Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2018 Volume 15 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2018 Volume 15 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

F‑box proteins involved in cancer‑associated drug resistance (Review)

  • Authors:
    • Jian Gong
    • Yuqian Zhou
    • Deliang Liu
    • Jirong Huo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
  • Pages: 8891-8900
    |
    Published online on: April 16, 2018
       https://doi.org/10.3892/ol.2018.8500
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The ubiquitin proteasome system (UPS) regulated human biological processes through the appropriate and efficient proteolysis of cellular proteins. F‑box proteins are the vital components of SKP1‑CUL1‑FBP (SCF)‑type E3 ubiquitin ligases that determine substrate specificity. As F‑box proteins have the ability to control the degradation of several crucial protein targets associated with drug resistance, the dysregulation of these proteins may lead to induction of chemoresistance in cancer cells. Chemotherapy is one of the most conventional therapeutic approaches of treatment of patients with cancer. However, its exclusive application in clinical settings is restricted due to the development of chemoresistance, which typically results treatment failure. Therefore, overcoming drug resistance is considered as one of the most critical issues that researchers and clinician associated with oncology face. The present review serves to provide a comprehensive overview of F‑box proteins and their possible targets as well as their correlation with the chemoresistance and chemosensitization of cancer cells. The article also presents an integrated representation of the complex regulatory mechanisms responsible for chemoresistance, which may lay the foundation to explore sensible candidate drugs for therapeutic intervention.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Huang Z, Huang Y, He H and Ni J: Podocalyxin promotes cisplatin chemoresistance in osteosarcoma cells through phosphatidylinositide 3-kinase signaling. Mol Med Rep. 12:3916–3922. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Lippert TH, Ruoff HJ and Volm M: Intrinsic and acquired drug resistance in malignant tumors. The main reason for therapeutic failure. Arzneimittelforschung. 58:261–264. 2008.PubMed/NCBI

4 

Fletcher JI, Haber M, Henderson MJ and Norris MD: ABC transporters in cancer: More than just drug efflux pumps. Nat Rev Cancer. 10:147–156. 2010. View Article : Google Scholar : PubMed/NCBI

5 

Burger H, Loos WJ, Eechoute K, Verweij J, Mathijssen RH and Wiemer EA: Drug transporters of platinum-based anticancer agents and their clinical significance. Drug Resist Updat. 14:22–34. 2011. View Article : Google Scholar : PubMed/NCBI

6 

Singh A and Settleman J: EMT, cancer stem cells and drug resistance: An emerging axis of evil in the war on cancer. Oncogene. 29:4741–4751. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Li RJ, Zhang GS, Chen YH, Zhu JF, Lu QJ, Gong FJ and Kuang WY: Down-regulation of mitochondrial ATPase by hypermethylation mechanism in chronic myeloid leukemia is associated with multidrug resistance. Ann Oncol. 21:1506–1514. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Li SS, Yang S, Wang S, Yang XM, Tang QL and Wang SH: Latent membrane protein 1 mediates the resistance of nasopharyngeal carcinoma cells to TRAIL-induced apoptosis by activation of the PI3K/Akt signaling pathway. Oncol Rep. 26:1573–1579. 2011.PubMed/NCBI

9 

Marin JJ, Castaño B, Blazquez AG, Rosales R, Efferth T and Monte MJ: Strategies for overcoming chemotherapy resistance in enterohepatic tumours. Curr Mol Med. 10:467–485. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Dean M, Fojo T and Bates S: Tumour stem cells and drug resistance. Nat Rev Cancer. 5:275–284. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Fang Y, Fang D and Hu J: MicroRNA and its roles in esophageal cancer. Med Sci Monit. 18:RA22–RA30. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Sarkar FH, Li Y, Wang Z, Kong D and Ali S: Implication of microRNAs in drug resistance for designing novel cancer therapy. Drug Resist Updat. 13:57–66. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Shapira A, Livney YD, Broxterman HJ and Assaraf YG: Nanomedicine for targeted cancer therapy: Towards the overcoming of drug resistance. Drug Resist Updat. 14:150–163. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Hershko DD: Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer. 112:1415–1424. 2008. View Article : Google Scholar : PubMed/NCBI

15 

Gao M and Karin M: Regulating the regulators: Control of protein ubiquitinationand ubiquitin-like modifications by extracellular stimuli. Mol Cell. 19:581–593. 2005. View Article : Google Scholar : PubMed/NCBI

