Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
October-2018 Volume 16 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2018 Volume 16 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review)

  • Authors:
    • Nan Wu
    • Jinghua Zhang
    • Jing Zhao
    • Kun Mu
    • Jun Zhang
    • Zhao Jin
    • Jinpu Yu
    • Juntian Liu
  • View Affiliations / Copyright

    Affiliations: Department of Breast Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China, Department of Surgery, North China Petroleum Hospital, Renqiu, Hebei 062552, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4984-4996
    |
    Published online on: August 10, 2018
       https://doi.org/10.3892/ol.2018.9290
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

As a clinically heterogeneous subtype of breast cancer, triple‑negative breast cancer (TNBC) is associated with a poor clinical outcome and a high relapse rate. Conventional chemotherapy and radiotherapy are effective treatments for patients with TNBC. However, the prognosis of TNBC remains unsatisfactory. Therefore, a large volume of research has explored the molecular markers and oncogenic signaling pathways associated with TNBC, including the cell cycle, DNA damage response and androgen receptor (AR) signaling pathways, to identify more efficient targeted therapies. However, whether these predicted pathways are effective targets has yet to be confirmed. In the present review, potentially carcinogenic signaling pathways in TNBCs from previous reports were considered, and ultimately five tumorigenic signaling pathways were selected, specifically receptor tyrosine kinases and downstream signaling pathways, the epithelial‑to‑mesenchymal transition and associated pathways, the immunoregulatory tumor microenvironment, DNA damage repair pathways, and AR and coordinating pathways. The conclusions of the preclinical and clinical trials of each pathway were then consolidated. Although a number of signaling pathways in TNBC have been considered in preclinical and clinical trials, the aforementioned pathways account for the majority of the malignant behaviors of TNBC. Identifying the alterations to different carcinogenic signaling pathways and their association with the heterogeneity of TNBC may facilitate the development of optimal precision medical approaches for patients with TNBC, potentially improving the efficiency of anticancer therapy.
View Figures

Figure 1

View References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Brenton JD, Carey LA, Ahmed AA and Caldas C: Molecular classification and molecular forecasting of breast cancer: Ready for clinical application? J Clin Oncol. 23:7350–7360. 2005. View Article : Google Scholar : PubMed/NCBI

3 

Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G, et al: The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature. 486:395–399. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 121:2750–2767. 2011. View Article : Google Scholar : PubMed/NCBI

5 

Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA: Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U and Harbeck N: Triple-negative breast cancer-current status and future directions. Ann Oncol. 20:1913–1927. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Berry DA, Cirrincione C, Henderson IC, Citron ML, Budman DR, Goldstein LJ, Martino S, Perez EA, Muss HB, Norton L, et al: Estrogen-receptor status and outcomes of modern chemotherapy for patients with node-positive breast cancer. JAMA. 295:1658–1667. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Nabholtz JM, Abrial C, Mouret-Reynier MA, Dauplat MM, Weber B, Gligorov J, Forest AM, Tredan O, Vanlemmens L, Petit T, et al: Multicentric neoadjuvant phase II study of panitumumab combined with an anthracycline/taxane-based chemotherapy in operable triple-negative breast cancer: Identification of biologically defined signatures predicting treatment impact. Ann Oncol. 25:1570–1577. 2014. View Article : Google Scholar : PubMed/NCBI

9 

Torrisi R, Balduzzi A, Ghisini R, Rocca A, Bottiglieri L, Giovanardi F, Veronesi P, Luini A, Orlando L, Viale G, et al: Tailored preoperative treatment of locally advanced triple negative (hormone receptor negative and HER2 negative) breast cancer with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel. Cancer Chemother Pharmacol. 62:667–672. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Burstein MD, Tsimelzon A, Poage GM, Covington KR, Contreras A, Fuqua SA, Savage MI, Osborne CK, Hilsenbeck SG, Chang JC, et al: Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res. 21:1688–1698. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Tsimberidou AM, Iskander NG, Hong DS, Wheler JJ, Falchook GS, Fu S, Piha-Paul S, Naing A, Janku F, Luthra R, et al: Personalized medicine in a phase I clinical trials program: The MD Anderson cancer center initiative. Clin Cancer Res. 18:6373–6383. 2012. View Article : Google Scholar : PubMed/NCBI

12 

Jovanović B, Beeler JS, Pickup MW, Chytil A, Gorska AE, Ashby WJ, Lehmann BD, Zijlstra A, Pietenpol JA and Moses HL: Transforming growth factor beta receptor type III is a tumor promoter in mesenchymal-stem like triple negative breast cancer. Breast Cancer Res. 16:R692014. View Article : Google Scholar : PubMed/NCBI

