|
1
|
Machnicka MA, Milanowska K, Oglou Osman O,
Purta E, Kurkowska M, Olchowik A, Januszewski W, Kalinowski S,
Dunin-Horkawicz S, Rother KM, et al: MODOMICS: A database of RNA
modification pathways-2013 update. Nucleic Acids Res. 41:(Database
Issue). D262–D267. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Batista PJ, Molinie B, Wang J, Qu K, Zhang
J, Li L, Bouley DM, Lujan E, Haddad B, Daneshvar K, et al: m(6)A
RNA modification controls cell fate transition in mammalian
embryonic stem cells. Cell Stem Cell. 15:707–719. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Geula S, Moshkovitz Moshitch S,
Dominissini D, Mansour AA, Kol N, Divon Salmon M, Hershkovitz V,
Peer E, Mor N, Manor YS, et al: Stem cells. m6A mRNA methylation
facilitates resolution of naïve pluripotency toward
differentiation. Science. 347:1002–1006. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
O'Connell MA, Mannion NM and Keegan LP:
The epitranscriptome and innate immunity. PLoS Genet.
11:e10056872015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Tajaddod M, Jantsch MF and Licht K: The
dynamic epitranscriptome: A to I editing modulates genetic
information. Chromosoma. 125:51–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Desrosiers R, Friderici K and Rottman F:
Identification of methylated nucleosides in messenger RNA from
novikoff hepatoma cells. Proc Natl Acad Sci USA. 71:3971–3975.
1974. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Perry RP and Kelley DE: Existence of
methylated messenger RNA in mouse L cells. Cell. 1:37–42. 1974.
View Article : Google Scholar
|
|
8
|
Adams JM and Cory S: Modified nucleosides
and bizarre 5′-termini in mouse myeloma mRNA. Nature. 255:28–33.
1975. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Furuichi Y, Shatkin AJ, Stavnezer E and
Bishop JM: Blocked, methylated 5′-terminal sequence in avian
sarcoma virus RNA. Nature. 257:618–620. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lavi S and Shatkin AJ: Methylated simian
virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1
cells. Proc Natl Acad Sci USA. 72:2012–2016. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wei CM, Gershowitz A and Moss B:
Methylated nucleotides block 5′ terminus of HeLa cell messenger
RNA. Cell. 4:379–386. 1975. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang
Y, Yi C, Lindahl T, Pan T, Yang YG and He C: N6-methyladenosine in
nuclear RNA is a major substrate of the obesity-associated FTO. Nat
Chem Biol. 7:885–887. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Scuteri A, Sanna S, Chen WM, Uda M, Albai
G, Strait J, Najjar SS, Nagarajah R, Orrú M, Usala G, et al:
Genome-wide association scan shows genetic variants in the FTO gene
are associated with obesity related traits. PLoS Genet. 3:e1152007.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dina C, Meyre D, Gallina S, Durand E,
Körner A, Jacobson P, Carlsson LM, Kiess W, Vatin V, Lecoeur C, et
al: Variation in FTO contributes to childhood obesity and severe
adult obesity. Nat Genet. 39:724–726. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Frayling TM, Timpson NJ, Weedon MN,
Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H,
Rayner NW, et al: A common variant in the FTO gene is associated
with body mass index and predisposes to childhood and adult
obesity. Science. 316:889–894. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dominissini D, Moshkovitz Moshitch S,
Schwartz S, Divon Salmon M, Ungar L, Osenberg S, Cesarkas K, Hirsch
Jacob J, Amariglio N, Kupiec M, et al: Topology of the human and
mouse m6A RNA methylomes revealed by m6A-seq. Nature. 485:201–206.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Meyer KD, Saletore Y, Zumbo P, Elemento O,
Mason CE and Jaffrey SR: Comprehensive analysis of mRNA methylation
reveals enrichment in 3′ UTRs and near stop codons. Cell.