16 

Thrower JS, Hoffman L, Rechsteiner M and Pickart CM: Recognition of the polyubiquitin proteolytic signal. EMBO J. 19:94–102. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Lee TY, Chen SA, Hung HY and Ou YY: Incorporating distant sequence features and radial basis function networks to identify ubiquitin conjugation sites. PLoS One. 6:e173312011. View Article : Google Scholar : PubMed/NCBI

18 

Bielskienė K, Bagdonienė L, Mozūraitienė J, Kazbarienė B and Janulionis E: E3 ubiquitin ligases as drug targets and prognostic biomarkers in melanoma. Medicina. 51:1–9. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Gong J, Cao J, Liu G and Huo JR: Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol. 47:43–50. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Zhao Y and Sun Y: Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des. 19:3215–3225. 2013. View Article : Google Scholar : PubMed/NCBI

21 

Reed SI: Ratchets and clocks: The cell cycle, ubiquitylation and protein turnover. Nat Rev Mol Cell Biol. 4:855–864. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Peters JM: The anaphase promoting complex/cyclosome: A machine designed to destroy. Nat Rev Mol Cell Biol. 7:644–656. 2006. View Article : Google Scholar : PubMed/NCBI

23 

Kipreos ET and Pagano M: The F-box protein family. Genome Biol 1: REVIEWS3002, 2000. Epub 2000 Nov 10.

24 

Xie CM, Wei W and Sun Y: Role of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases in skin cancer. J Genet Genomics. 40:97–106. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Wang Z, Liu P, Inuzuka H and Wei W: Roles of F-box proteins in cancer. Nat Rev Cancer. 14:233–247. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Gong J, Lv L and Huo J: Roles of F-box proteins in human digestive system tumors (Review). Int J Oncol. 45:2199–2207. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Gong J and Huo J: New insights into the mechanism of F-box proteins in colorectal cancer (Review). Oncol Rep. 33:2113–2120. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Hartwell LH, Mortimer RK, Culotti J and Culotti M: Genetic control of the cell division cycle in yeast: V. Genetic analysis of cdc mutants. Genetics. 74:267–286. 1973.PubMed/NCBI

29 

Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Bedford L, Lowe J, Dick LR, Mayer RJ and Brownell JE: Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov. 10:29–46. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Minella AC, Welcker M and Clurman BE: Ras activity regulates cyclin E degradation by the Fbw7 pathway. Proc Natl Acad Sci USA. 102:9649–9654. 2005. View Article : Google Scholar : PubMed/NCBI

32 

Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. Embo J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Hoeck JD, Jandke A, Blake SM, Nye E, Spencer-Dene B, Brandner S and Behrens A: Fbw7 controls neural stem cell differentiation and progenitor apoptosis via Notch and c-Jun. Nat Neurosci. 13:1365–1372. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Rocher-Ros V, Marco S, Mao JH, Gines S, Metzger D, Chambon P, Balmain A and Saura CA: Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene. 29:2950–2961. 2010. View Article : Google Scholar : PubMed/NCBI

35 

Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al: SCFFBW7 regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Inuzuka H, Fukushima H, Shaik S, Liu P, Lau AW and Wei W: Mcl-1 ubiquitination and destruction. Oncotarget. 2:239–244. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Tong J, Tan S, Zou F, Yu J and Zhang L: FBW7 mutations mediate resistance of colorectal cancer to targeted therapies by blocking Mcl-1 degradation. Oncogene. 36:787–796. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Tong J, Wang P, Tan S, Chen D, Nikolovska-Coleska Z, Zou F, Yu J and Zhang L: Mcl-1 degradation is required for targeted therapeutics to eradicate colon cancer cells. Cancer Res. 77:2512–2521. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Song Y, Zhou X, Bai W and Ma X: FBW7 increases drug sensitivity to cisplatin in human nasopharyngeal carcinoma by downregulating the expression of multidrug resistance-associated protein. Tumour Biol. 36:4197–4202. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Fang L, Yang Z, Zhou J, Tung JY, Hsiao CD, Wang L, Deng Y, Wang P, Wang J and Lee MH: Circadian clock gene CRY2 degradation is involved in chemoresistance of colorectal cancer. Mol Cancer Ther. 14:1476–1487. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A and Aifantis I: The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 204:1825–1835. 2007. View Article : Google Scholar : PubMed/NCBI