13 

Litzenburger BC, Creighton CJ, Tsimelzon A, Chan BT, Hilsenbeck SG, Wang T, Carboni JM, Gottardis MM, Huang F, Chang JC, et al: High IGF-IR activity in triple-negative breast cancer cell lines and tumorgrafts correlates with sensitivity to anti-IGF-IR therapy. Clin Cancer Res. 17:2314–2327. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Sharpe R, Pearson A, Herrera-Abreu MT, Johnson D, Mackay A, Welti JC, Natrajan R, Reynolds AR, Reis-Filho JS, Ashworth A and Turner NC: FGFR signaling promotes the growth of triple-negative and basal-like breast cancer cell lines both in vitro and in vivo. Clin Cancer Res. 17:5275–5286. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Spanheimer PM, Lorenzen AW, De Andrade JP, Kulak MV, Carr JC, Woodfield GW, Sugg SL and Weigel RJ: Receptor tyrosine kinase expression predicts response to sunitinib in breast cancer. Ann Surg Oncol. 22:4287–4294. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Yan S, Jiao X, Zou H and Li K: Prognostic significance of c-Met in breast cancer: A meta-analysis of 6010 cases. Diagn Pathol. 10:622015. View Article : Google Scholar : PubMed/NCBI

17 

Burness ML, Grushko TA and Olopade OI: Epidermal growth factor receptor in triple-negative and basal-like breast cancer: Promising clinical target or only a marker? Cancer J. 16:23–32. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Siziopikou KP, Ariga R, Proussaloglou KE, Gattuso P and Cobleigh M: The challenging estrogen receptor-negative/progesterone receptor-negative/HER-2-negative patient: A promising candidate for epidermal growth factor receptor-targeted therapy? Breast J. 12:360–362. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Bayraktar S and Glück S: Molecularly targeted therapies for metastatic triple-negative breast cancer. Breast Cancer Res Treat. 138:21–35. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Hsiao YC, Yeh MH, Chen YJ, Liu JF, Tang CH and Huang WC: Lapatinib increases motility of triple-negative breast cancer cells by decreasing miRNA-7 and inducing Raf-1/MAPK-dependent interleukin-6. Oncotarget. 6:37965–37978. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Agazie YM and Hayman MJ: Molecular mechanism for a role of SHP2 in epidermal growth factor receptor signaling. Mol Cell Biol. 23:7875–7886. 2003. View Article : Google Scholar : PubMed/NCBI

22 

Matalkah F, Martin E, Zhao H and Agazie YM: SHP2 acts both upstream and downstream of multiple receptor tyrosine kinases to promote basal-like and triple-negative breast cancer. Breast Cancer Res. 18:22016. View Article : Google Scholar : PubMed/NCBI

23 

Kim HR, Jung KH, Im SA, Im YH, Kang SY, Park KH, Lee S, Kim SB, Lee KH, Ahn JS, et al: Multicentre phase II trial of bevacizumab combined with docetaxel-carboplatin for the neoadjuvant treatment of triple-negative breast cancer (KCSG BR-0905). Ann Oncol. 24:1485–1490. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Gerber B, Loibl S, Eidtmann H, Rezai M, Fasching PA, Tesch H, Eggemann H, Schrader I, Kittel K, Hanusch C, et al: Neoadjuvant bevacizumab and anthracycline-taxane-based chemotherapy in 678 triple-negative primary breast cancers; results from the geparquinto study (GBG 44). Ann Oncol. 24:2978–2984. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Bartholomeusz C, Xie X, Pitner MK, Kondo K, Dadbin A, Lee J, Saso H, Smith PD, Dalby KN and Ueno NT: MEK inhibitor selumetinib (AZD6244; ARRY-142886) prevents lung metastasis in a triple-negative breast cancer xenograft model. Mol Cancer Ther. 14:2773–2781. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Giltnane JM and Balko JM: Rationale for targeting the Ras/MAPK pathway in triple-negative breast cancer. Discov Med. 17:275–283. 2014.PubMed/NCBI

27 

Bartholomeusz C, Gonzalez-Angulo AM, Liu P, Hayashi N, Lluch A, Ferrer-Lozano J and Hortobágyi GN: High ERK protein expression levels correlate with shorter survival in triple-negative breast cancer patients. Oncologist. 17:766–774. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Loi S, Dushyanthen S, Beavis PA, Salgado R, Denkert C, Savas P, Combs S, Rimm DL, Giltnane JM, Estrada MV, et al: RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: Therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res. 22:1499–1509. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Rameh LE and Cantley LC: The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem. 274:8347–8350. 1999. View Article : Google Scholar : PubMed/NCBI

30 

Baselga J: Targeting the phosphoinositide-3 (PI3) kinase pathway in breast cancer. Oncologist. 16 Suppl 1:S12–S19. 2011. View Article : Google Scholar

