gruvberger-Saal SK, Bendahl PO, Saal LH,
Laakso M, Hegardt C, Edén P, Peterson C, Malmström P, Isola J, Borg
A and Fernö M: Estrogen receptor beta expression is associated with
tamoxifen response in ERalpha-negative breast carcinoma. Clin
Cancer Res. 13:1987–1994. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Saji S, Hirose M and Toi M: Clinical
significance of estrogen receptor beta in breast cancer. Cancer
Chemother Pharmacol. 56 Suppl 1:S21–S26. 2005. View Article : Google Scholar
|
|
102
|
Joensuu K, Leidenius M, Kero M, Andersson
LC, Horwitz KB and Heikkilä P: ER, PR, HER2, Ki-67 and CK5 in early
and late relapsing breast cancer-reduced CK5 expression in
metastases. Breast Cancer (Auckl). 7:23–34. 2013.PubMed/NCBI
|
|
103
|
Gelbfish GA, Davidson AL, Kopel S,
Schreibman B, Gelbfish JS, Degenshein GA, Herz BL and Cunningham
JN: Relationship of estrogen and progesterone receptors to
prognosis in breast cancer. Ann Surg. 207:75–79. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mouttet D, Laé M, Caly M, Gentien D,
Carpentier S, Peyro-Saint-Paul H, Vincent-Salomon A, Rouzier R,
Sigal-Zafrani B, Sastre-Garau X and Reyal F: Estrogen-receptor,
progesterone-receptor and HER2 status determination in invasive
breast cancer. Concordance between immuno-histochemistry and
MapQuant™ microarray based assay. PLoS One. 11:e01464742016.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Krajcik RA, Borofsky ND, Massardo S and
Orentreich N: Insulin-like growth factor I (IGF-I), IGF-binding
proteins, and breast cancer. Cancer Epidemiol Biomarkers Prev.
11:1566–1573. 2002.PubMed/NCBI
|
|
106
|
van Garderen E, de Wit M, Voorhout WF,
Rutteman GR, Mol JA, Nederbragt H and Misdorp W: Expression of
growth hormone in canine mammary tissue and mammary tumors.
Evidence for a potential autocrine/paracrine stimulatory loop. Am J
Pathol. 150:1037–1047. 1997.PubMed/NCBI
|
|
107
|
van Garderen E, van der Poel HJ,
Swennenhuis JF, Wissink EH, Rutteman GR, Hellmén E, Mol JA and
Schalken JA: Expression and molecular characterization of the
growth hormone receptor in canine mammary tissue and mammary
tumors. Endocrinology. 140:5907–5914. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Divisova J, Kuiatse I, Lazard Z, Weiss H,
Vreeland F, Hadsell DL, Schiff R, Osborne CK and Lee AV: The growth
hormone receptor antagonist pegvisomant blocks both mammary gland
development and MCF-7 breast cancer xenograft growth. Breast Cancer
Res Treat. 98:315–327. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Queiroga FL, Pérez-Alenza MD, Silvan G,
Peña L, Lopes CS and Illera JC: Crosstalk between GH/IGF-I axis and
steroid hormones (progesterone, 17beta-estradiol) in canine mammary
tumours. J Steroid Biochem Mol Biol. 110:76–82. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Queiroga FL, Pérez-Alenza D, Silvan G,
Peña L, Lopes CS and Illera JC: Serum and intratumoural GH and
IGF-I concentrations: Prognostic factors in the outcome of canine
mammary cancer. Res Vet Sci. 89:396–403. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yin D, Vreeland F, Schaaf LJ, Millham R,
Duncan BA and Sharma A: Clinical pharmacodynamic effects of the
growth hormone receptor antagonist pegvisomant: Implications for
cancer therapy. Clin Cancer Res. 13:1000–1009. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Hobbs JR and Salih H: Prolactin dependence
in human breast cancer. Proc R Soc Med. 66:8661973.PubMed/NCBI
|
|
113
|
Ormandy CJ, Hall RE, Manning DL, Robertson
JF, Blamey RW, Kelly PA, Nicholson RI and Sutherland RL:
Coexpression and cross-regulation of the prolactin receptor and sex
steroid hormone receptors in breast cancer. J Clin Endocrinol
Metab. 82:3692–3699. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Queiroga FL, Pérez-Alenza MD, Silvan G,
Peña L, Lopes C and Illera JC: Role of steroid hormones and
prolactin in canine mammary cancer. J Steroid Biochem Mol Biol.
94:181–187. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Visan S, Balacescu O, Berindan-Neagoe I
and Catoi C: In vitro comparative models for canine and human
breast cancers. Clujul Med. 89:38–49. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Uva P, Aurisicchio L, Watters J, Loboda A,
Kulkarni A, Castle J, Palombo F, Viti V, Mesiti G, Zappulli V, et
al: Comparative expression pathway analysis of human and canine
mammary tumors. BMC Genomics. 10:1352009. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Egenvall A, Bonnett BN, Ohagen P, Olson P,
Hedhammar A and von Euler H: Incidence of and survival after
mammary tumors in a population of over 80,000 insured female dogs
in Sweden from 1995 to 2002. Prev Vet Med. 69:109–127. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Rivera P, Melin M, Biagi T, Fall T,
Häggström J, Lindblad-Toh K and von Euler H: Mammary tumor
development in dogs is associated with BRCA1 and BRCA2. Cancer Res.