43 

O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Ding XQ, Zhao S, Yang L, Zhao X, Zhao GF, Zhao SP, Li ZJ and Zheng HC: The nucleocytoplasmic translocation and up-regulation of ING5 protein in breast cancer: A potential target for gene therapy. Oncotarget. 8:81953–81966. 2017.PubMed/NCBI

45 

Yu HG, Wei W, Xia LH, Han WL, Zhao P, Wu SJ, Li WD and Chen W: FBW7 upregulation enhances cisplatin cytotoxicity in non-small cell lung cancer cells. Asian Pac J Cancer Prev. 14:6321–6326. 2013. View Article : Google Scholar : PubMed/NCBI

46 

Izumi D, Ishimoto T, Miyake K, Eto T, Arima K, Kiyozumi Y, Uchihara T, Kurashige J, Iwatsuki M, Baba Y, et al: Colorectal cancer stem cells acquire chemoresistance through the upregulation of F-Box/WD repeat-containing protein 7 and the consequent degradation of c-Myc. Stem Cells. 35:2027–2036. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Takeishi S and Nakayama KI: Role of Fbxw7 in the maintenance of normal stem cells and cancer-initiating cells. Br J Cancer. 111:1054–1059. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Yokobori T, Mimori K, Iwatsuki M, Ishii H, Onoyama I, Fukagawa T, Kuwano H, Nakayama KI and Mori M: p53-Altered FBXW7 expression determines poor prognosis in gastric cancer cases. Cancer Res. 69:3788–3794. 2009. View Article : Google Scholar : PubMed/NCBI

49 

Welcker M, Larimore EA, Frappier L and Clurman BE: Nucleolar targeting of the fbw7 ubiquitin ligase by a pseudosubstrate and glycogen synthase kinase 3. Mol Cell Biol. 31:1214–1224. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Balamurugan K, Wang JM, Tsai HH, Sharan S, Anver M, Leighty R and Sterneck E: The tumour suppressor C/EBPδ inhibits FBXW7 expression and promotes mammary tumour metastasis. EMBO J. 29:4106–4117. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Lerner M, Lundgren J, Akhoondi S, Jahn A, Ng HF, Moqadam Akbari F, Vrielink Oude JA, Agami R, Den Boer ML, Grandér D and Sangfelt O: MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle. 10:2172–2183. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Xu Y, Sengupta T, Kukreja L and Minella AC: MicroRNA-223 regulates cyclin E activity by modulating expression of F-box and WD-40 domain protein 7. J Biol Chem. 285:34439–34446. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Zhou X, Jin W, Jia H, Yan J and Zhang G: MiR-223 promotes the cisplatin resistance of human gastric cancer cells via regulating cell cycle by targeting FBXW7. J Exp Clin Cancer Res. 34:282015. View Article : Google Scholar : PubMed/NCBI

54 

Li R, Wu S, Chen X, Xu H, Teng P and Li W: miR-223/FBW7 axis regulates doxorubicin sensitivity through epithelial mesenchymal transition in non-small cell lung cancer. Am J Transl Res. 2016:2512–2524. 2016.

55 

Ye M, Zhang Y, Zhang X and Zhang J, Jing P, Cao L, Li N, Li X, Yao L and Zhang J and Zhang J: Targeting FBW7 as a strategy to overcome resistance to targeted therapy in non-small cell lung cancer. Cancer Res. 77:3527–3539. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Adua D, Di Fabio F, Ercolani G, Fiorentino M, Gruppioni E, Altimari A, Limpe Rojas FL, Normanno N, Pinna AD and Pinto C: Heterogeneity in the colorectal primary tumor and the synchronous resected liver metastases prior to and after treatment with an anti-EGFR monoclonal antibody. Mol Clin Oncol. 7:113–120. 2017. View Article : Google Scholar : PubMed/NCBI

57 

Zheng M, Xu H, Liao XH, Chen CP, Zhang AL, Lu W, Wang L, Yang D, Wang J, Liu H, et al: Inhibition of the prolyl isomerase Pin1 enhances the ability of sorafenib to induce cell death and inhibit tumor growth in hepatocellular carcinoma. Oncotarget. 8:29771–29784. 2017.PubMed/NCBI