31 

Cantley LC: The phosphoinositide 3-kinase pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Salmena L, Carracedo A and Pandolfi PP: Tenets of PTEN tumor suppression. Cell. 133:403–414. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Meric-Bernstam F and Gonzalez-Angulo AM: Targeting the mTOR signaling network for cancer therapy. J Clin Oncol. 27:2278–2287. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Cossu-Rocca P, Orrù S, Muroni MR, Sanges F, Sotgiu G, Ena S, Pira G, Murgia L, Manca A, Uras MG, et al: Analysis of PIK3CA mutations and activation pathways in triple negative breast cancer. PLoS One. 10:e01417632015. View Article : Google Scholar : PubMed/NCBI

35 

Cancer Genome Atlas Network, . Comprehensive molecular portraits of human breast tumours. Nature. 490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Korkaya H, Paulson A, Charafe-Jauffret E, Ginestier C, Brown M, Dutcher J, Clouthier SG and Wicha MS: Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biol. 7:e10001212009. View Article : Google Scholar : PubMed/NCBI

37 

Shrivastava S, Kulkarni P, Thummuri D, Jeengar MK, Naidu VG, Alvala M, Redddy GB and Ramakrishna S: Piperlongumine, an alkaloid causes inhibition of PI3K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis. 19:1148–1164. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Chin YR, Yoshida T, Marusyk A, Beck AH, Polyak K and Toker A: Targeting Akt3 signaling in triple-negative breast cancer. Cancer Res. 74:964–973. 2014. View Article : Google Scholar : PubMed/NCBI

39 

Montero JC, Esparis-Ogando A, Re-Louhau MF, Seoane S, Abad M, Calero R, Ocaña A and Pandiella A: Active kinase profiling, genetic and pharmacological data define mTOR as an important common target in triple-negative breast cancer. Oncogene. 33:148–156. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Baselga J, Campone M, Piccart M, Burris HA III, Rugo HS, Sahmoud T, Noguchi S, Gnant M, Pritchard KI, Lebrun F, et al: Everolimus in postmenopausal hormone-receptor-positive advanced breast cancer. N Engl J Med. 366:520–529. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T, Natt F, Hall J, Lane HA and Thomas G: The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell. 120:747–759. 2005. View Article : Google Scholar : PubMed/NCBI

42 

Singh J, Novik Y, Stein S, Volm M, Meyers M, Smith J, Omene C, Speyer J, Schneider R, Jhaveri K, et al: Phase 2 trial of everolimus and carboplatin combination in patients with triple negative metastatic breast cancer. Breast Cancer Res. 16:R322014. View Article : Google Scholar : PubMed/NCBI

43 

Ganesan P, Moulder S, Lee JJ, Janku F, Valero V, Zinner RG, Naing A, Fu S, Tsimberidou AM, Hong D, et al: Triple-negative breast cancer patients treated at MD Anderson Cancer Center in phase I trials: Improved outcomes with combination chemotherapy and targeted agents. Mol Cancer Ther. 13:3175–3184. 2014. View Article : Google Scholar : PubMed/NCBI

44 

Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, Anton P, Cozar P, Guzmán M, Grueso J, et al: PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2:1036–1047. 2012. View Article : Google Scholar : PubMed/NCBI

45 

Schuler M, Awada A, Harter P, Canon JL, Possinger K, Schmidt M, De Grève J, Neven P, Dirix L, Jonat W, et al: A phase II trial to assess efficacy and safety of afatinib in extensively pretreated patients with HER2-negative metastatic breast cancer. Breast Cancer Res Treat. 134:1149–1159. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Bernsdorf M, Ingvar C, Jörgensen L, Tuxen MK, Jakobsen EH, Saetersdal A, Kimper-Karl ML, Kroman N, Balslev E and Ejlertsen B: Effect of adding gefitinib to neoadjuvant chemotherapy in estrogen receptor negative early breast cancer in a randomized phase II trial. Breast Cancer Res Treat. 126:463–470. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Mailliez A, Baldini C, Van JT, Servent V, Mallet Y and Bonneterre J: Nasal septum perforation: A side effect of bevacizumab chemotherapy in breast cancer patients. Br J Cancer. 103:772–775. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Scott AJ, Messersmith WA and Jimeno A: Apatinib: A promising oral antiangiogenic agent in the treatment of multiple solid tumors. Drugs Today (Barc). 51:223–229. 2015. View Article : Google Scholar : PubMed/NCBI