69:8770–8774. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ochiai K, Morimatsu M, Tomizawa N and
Syuto B: Cloning and sequencing full length of canine Brca2 and
Rad51 cDNA. J Vet Med Sci. 63:1103–1108. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Nieto A, Pérez-Alenza MD, Del Castillo N,
Tabanera E, Castaño M and Peña L: BRCA1 expression in canine
mammary dysplasias and tumours: Relationship with prognostic
variables. J Comp Pathol. 128:260–268. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Klopfleisch R and Gruber AD: Increased
expression of BRCA2 and RAD51 in lymph node metastases of canine
mammary adenocarcinomas. Vet Pathol. 46:416–422. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Rajan JV, Marquis ST, Gardner HP and
Chodosh LA: Developmental expression of Brca2 colocalizes with
Brca1 and is associated with proliferation and differentiation in
multiple tissues. Dev Biol. 184:385–401. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Rakha EA, El-Sayed ME, Green AR, Lee AH,
Robertson JF and Ellis IO: Prognostic markers in triple-negative
breast cancer. Cancer. 109:25–32. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Gama A, Gärtner F, Alves A and Schmitt F:
Immunohistochemical expression of Epidermal Growth Factor Receptor
(EGFR) in canine mammary tissues. Res Vet Sci. 87:432–437. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Queiroga FL, Perez-Alenza D, Silvan G,
Peña L and Illera JC: Positive correlation of steroid hormones and
EGF in canine mammary cancer. J Steroid Biochem Mol Biol. 115:9–13.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ross JS, Fletcher JA, Linette GP, Stec J,
Clark E, Ayers M, Symmans WF, Pusztai L and Bloom KJ: The Her-2/neu
gene and protein in breast cancer 2003: Biomarker and target of
therapy. Oncologist. 8:307–325. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Rungsipipat A, Tateyama S, Yamaguchi R,
Uchida K, Miyoshi N and Hayashi T: Immunohistochemical analysis of
c-yes and c-erbB-2 oncogene products and p53 tumor suppressor
protein in canine mammary tumors. J Vet Med Sci. 61:27–32. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Kerns BJ, Pence JC, Huper G, Kinney RB and
Iglehart JD: c-erbB-2 expression in breast cancer detected by
immunoblotting and immunohistochemistry. J Histochem Cytochem.
38:1823–1830. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Paredes J, Lopes N, Milanezi F and Schmitt
FC: P-cadherin and cytokeratin 5: Useful adjunct markers to
distinguish basal-like ductal carcinomas in situ. Virchows Arch.
450:73–80. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Abd El-Rehim DM, Pinder SE, Paish CE, Bell
J, Blamey RW, Robertson JF, Nicholson RI and Ellis IO: Expression
of luminal and basal cytokeratins in human breast carcinoma. J
Pathol. 203:661–671. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Gama A, Alves A and Schmitt F:
Identification of molecular phenotypes in canine mammary carcinomas
with clinical implications: Application of the human
classification. Virchows Arch. 453:123–132. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gerdes J, Lemke H, Baisch H, Wacker HH,
Schwab U and Stein H: Cell cycle analysis of a cell
proliferation-associated human nuclear antigen defined by the
monoclonal antibody Ki-67. J Immunol. 133:1710–1715.
1984.PubMed/NCBI
|
|
133
|
Peña LL, Nieto AI, Pérez-Alenza D, Cuesta
P and Castaño M: Immunohistochemical detection of Ki-67 and PCNA in
canine mammary tumors: Relationship to clinical and pathologic
variables. J Vet Diagn Invest. 10:237–246. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Railo M, Nordling S, von Boguslawsky K,
Leivonen M, Kyllönen L and von Smitten K: Prognostic value of Ki-67
immunolabelling in primary operable breast cancer. Br J Cancer.
68:579–583. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Thomas M, Noguchi M, Kitagawa H, Kinoshita
K and Miyazaki I: Poor prognostic value of proliferating cell
nuclear antigen labelling index in breast carcinoma. J Clin Pathol.
46:525–528. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Funakoshi Y, Nakayama H, Uetsuka K,
Nishimura R, Sasaki N and Doi K: Cellular proliferative and
telomerase activity in canine mammary gland tumors. Vet Pathol.
37:177–183. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Kumaraguruparan R, Prathiba D and Nagini
S: Of humans and canines: Immunohistochemical analysis of PCNA,
Bcl-2, p53, cytokeratin and ER in mammary tumours. Res Vet Sci.