58 

Lupini L, Bassi C, Mlcochova J, Musa G, Russo M, Vychytilova-Faltejskova P, Svoboda M, Sabbioni S, Nemecek R, Slaby O and Negrini M: Prediction of response to anti-EGFR antibody-based therapies by multigene sequencing in colorectal cancer patients. BMC Cancer. 15:8082015. View Article : Google Scholar : PubMed/NCBI

59 

Eto K, Iwatsuki M, Watanabe M, Ishimoto T, Ida S, Imamura Y, Iwagami S, Baba Y, Sakamoto Y, Miyamoto Y, et al: The sensitivity of gastric cancer to trastuzumab is regulated by the miR-223/FBXW7 pathway. Int J Cancer. 136:1537–1545. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Demetrick DJ, Zhang H and Beach DH: Chromosomal mapping of the genes for the human CDK2/cyclin A-associated proteins p19 (SKP1A and SKP1B) and p45 (SKP2). Cytogenet Cell Genet. 73:104–107. 1996. View Article : Google Scholar : PubMed/NCBI

61 

Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM and Hershko A: Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer. 91:1745–1751. 2001. View Article : Google Scholar : PubMed/NCBI

62 

Fukuchi M, Masuda N, Nakajima M, Fukai Y, Miyazaki T, Kato H and Kuwano H: Inverse correlation between expression levels of p27 and the ubiquitin ligase subunit Skp2 in early esophageal squamous cell carcinoma. Anticancer Res. 24:777–783. 2004.PubMed/NCBI

63 

Yang G, Ayala G and De Marzo A: Tian W, Frolov A, Wheeler TM, Thompson TC and Harper JW: Elevated Skp2 protein expression in human prostate cancer: Association with loss of the cyclin-dependent kinase inhibitor p27 and PTEN and with reduced recurrence-free survival. Clin Cancer Res. 8:3419–3426. 2002.PubMed/NCBI

64 

Traub F, Mengel M, Lück HJ, Kreipe HH and von Wasielewski R: Prognostic impact of Skp2 and p27 in human breast cancer. Breast Cancer Res Treat. 99:185–191. 2006. View Article : Google Scholar : PubMed/NCBI

65 

Rose AE, Wang G, Hanniford D, Monni S, Tu T, Shapiro RL, Berman RS, Pavlick AC, Pagano M, Darvishian F, et al: Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell Melanoma Res. 24:197–206. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Xu HM, Liang Y, Chen Q, Wu QN, Guo YM, Shen GP, Zhang RH, He ZW, Zeng YX, Xie FY, et al: Correlation of Skp2 overexpression to prognosis of patients with nasopharyngeal carcinoma from South China. Chin J Cancer. 30:204–212. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Schüler S, Diersch S, Hamacher R, Schmid RM, Saur D and Schneider G: SKP2 confers resistance of pancreatic cancer cells towards TRAIL induced apoptosis. Int J Oncol. 38:219–225. 2011.PubMed/NCBI

68 

Wang Z, Fukushima H, Inuzuka H, Wan L, Liu P, Gao D, Sarkar FH and Wei W: Skp2 is a promising therapeutic target in breast cancer. Front Oncol. 1:pii: 18702. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Shapira M, Ben-Izhak O, Linn S, Futerman B, Minkov I and Hershko DD: The prognostic impact of the ubiquitin ligase subunits Skp2 and Cks1 in colorectal carcinoma. Cancer. 103:1336–1346. 2005. View Article : Google Scholar : PubMed/NCBI

70 

Blagosklonny MV: Review Why therapeutic response may not prolong the life of a cancer patient: Selection for oncogenic resistance. Cell Cycle. 4:1693–1698. 2005. View Article : Google Scholar : PubMed/NCBI

71 

Zhuang K, Zhang L, Zhang X, Tang H, Zhang J, Yan Y, Han K and Guo H: Gastrin induces multidrug resistance via the degradation of p27Kip1 in the gastric carcinoma cell line SGC7901. Int J Oncol. 50:2091–2100. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Huang T, Yang L, Wang G, Ding G, Peng B, Wen Y and Wang Z: Inhibition of Skp2 sensitizes lung cancer cells to paclitaxel. Onco Targets Ther. 10:439–446. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Davidovich S, Ben-Izhak O, Shapira M, Futerman B and Hershko DD: Over-expression of Skp2 is associated with resistance to preoperative doxorubicin-based chemotherapy in primary breast cancer. Breast Cancer Res. 10:R632008. View Article : Google Scholar : PubMed/NCBI