49 

Hong DS, Garrido-Laguna I, Ekmekcioglu S, Falchook GS, Naing A, Wheler JJ, Fu S, Moulder SL, Piha-Paul S, Tsimberidou AM, et al: Dual inhibition of the vascular endothelial growth factor pathway: A phase 1 trial evaluating bevacizumab and AZD2171 (cediranib) in patients with advanced solid tumors. Cancer. 120:2164–2173. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Tolaney SM, Tan S, Guo H, Barry W, Van Allen E, Wagle N, Brock J, Larrabee K, Paweletz C, Ivanova E, et al: Phase II study of tivantinib (ARQ 197) in patients with metastatic triple-negative breast cancer. Invest New Drugs. 33:1108–1114. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Tolaney SM, Ziehr DR, Guo H, Ng MR, Barry WT, Higgins MJ, Isakoff SJ, Brock JE, Ivanova EV, Paweletz CP, et al: Phase II and biomarker study of cabozantinib in metastatic triple-negative breast cancer patients. Oncologist. 22:25–32. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Soria JC, DeBraud F, Bahleda R, Adamo B, Andre F, Dienstmann R, Delmonte A, Cereda R, Isaacson J, Litten J, et al: Phase I/IIa study evaluating the safety, efficacy, pharmacokinetics, and pharmacodynamics of lucitanib in advanced solid tumors. Ann Oncol. 25:2244–2251. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Wu YL, Zhang LI, Trandafir L, Dong T, Duval V, Hazell K and Xu B: Phase I study of the Pan-PI3K inhibitor buparlisib in adult chinese patients with advanced solid tumors. Anticancer Res. 36:6185–6194. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Juric D, Krop I, Ramanathan RK, Wilson TR, Ware JA, Sanabria Bohorquez SM, Savage HM, Sampath D, Salphati L, Lin RS, et al: Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors. Cancer Discov. 7:704–715. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Tamura K, Hashimoto J, Tanabe Y, Kodaira M, Yonemori K, Seto T, Hirai F, Arita S, Toyokawa G, Chen L, et al: Safety and tolerability of AZD5363 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 77:787–795. 2016. View Article : Google Scholar : PubMed/NCBI

56 

Doi T, Tamura K, Tanabe Y, Yonemori K, Yoshino T, Fuse N, Kodaira M, Bando H, Noguchi K, Shimamoto T and Ohtsu A: Phase 1 pharmacokinetic study of the oral pan-AKT inhibitor MK-2206 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol. 76:409–416. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Saura C, Roda D, Roselló S, Oliveira M, Macarulla T, Pérez-Fidalgo JA, Morales-Barrera R, Sanchis-García JM, Musib L, Budha N, et al: A first-in-human phase I study of the ATP-competitive AKT inhibitor ipatasertib demonstrates robust and safe targeting of AKT in patients with solid tumors. Cancer Discov. 7:102–113. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Pascual T, Apellániz-Ruiz M, Pernaut C, Cueto-Felgueroso C, Villalba P, Álvarez C, Manso L, Inglada-Pérez L, Robledo M, Rodríguez-Antona C and Ciruelos E: Polymorphisms associated with everolimus pharmacokinetics, toxicity and survival in metastatic breast cancer. PLoS One. 12:e01801922017. View Article : Google Scholar : PubMed/NCBI

59 

Chiu JW, Hotte SJ, Kollmannsberger CK, Renouf DJ, Cescon DW, Hedley D, Chow S, Moscow J, Chen Z, Perry M, et al: A phase I trial of ANG1/2-Tie2 inhibitor trebaninib (AMG386) and temsirolimus in advanced solid tumors (PJC008/NCI 9041). Invest New Drugs. 34:104–111. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Schwartzberg LS, Yardley DA, Elias AD, Patel M, LoRusso P, Burris HA, Gucalp A, Peterson AC, Blaney ME, Steinberg JL, et al: A Phase I/Ib study of enzalutamide alone and in combination with endocrine therapies in women with advanced breast cancer. Clin Cancer Res. 23:4046–4054. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Drew Y, Ledermann J, Hall G, Rea D, Glasspool R, Highley M, Jayson G, Sludden J, Murray J, Jamieson D, et al: Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer. 114:e212016. View Article : Google Scholar : PubMed/NCBI

62 

O'Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, Robert N, Hellerstedt B, Saleh M, Richards P, et al: Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol. 32:3840–3847. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Nishikawa T, Matsumoto K, Tamura K, Yoshida H, Imai Y, Miyasaka A, Onoe T, Yamaguchi S, Shimizu C, Yonemori K, et al: Phase 1 dose-escalation study of single-agent veliparib in Japanese patients with advanced solid tumors. Cancer Sci. 108:1834–1842. 2017. View Article : Google Scholar : PubMed/NCBI