81:218–224. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Velculescu VE and El-Deiry WS: Biological
and clinical importance of the p53 tumor suppressor gene. Clin
Chem. 42:858–868. 1996.PubMed/NCBI
|
|
139
|
Beenken SW, Grizzle WE, Crowe DR, Conner
MG, Weiss HL, Sellers MT, Krontiras H, Urist MM and Bland KI:
Molecular biomarkers for breast cancer prognosis: Coexpression of
c-erbB-2 and p53. Ann Surg. 233:630–638. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Lee CH and Kweon OK: Mutations of p53
tumor suppressor gene in spontaneous canine mammary tumors. J Vet
Sci. 3:321–325. 2002.PubMed/NCBI
|
|
141
|
Chu LL, Rutteman GR, Kong JM, Ghahremani
M, Schmeing M, Misdorp W, van Garderen E and Pelletier J: Genomic
organization of the canine p53 gene and its mutational status in
canine mammary neoplasia. Breast Cancer Res Treat. 50:11–25. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Veldhoen N, Watterson J, Brash M and
Milner J: Identification of tumour-associated and germ line p53
mutations in canine mammary cancer. Br J Cancer. 81:409–415. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Muto T, Wakui S, Takahashi H, Maekawa S,
Masaoka T, Ushigome S and Furusato M: p53 gene mutations occurring
in spontaneous benign and malignant mammary tumors of the dog. Vet
Pathol. 37:248–253. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Moll UM and Slade N: p63 and p73: Roles in
development and tumor formation. Mol Cancer Res. 2:371–386.
2004.PubMed/NCBI
|
|
145
|
McKeon FD: p63 and p73 in tumor
suppression and promotion. Cancer Res Treat. 36:6–12. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Matos I, Dufloth R, Alvarenga M, Zeferino
LC and Schmitt F: p63, cytokeratin 5, and P-cadherin: Three
molecular markers to distinguish basal phenotype in breast
carcinomas. Virchows Arch. 447:688–694. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Stefanou D, Batistatou A, Nonni A,
Arkoumani E and Agnantis NJ: p63 expression in benign and malignant
breast lesions. Histol Histopathol. 19:465–471. 2004.PubMed/NCBI
|
|
148
|
Desantis CRS and Jemal A: Breast cancer
facts & figures 2015–2016. Am Cancer Soc. 44:2015.
|
|
149
|
Gama A, Alves A, Gartner F and Schmitt F:
p63: A novel myoepithelial cell marker in canine mammary tissues.
Vet Pathol. 40:412–420. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Elmore JG, Armstrong K, Lehman CD and
Fletcher SW: Screening for breast cancer. JAMA. 293:1245–1256.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Morgan MP, Cooke MM and McCarthy GM:
Microcalcifications associated with breast cancer: An epiphenomenon
or biologically significant feature of selected tumors? J Mammary
Gland Biol Neoplasia. 10:181–187. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Muttarak M, Kongmebhol P and Sukhamwang N:
Breast calcifications: Which are malignant? Singapore Med J.
50:907–914. 2009.PubMed/NCBI
|
|
153
|
Burnside ES, Sickles EA, Bassett LW, Rubin
DL, Lee CH, Ikeda DM, Mendelson EB, Wilcox PA, Butler PF and D'Orsi
CJ: The ACR BI-RADS experience: Learning from history. J Am Coll
Radiol. 6:851–860. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Ernster VL and Barclay J: Increases in
ductal carcinoma in situ (DCIS) of the breast in relation to
mammography: A dilemma. J Natl Cancer Inst Monogr. 151–156. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Mohammed SI, Meloni GB, Parpaglia Pinna
ML, Marras V, Burrai GP, Meloni F, Pirino S and Antuofermo E:
Mammography and ultrasound imaging of preinvasive and invasive
canine spontaneous mammary cancer and their similarities to human
breast cancer. Cancer Prev Res (Phila). 4:1790–1798. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Cekanova M and Rathore K: Animal models
and therapeutic molecular targets of cancer: Utility and
limitations. Drug Des Devel Ther. 8:1911–1921. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Decker WK, da Silva RF, Sanabria MH,
Angelo LS, Guimarães F, Burt BM, Kheradmand F and Paust S: Cancer
immunotherapy: Historical perspective of a clinical revolution and
emerging preclinical animal models. Front Immunol. 8:8292017.
View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Estrela-Lima A, Araújo MS, Costa-Neto JM,
Teixeira-Carvalho A, Barrouin-Melo SM, Cardoso SV, Martins-Filho
OA, Serakides R and Cassali GD: Immunophenotypic features of tumor
infiltrating lymphocytes from mammary carcinomas in female dogs
associated with prognostic factors and survival rates. BMC Cancer.
10:2562010. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Akiyama F and Horii R: Therapeutic
strategies for breast cancer based on histological type. Breast
Cancer. 16:168–172. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Sorenmo KU, Kristiansen VM, Cofone MA,
Shofer FS, Breen AM, Langeland M, Mongil CM, Grondahl AM, Teige J
and Goldschmidt MH: Canine mammary gland tumours; a histological
continuum from benign to malignant; clinical and histopathological
evidence. Vet Comp Oncol. 7:162–172. 2009. View Article : Google Scholar : PubMed/NCBI
|