74 

Schüler S, Diersch S, Hamacher R, Schmid RM, Saur D and Schneider G: SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol. 38:219–225. 2011.PubMed/NCBI

75 

Totary-Jain H, Sanoudou D, Dautriche CN, Schneller H, Zambrana L and Marks AR: Rapamycin resistance is linked to defective regulation of Skp2. Cancer Res. 72:1836–1843. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, Huang HY, Tsai KK, Flores LG, Shao Y, et al: The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 149:1098–1111. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Wang J, Han F, Wu J, Lee SW, Chan CH, Wu CY, Yang WL, Gao Y, Zhang X, Jeong YS, et al: The role of Skp2 in hematopoietic stem cell quiescence, pool size, and self-renewal. Blood. 118:5429–5438. 2011. View Article : Google Scholar : PubMed/NCBI

78 

Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M, Margottin-Goguet F, Jackson PK, Yamasaki L and Pagano M: Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell. 4:799–812. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Müerköster S, Arlt A, Sipos B, Witt M, Grossmann M, Klöppel G, Kalthoff H, Fölsch UR and Schäfer H: Increased expression of the E3-ubiquitin ligase receptor subunit betaTRCP1 relates to constitutive nuclear factor-kappaB activation and chemoresistance in pancreatic carcinoma cells. Cancer Res. 65:1316–1324. 2005. View Article : Google Scholar : PubMed/NCBI

80 

Pan Y, Zhang F, Zhao Y, Shao D, Zheng X, Chen Y, He K, Li J and Chen L: Berberine enhances chemosensitivity and induces apoptosis through dose-orchestrated AMPK signaling in breast cancer. J Cancer. 8:1679–1689. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Wang N, Wang X, Tan HY, Li S, Tsang CM, Tsao SW and Feng Y: Berberine suppresses cyclin D1 expression through proteasomal degradation in human hepatoma cells. Int J Mol Sci. 17:pii: E1899. 2016. View Article : Google Scholar

82 

Harder B, Jiang T, Wu T, Tao S, de la Vega Rojo M, Tian W, Chapman E and Zhang DD: Molecular mechanisms of Nrf2 regulation and how these influence chemical modulation for disease intervention. Biochem Soc Trans. 43:680–686. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Chowdhry S, Zhang Y, McMahon M, Sutherland C, Cuadrado A and Hayes JD: Nrf2 is controlled by two distinct β-TrCP recognition motifs in its Neh6 domain, one of which can be modulated by GSK-3 activity. Oncogene. 32:3765–3781. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Woo Y, Oh J and Kim JS: Suppression of Nrf2 activity by chestnut leaf extract increases chemosensitivity of breast cancer stem cells to paclitaxel. Nutrients. 9:pii: E760. 2017. View Article : Google Scholar

85 

Karathedath S, Rajamani BM, Aalam Musheer SM, Abraham A, Varatharajan S, Krishnamurthy P, Mathews V, Velayudhan SR and Balasubramanian P: Role of NF-E2 related factor 2 (Nrf2) on chemotherapy resistance in acute myeloid leukemia (AML) and the effect of pharmacological inhibition of Nrf2. PLoS One. 12:e01772272017. View Article : Google Scholar : PubMed/NCBI

86 

Duong HQ, You KS, Oh S, Kwak SJ and Seong YS: Silencing of NRF2 reduces the expression of ALDH1A1 and ALDH3A1 and sensitizes to 5-FU in pancreatic cancer cells. Antioxidants. 6:pii: E52. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Chang KY, Hsu TI, Hsu CC, Tsai SY, Liu JJ, Chou SW, Liu MS, Liou JP, Ko CY, Chen KY, et al: Specificity protein 1-modulated superoxide dismutase 2 enhances temozolomide resistance in glioblastoma, which is independent of O6-methylguanine-DNA methyltransferase. Redox Biol. 13:655–664. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Liu WH and Chang LS: Fas/FasL-dependent and -independent activation of caspase-8 in doxorubicin-treated human breast cancer MCF-7 cells: ADAM10 down-regulation activates Fas/FasL signaling pathway. Int J Biochem Cell Biol. 43:1708–1719. 2011. View Article : Google Scholar : PubMed/NCBI