64 

de Bono J, Ramanathan RK, Mina L, Chugh R, Glaspy J, Rafii S, Kaye S, Sachdev J, Heymach J, Smith DC, et al: Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov. 7:620–629. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, Delaloge S, Li W, Tung N, Armstrong A, et al: Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 377:523–533. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Nanda R, Chow LQ, Dees EC, Berger R, Gupta S, Geva R, Pusztai L, Pathiraja K, Aktan G, Cheng JD, et al: Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. J Clin Oncol. 34:2460–2467. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Lee JM, Cimino-Mathews A, Peer CJ, Zimmer A, Lipkowitz S, Annunziata CM, Cao L, Harrell MI, Swisher EM, Houston N, et al: Safety and clinical activity of the programmed death-ligand 1 inhibitor durvalumab in combination with poly (ADP-Ribose) polymerase inhibitor olaparib or vascular endothelial growth factor receptor 1–3 inhibitor cediranib in women's cancers: A dose-escalation, phase I study. J Clin Oncol. 35:2193–2202. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Hoeflich KP, O'Brien C, Boyd Z, Cavet G, Guerrero S, Jung K, Januario T, Savage H, Punnoose E, Truong T, et al: In vivo antitumor activity of MEK and phosphatidylinositol 3-kinase inhibitors in basal-like breast cancer models. Clin Cancer Res. 15:4649–4664. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Britten CD: PI3K and MEK inhibitor combinations: Examining the evidence in selected tumor types. Cancer Chemother Pharmacol. 71:1395–1409. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Nieto MA: Epithelial plasticity: A common theme in embryonic and cancer cells. Science. 342:12348502013. View Article : Google Scholar : PubMed/NCBI

71 

Al Moustafa AE, Achkhar A and Yasmeen A: EGF-receptor signaling and epithelial-mesenchymal transition in human carcinomas. Front Biosci (Schol Ed). 4:671–684. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Gonzalez DM and Medici D: Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 7:re82014. View Article : Google Scholar : PubMed/NCBI

73 

Guarino M: Src signaling in cancer invasion. J Cell Physiol. 223:14–26. 2010.PubMed/NCBI

74 

Hung CM, Kuo DH, Chou CH, Su YC, Ho CT and Way TD: Osthole suppresses hepatocyte growth factor (HGF)-induced epithelial-mesenchymal transition via repression of the c-Met/Akt/mTOR pathway in human breast cancer cells. J Agric Food Chem. 59:9683–9690. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Kang Y and Massagué J: Epithelial-mesenchymal transitions: Twist in development and metastasis. Cell. 118:277–279. 2004. View Article : Google Scholar : PubMed/NCBI

76 

Sivakumar R, Koga H, Selvendiran K, Maeyama M, Ueno T and Sata M: Autocrine loop for IGF-I receptor signaling in SLUG-mediated epithelial-mesenchymal transition. Int J Oncol. 34:329–338. 2009.PubMed/NCBI

77 

Vincent-Salomon A and Thiery JP: Host microenvironment in breast cancer development: Epithelial-mesenchymal transition in breast cancer development. Breast Cancer Res. 5:101–106. 2003. View Article : Google Scholar : PubMed/NCBI

78 

De Craene B and Berx G: Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 13:97–110. 2013. View Article : Google Scholar : PubMed/NCBI

79 

Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2:442–454. 2002. View Article : Google Scholar : PubMed/NCBI

80 

Foroni C, Broggini M, Generali D and Damia G: Epithelial-mesenchymal transition and breast cancer: Role, molecular mechanisms and clinical impact. Cancer Treat Rev. 38:689–697. 2012. View Article : Google Scholar : PubMed/NCBI

81 

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, He X and Perou CM: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 12:R682010. View Article : Google Scholar : PubMed/NCBI

82 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Singh R and Mo YY: Role of microRNAs in breast cancer. Cancer Biol Ther. 14:201–212. 2013. View Article : Google Scholar : PubMed/NCBI

84 

Rhodes LV, Martin EC, Segar HC, Miller DF, Buechlein A, Rusch DB, Nephew KP, Burow ME and Collins-Burow BM: Dual regulation by microRNA-200b-3p and microRNA-200b-5p in the inhibition of epithelial-to-mesenchymal transition in triple-negative breast cancer. Oncotarget. 6:16638–16652. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Ito K, Park SH, Nayak A, Byerly JH and Irie HY: PTK6 inhibition suppresses metastases of triple-negative breast cancer via SNAIL-Dependent E-cadherin regulation. Cancer Res. 76:4406–4417. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, et al: ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 1:555–567. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Rhodes LV, Tate CR, Segar HC, Burks HE, Phamduy TB, Hoang V, Elliott S, Gilliam D, Pounder FN, Anbalagan M, et al: Suppression of triple-negative breast cancer metastasis by pan-DAC inhibitor panobinostat via inhibition of ZEB family of EMT master regulators. Breast Cancer Res Treat. 145:593–604. 2014. View Article : Google Scholar : PubMed/NCBI

89 

Kahn M: Can we safely target the WNT pathway? Nat Rev Drug Discov. 13:513–532. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P and Ben-Ze'ev A: Autoregulation of E-cadherin expression by cadherin-cadherin interactions: The roles of beta-catenin signaling, Slug, and MAPK. J Cell Biol. 163:847–857. 2003. View Article : Google Scholar : PubMed/NCBI

91 

Howe LR, Watanabe O, Leonard J and Brown AM: Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer Res. 63:1906–1913. 2003.PubMed/NCBI

92 

MacDonald BT, Tamai K and He X: Wnt/beta-catenin signaling: Components, mechanisms, and diseases. Dev Cell. 17:9–26. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Dey N, Barwick BG, Moreno CS, Ordanic-Kodani M, Chen Z, Oprea-Ilies G, Tang W, Catzavelos C, Kerstann KF, Sledge GW Jr, et al: Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer. 13:5372013. View Article : Google Scholar : PubMed/NCBI

94 

Li Y, Li PK, Roberts MJ, Arend RC, Samant RS and Buchsbaum DJ: Multi-targeted therapy of cancer by niclosamide: A new application for an old drug. Cancer Lett. 349:8–14. 2014. View Article : Google Scholar : PubMed/NCBI

95 

Londoño-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M, Forero-Torres A, et al: Effect of niclosamide on basal-like breast cancers. Mol Cancer Ther. 13:800–811. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Koval A, Ahmed K and Katanaev VL: Inhibition of Wnt signalling and breast tumour growth by the multi-purpose drug suramin through suppression of heterotrimeric G proteins and Wnt endocytosis. Biochem J. 473:371–381. 2016. View Article : Google Scholar : PubMed/NCBI

97 

Nam JS, Suchar AM, Kang MJ, Stuelten CH, Tang B, Michalowska AM, Fisher LW, Fedarko NS, Jain A, Pinkas J, et al: Bone sialoprotein mediates the tumor cell-targeted prometastatic activity of transforming growth factor beta in a mouse model of breast cancer. Cancer Res. 66:6327–6335. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Zu X, Zhang Q, Cao R, Liu J, Zhong J, Wen G and Cao D: Transforming growth factor-β signaling in tumor initiation, progression and therapy in breast cancer: An update. Cell Tissue Res. 347:73–84. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Shi Y and Massagué J: Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 113:685–700. 2003. View Article : Google Scholar : PubMed/NCBI

100 

Katz LH, Li Y, Chen JS, Muñoz NM, Majumdar A, Chen J and Mishra L: Targeting TGF-β signaling in cancer. Expert Opin Ther Targets. 17:743–760. 2013. View Article : Google Scholar : PubMed/NCBI

101 

Valcourt U, Kowanetz M, Niimi H, Heldin CH and Moustakas A: TGF-beta and the Smad signaling pathway support transcriptomic reprogramming during epithelial-mesenchymal cell transition. Mol Biol Cell. 16:1987–2002. 2005. View Article : Google Scholar : PubMed/NCBI

102 

Massagué J: TGFbeta in cancer. Cell. 134:215–230. 2008. View Article : Google Scholar : PubMed/NCBI

103 

Kim S, Lee J, Jeon M, Lee JE and Nam SJ: Zerumbone suppresses the motility and tumorigenecity of triple negative breast cancer cells via the inhibition of TGF-β1 signaling pathway. Oncotarget. 7:1544–1558. 2016.PubMed/NCBI

104 

Wahdan-Alaswad R, Harrell JC, Fan Z, Edgerton SM, Liu B and Thor AD: Metformin attenuates transforming growth factor beta (TGF-β) mediated oncogenesis in mesenchymal stem-like/claudin-low triple negative breast cancer. Cell Cycle. 15:1046–1059. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Bhola NE, Balko JM, Dugger TC, Kuba MG, Sánchez V, Sanders M, Stanford J, Cook RS and Arteaga CL: TGF-β inhibition enhances chemotherapy action against triple-negative breast cancer. J Clin Invest. 123:1348–1358. 2013. View Article : Google Scholar : PubMed/NCBI

106 

Purrington KS, Visscher DW, Wang C, Yannoukakos D, Hamann U, Nevanlinna H, Cox A, Giles GG, Eckel-Passow JE, Lakis S, et al: Genes associated with histopathologic features of triple negative breast tumors predict molecular subtypes. Breast Cancer Res Treat. 157:117–131. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ and Tamimi RM: Androgen receptor expression in breast cancer in relation to molecular phenotype: Results from the nurses' health study. Mod Pathol. 24:924–931. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Liao DJ and Dickson RB: Roles of androgens in the development, growth, and carcinogenesis of the mammary gland. J Steroid Biochem Mol Biol. 80:175–189. 2002. View Article : Google Scholar : PubMed/NCBI