89 

Wu WD, Wang M, Ding HH and Qiu ZJ: FBXL5 attenuates RhoGDI2-induced cisplatin resistance in gastric cancer cells. Eur Rev Med Pharmacol Sci. 20:2551–2557. 2016.PubMed/NCBI

90 

Cho HJ, Baek KE, Park SM, Kim IK, Nam IK, Choi YL, Park SH, Im MJ, Choi J, Ryu J, et al: RhoGDI2 confers gastric cancer cells resistance against cisplatin-induced apoptosis by upregulation of Bcl-2 expression. Cancer Lett. 311:48–56. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Wang X, Pankratz VS, Fredericksen Z, Tarrell R, Karaus M, McGuffog L, Pharaoh PD, Ponder BA, Dunning AM, Peock S, et al: Common variants associated with breast cancer in genome-wide association studies are modifiers of breast cancer risk in BRCA1 and BRCA2 mutation carriers. Hum Mol Genet. 19:2886–2897. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Coon TA, Glasser JR, Mallampalli RK and Chen BB: Novel E3 ligase component FBXL7 ubiquitinates and degrades Aurora A, causing mitotic arrest. Cell Cycle. 11:721–729. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Liu Y, Lear T, Iannone O, Shiva S, Corey C, Rajbhandari S, Jerome J, Chen BB and Mallampalli RK: The proapoptotic F-box protein Fbxl7 regulates mitochondrial function by mediating the ubiquitylation and proteasomal degradation of survivin. J Biol Chem. 290:11843–11852. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Kamran M, Long ZJ, Xu D, Lv SS, Liu B, Wang CL, Xu J, Lam EW and Liu Q: Aurora kinase A regulates Survivin stability through targeting FBXL7 in gastric cancer drug resistance and prognosis. Oncogenesis. 6:e2982017. View Article : Google Scholar : PubMed/NCBI

95 

Lehman NL, Tibshirani R, Hsu JY, Natkunam Y, Harris BT, West RB, Masek MA, Montgomery K, van de Rijn M and Jackson PK: Oncogenic regulators and substrates of the anaphase promoting complex/cyclosome are frequently overexpressed in malignant tumors. Am J Pathol. 170:1793–1805. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Gütgemann I, Lehman NL, Jackson PK and Longacre TA: Emi1 protein accumulation implicates misregulation of the anaphase promoting complex/cyclosome pathway in ovarian clear cell carcinoma. Mod Pathol. 21:445–454. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Shimizu N, Nakajima N, Tsunematsu T, Ogawa I, Kawai H, Hirayama R, Fujimori A, Yamada A, Okayasu R, Ishimaru N, et al: Selective enhancing effect of early mitotic inhibitor 1 (Emi1) depletion on the sensitivity of doxorubicin or X-ray treatment in human cancer cells. J Biol Chem. 288:17238–17252. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Zhang YW, Brognard J, Coughlin C, You Z, Dolled-Filhart M, Aslanian A, Manning G, Abraham RT and Hunter T: The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress. Mol Cell. 35:442–453. 2009. View Article : Google Scholar : PubMed/NCBI

99 

Katayama K, Noguchi K and Sugimoto Y: FBXO15 regulates P-glycoprotein/ABCB1 expression through the ubiquitin-proteasome pathway in cancer cells. Cancer Sci. 104:694–702. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Ravindranath AK, Kaur S, Wernyj RP, Kumaran MN, Miletti-Gonzalez KE, Chan R, Lim E, Madura K and Rodriguez-Rodriguez L: CD44 promotes multi-drug resistance by protecting P-glycoprotein from FBXO21-mediated ubiquitination. Oncotarget. 6:26308–26321. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Wu B, Liu ZY, Cui J, Yang XM, Jing L, Zhou Y, Chen ZN and Jiang JL: F-box protein FBXO22 mediates polyubiquitination and degradation of CD147 to reverse cisplatin resistance of tumor cells. Int J Mol Sci. 18:pii: E212. 2017. View Article : Google Scholar

102 

Hanai J, Cao P, Tanksale P, Imamura S, Koshimizu E, Zhao J, Kishi S, Yamashita M, Phillips PS, Sukhatme VP and Lecker SH: The muscle-specific ubiquitin ligase atrogin-1/MAFbx mediates statin-induced muscle toxicity. J Clin Invest. 117:3940–3951. 2007.PubMed/NCBI