109 

Hickey TE, Robinson JL, Carroll JS and Tilley WD: Minireview: the androgen receptor in breast tissues: Growth inhibitor, tumor suppressor, oncogene? Mol Endocrinol. 26:1252–1267. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Gucalp A and Traina TA: Triple-negative breast cancer: Role of the androgen receptor. Cancer J. 16:62–65. 2010. View Article : Google Scholar : PubMed/NCBI

111 

Gucalp A, Tolaney S, Isakoff SJ, Ingle JN, Liu MC, Carey LA, Blackwell K, Rugo H, Nabell L, Forero A, et al: Phase II trial of bicalutamide in patients with androgen receptor-positive, estrogen receptor-negative metastatic breast cancer. Clin Cancer Res. 19:5505–5512. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Lehmann BD, Bauer JA, Schafer JM, Pendleton CS, Tang L, Johnson KC, Chen X, Balko JM, Gómez H, Arteaga CL, et al: PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and androgen receptor inhibitors. Breast Cancer Res. 16:4062014. View Article : Google Scholar : PubMed/NCBI

113 

Cuenca-López Md, Montero JC, Morales JC, Prat A, Pandiella A and Ocana A: Phospho-kinase profile of triple negative breast cancer and androgen receptor signaling. BMC Cancer. 14:3022014. View Article : Google Scholar : PubMed/NCBI

114 

Maugeri-Saccà M, Bartucci M and De Maria R: DNA damage repair pathways in cancer stem cells. Mol Cancer Ther. 11:1627–1636. 2012. View Article : Google Scholar : PubMed/NCBI

115 

Pierce AJ, Stark JM, Araujo FD, Moynahan ME, Berwick M and Jasin M: Double-strand breaks and tumorigenesis. Trends Cell Biol. 11:S52–S59. 2001. View Article : Google Scholar : PubMed/NCBI

116 

Powell SN and Kachnic LA: Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation. Oncogene. 22:5784–5791. 2003. View Article : Google Scholar : PubMed/NCBI

117 

Bouwman P and Jonkers J: The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 12:587–598. 2012. View Article : Google Scholar : PubMed/NCBI

118 

Stevens KN, Vachon CM and Couch FJ: Genetic susceptibility to triple-negative breast cancer. Cancer Res. 73:2025–2030. 2013. View Article : Google Scholar : PubMed/NCBI

119 

Atchley DP, Albarracin CT, Lopez A, Valero V, Amos CI, Gonzalez-Angulo AM, Hortobagyi GN and Arun BK: Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cance. J Clin Oncol. 26:4282–4288. 2008. View Article : Google Scholar : PubMed/NCBI

120 

Goodwin PJ, Phillips KA, West DW, Ennis M, Hopper JL, John EM, O'Malley FP, Milne RL, Andrulis IL, Friedlander ML, et al: Breast cancer prognosis in BRCA1 and BRCA2 mutation carriers: An international prospective breast cancer family registry population-based cohort study. J Clin Oncol. 30:19–26. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Stoppa-Lyonnet D, Ansquer Y, Dreyfus H, Gautier C, Gauthier-Villars M, Bourstyn E, Clough KB, Magdelénat H, Pouillart P, Vincent-Salomon A, et al: Familial invasive breast cancers: Worse outcome related to BRCA1 mutations. J Clin Oncol. 18:4053–4059. 2000. View Article : Google Scholar : PubMed/NCBI

122 

Rummel S, Varner E, Shriver CD and Ellsworth RE: Evaluation of BRCA1 mutations in an unselected patient population with triple-negative breast cancer. Breast Cancer Res Treat. 137:119–125. 2013. View Article : Google Scholar : PubMed/NCBI

123 

Hoeijmakers JH: Genome maintenance mechanisms for preventing cancer. Nature. 411:366–374. 2001. View Article : Google Scholar : PubMed/NCBI

124 

O'Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, Koo IC, Sherman BM and Bradley C: Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 364:205–214. 2011. View Article : Google Scholar : PubMed/NCBI

125 

Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, Singer CF, Lowe ES, Watkins CL and Carmichael J: Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 15:R882013. View Article : Google Scholar : PubMed/NCBI

126 

Ollier M, Radosevic-Robin N, Kwiatkowski F, Ponelle F, Viala S, Privat M, Uhrhammer N, Bernard-Gallon D, Penault-Llorca F, Bignon YJ and Bidet Y: DNA repair genes implicated in triple negative familial non-BRCA1/2 breast cancer predisposition. Am J Cancer Res. 5:2113–2126. 2015.PubMed/NCBI

127 

Alshareeda AT, Negm OH, Aleskandarany MA, Green AR, Nolan C, TigHhe PJ, Madhusudan S, Ellis IO and Rakha EA: Clinical and biological significance of RAD51 expression in breast cancer: A key DNA damage response protein. Breast Cancer Res Treat. 159:41–53. 2016. View Article : Google Scholar : PubMed/NCBI

128 

Loi S, Michiels S, Salgado R, Sirtaine N, Jose V, Fumagalli D, Kellokumpu-Lehtinen PL, Bono P, Kataja V, Desmedt C, et al: Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: Results from the FinHER trial. Ann Oncol. 25:1544–1550. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Adams S, Gray RJ, Demaria S, Goldstein L, Perez EA, Shulman LN, Martino S, Wang M, Jones VE and Saphner TJ: Prognostic value of tumor-infiltrating lymphocytes in triple-negative breast cancers from two phase III randomized adjuvant breast cancer trials: ECOG 2197 and ECOG 1199. J Clin Oncol. 32:2959–2966. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Loi S, Sirtaine N, Piette F, Salgado R, Viale G, Van Eenoo F, Rouas G, Francis P, Crown JP, Hitre E, et al: Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02–98. J Clin Oncol. 31:860–867. 2013. View Article : Google Scholar : PubMed/NCBI

131 

Adams S, Goldstein LJ, Sparano JA, Demaria S and Badve SS: Tumor infiltrating lymphocytes (TILs) improve prognosis in patients with triple negative breast cancer (TNBC). Oncoimmunology. 4:e9859302015. View Article : Google Scholar : PubMed/NCBI

132 

Criscitiello C and Curigliano G: Immunotherapy of breast cancer. Prog Tumor Res. 42:30–43. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Mittendorf EA, Philips AV, Meric-Bernstam F, Qiao N, Wu Y, Harrington S, Su X, Wang Y, Gonzalez-Angulo AM, Akcakanat A, et al: PD-L1 expression in triple-negative breast cancer. Cancer Immunol Res. 2:361–370. 2014. View Article : Google Scholar : PubMed/NCBI

134 

Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al: Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nat Med. 8:793–800. 2002. View Article : Google Scholar : PubMed/NCBI

135 

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, et al: Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 366:2443–2454. 2012. View Article : Google Scholar : PubMed/NCBI

136 

Immunotherapy slows TNBC progression. Cancer Discov. 5:5702015. View Article : Google Scholar

137 

Gholami S, Chen CH, Gao S, Lou E, Fujisawa S, Carson J, Nnoli JE, Chou TC, Bromberg J and Fong Y: Role of MAPK in oncolytic herpes viral therapy in triple-negative breast cancer. Cancer Gene Ther. 21:283–289. 2014. View Article : Google Scholar : PubMed/NCBI

138 

Bramati A, Girelli S, Torri V, Farina G, Galfrascoli E, Piva S, Moretti A, Dazzani MC, Sburlati P and La Verde NM: Efficacy of biological agents in metastatic triple-negative breast cancer. Cancer Treat Rev. 40:605–613. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J and Liu J: Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review). Oncol Lett 16: 4984-4996, 2018.
APA
Wu, N., Zhang, J., Zhao, J., Mu, K., Zhang, J., Jin, Z. ... Liu, J. (2018). Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review). Oncology Letters, 16, 4984-4996. https://doi.org/10.3892/ol.2018.9290
MLA
Wu, N., Zhang, J., Zhao, J., Mu, K., Zhang, J., Jin, Z., Yu, J., Liu, J."Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review)". Oncology Letters 16.4 (2018): 4984-4996.
Chicago
Wu, N., Zhang, J., Zhao, J., Mu, K., Zhang, J., Jin, Z., Yu, J., Liu, J."Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review)". Oncology Letters 16, no. 4 (2018): 4984-4996. https://doi.org/10.3892/ol.2018.9290
Copy and paste a formatted citation
x
Spandidos Publications style
Wu N, Zhang J, Zhao J, Mu K, Zhang J, Jin Z, Yu J and Liu J: Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review). Oncol Lett 16: 4984-4996, 2018.
APA
Wu, N., Zhang, J., Zhao, J., Mu, K., Zhang, J., Jin, Z. ... Liu, J. (2018). Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review). Oncology Letters, 16, 4984-4996. https://doi.org/10.3892/ol.2018.9290
MLA
Wu, N., Zhang, J., Zhao, J., Mu, K., Zhang, J., Jin, Z., Yu, J., Liu, J."Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review)". Oncology Letters 16.4 (2018): 4984-4996.
Chicago
Wu, N., Zhang, J., Zhao, J., Mu, K., Zhang, J., Jin, Z., Yu, J., Liu, J."Precision medicine based on tumorigenic signaling pathways for triple‑negative breast cancer (Review)". Oncology Letters 16, no. 4 (2018): 4984-4996. https://doi.org/10.3892/ol.2018.9290
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team