103 

Tanaka N, Kosaka T, Miyazaki Y, Mikami S, Niwa N, Otsuka Y, Minamishima YA, Mizuno R, Kikuchi E, Miyajima A, et al: Acquired platinum resistance involves epithelial to mesenchymal transition through ubiquitin ligase FBXO32 dysregulation. JCI Insight. 1:e836542016. View Article : Google Scholar : PubMed/NCBI

104 

Tan J, Yang X, Zhuang L, Jiang X, Chen W, Lee PL, Karuturi RK, Tan PB, Liu ET and Yu Q: Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 21:1050–1063. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Lorenzi F, Babaei-Jadidi R, Sheard J, Spencer-Dene B and Nateri AS: Fbxw7-associated drug resistance is reversed by induction of terminal differentiation in murine intestinal organoid culture. Mol Ther Methods Clin Dev. 3:160242016. View Article : Google Scholar : PubMed/NCBI

106 

Zhang X, Kong Y, Xu X, Xing H, Zhang Y, Han F, Li W, Yang Q, Zeng J, Jia J and Lui Z: F-box protein FBXO31 is down-regulated in gastric cancer and negatively regulated by miR-17 and miR-20a. Oncotarget. 5:6178–6190. 2014. View Article : Google Scholar : PubMed/NCBI

107 

Huang HL, Zheng WL, Zhao R, Zhang B and Ma WL: FBXO31 is down-regulated and may function as a tumor suppressor in hepatocellular carcinoma. Oncol Rep. 24:715–720. 2010.PubMed/NCBI

108 

Liu J, Lv L, Gong J, Tan Y, Zhu Y, Dai Y, Pan X, Huen MS, Li B, Tsao SW, et al: Overexpression of F-box only protein 31 predicts poor prognosis and deregulates p38α- and JNK-mediated apoptosis in esophageal squamous cell carcinoma. Int J Cancer. 142:145–155. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Kogo R, Mimori K, Tanaka F, Komune S and Mori M: FBXO31 determines poor prognosis in esophageal squamous cell carcinoma. Int J Oncol. 39:155–159. 2011.PubMed/NCBI

110 

Guerrero-Garcia TA, Mogollon RJ and Castillo JJ: Bortezomib in plasmablastic lymphoma: A glimpse of hope for a hard-to-treat disease. Leuk Res. 62:12–16. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Gong J, Zhou Y, Liu D and Huo J: F‑box proteins involved in cancer‑associated drug resistance (Review). Oncol Lett 15: 8891-8900, 2018.
APA
Gong, J., Zhou, Y., Liu, D., & Huo, J. (2018). F‑box proteins involved in cancer‑associated drug resistance (Review). Oncology Letters, 15, 8891-8900. https://doi.org/10.3892/ol.2018.8500
MLA
Gong, J., Zhou, Y., Liu, D., Huo, J."F‑box proteins involved in cancer‑associated drug resistance (Review)". Oncology Letters 15.6 (2018): 8891-8900.
Chicago
Gong, J., Zhou, Y., Liu, D., Huo, J."F‑box proteins involved in cancer‑associated drug resistance (Review)". Oncology Letters 15, no. 6 (2018): 8891-8900. https://doi.org/10.3892/ol.2018.8500
Copy and paste a formatted citation
x
Spandidos Publications style
Gong J, Zhou Y, Liu D and Huo J: F‑box proteins involved in cancer‑associated drug resistance (Review). Oncol Lett 15: 8891-8900, 2018.
APA
Gong, J., Zhou, Y., Liu, D., & Huo, J. (2018). F‑box proteins involved in cancer‑associated drug resistance (Review). Oncology Letters, 15, 8891-8900. https://doi.org/10.3892/ol.2018.8500
MLA
Gong, J., Zhou, Y., Liu, D., Huo, J."F‑box proteins involved in cancer‑associated drug resistance (Review)". Oncology Letters 15.6 (2018): 8891-8900.
Chicago
Gong, J., Zhou, Y., Liu, D., Huo, J."F‑box proteins involved in cancer‑associated drug resistance (Review)". Oncology Letters 15, no. 6 (2018): 8891-8900. https://doi.org/10.3892/ol.2018.8500
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team