149:1635–1646. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shen F, Huang W, Huang JT, Xiong J, Yang
Y, Wu K, Jia GF, Chen J, Feng YQ, Yuan BF and Liu SM: Decreased
N(6)-methyladenosine in peripheral blood RNA from diabetic patients
is associated with FTO expression rather than ALKBH5. J Clin
Endocrinol Metab. 100:E148–E154. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yang Y, Huang W, Huang JT, Shen F, Xiong
J, Yuan EF, Qin SS, Zhang M, Feng YQ, Yuan BF and Liu SM: Increased
N6-methyladenosine in human sperm RNA as a risk factor for
asthenozoospermia. Sci Rep. 6:243452016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Fustin JM, Doi M, Yamaguchi Y, Hida H,
Nishimura S, Yoshida M, Isagawa T, Morioka MS, Kakeya H, Manabe I
and Okamura H: RNA-methylation-dependent RNA processing controls
the speed of the circadian clock. Cell. 155:793–806. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Daoud H, Zhang D, Mcmurray F, Yu A, Luco
SM, Vanstone J, Jarinova O, Carson N, Wickens J, Shishodia S, et
al: Identification of a pathogenic FTO mutation by next-generation
sequencing in a newborn with growth retardation and developmental
delay. J Med Genet. 53:200–207. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Davis W, van Rensburg SJ, Cronje FJ, Whati
L, Fisher LR, van der Merwe L, Geiger D, Hassan MS, Matsha T,
Erasmus RT and Kotze MJ: The fat mass and obesity-associated FTO
rs9939609 polymorphism is associated with elevated homocysteine
levels in patients with multiple sclerosis screened for vascular
risk factors. Metab Brain Dis. 29:409–419. 2014.PubMed/NCBI
|
|
23
|
Zhang C, Samanta D, Lu H, Bullen JW, Zhang
H, Chen I, He X and Semenza GL: Hypoxia induces the breast cancer
stem cell phenotype by HIF-dependent and ALKBH5-mediated
m6A-demethylation of NANOG mRNA. Proc Natl Acad Sci USA.
113:E2047–E2056. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhang C, Zhi WI, Lu H, Samanta D, Chen I,
Gabrielson E and Semenza GL: Hypoxia-inducible factors regulate
pluripotency factor expression by ZNF217- and ALKBH5-mediated
modulation of RNA methylation in breast cancer cells. Oncotarget.
7:64527–64542. 2016.PubMed/NCBI
|
|
25
|
Bansal H, Yihua Q, Iyer SP, Ganapathy S,
Proia DA, Penalva LO, Uren PJ, Suresh U, Carew JS, Karnad AB, et
al: WTAP is a novel oncogenic protein in acute myeloid leukemia.
Leukemia. 28:1171–1174. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kwok CT, Marshall AD, Rasko JE and Wong
JJ: Genetic alterations of m6A regulators predict poorer
survival in acute myeloid leukemia. J Hematol Oncol. 10:392017.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma
D, Lv J, Heng J, Ding Y, Xue Y, et al: m6A modulates
haematopoietic stem and progenitor cell specification. Nature.
549:273–276. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Barbieri I, Tzelepis K, Pandolfini L, Shi
J, Millán-Zambrano G, Robson SC, Aspris D, Migliori V, Bannister
AJ, Han N, et al: Promoter-bound METTL3 maintains myeloid leukaemia
by m6A-dependent translation control. Nature.
552:126–131. 2017.PubMed/NCBI
|
|
29
|
Vu LP, Pickering BF, Cheng Y, Zaccara S,
Nguyen D, Minuesa G, Chou T, Chow A, Saletore Y, MacKay M, et al:
The N6-methyladenosine (m6A)-forming enzyme
METTL3 controls myeloid differentiation of normal hematopoietic and
leukemia cells. Nat Med. 23:1369–1376. 2017.PubMed/NCBI
|
|
30
|
Li Z, Weng H, Su R, Weng X, Zuo Z, Li C,
Huang H, Nachtergaele S, Dong L, Hu C, et al: FTO plays an
oncogenic role in acute myeloid leukemia as a
N6-methyladenosine RNA demethylase. Cancer Cell.
31:127–141. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang S, Zhao BS, Zhou A, Lin K, Zheng S,
Lu Z, Chen Y, Sulman EP, Xie K, Bögler O, et al: m6A
demethylase ALKBH5 maintains tumorigenicity of glioblastoma
stem-like cells by sustaining FOXM1 expression and cell
proliferation program. Cancer Cell. 31(591–606): e62017. View Article : Google Scholar
|
|
32
|
Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun
G, Lu Z, Huang Y, Yang CG, et al: m6A RNA methylation
regulates the self-renewal and tumorigenesis of glioblastoma stem
cells. Cell Rep. 18:2622–2634. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jin DI, Lee SW, Han ME, Kim HJ, Seo SA,
Hur GY, Jung S, Kim BS and Oh SO: Expression and roles of Wilms'
tumor 1-associating protein in glioblastoma. Cancer Sci.
103:2102–2109. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Lin S, Choe J, Du P, Triboulet R and
Gregory RI: The m(6)A methyltransferase METTL3 promotes translation
in human cancer cells. Mol Cell. 62:335–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen M, Wei L, Law CT, Tsang FH, Shen J,
Cheng CL, Tsang LH, Ho DW, Chiu DK, Lee JM, et al: RNA
N6-methyladenosine methyltransferase-like 3 promotes liver cancer
progression through YTHDF2 dependent posttranscriptional silencing
of SOCS2. Hepatology. 67:2254–2270. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Horowitz S, Horowitz A, Nilsen TW, Munns
TW and Rottman FM: Mapping of N6-methyladenosine residues in bovine
prolactin mRNA. Proc Natl Acad Sci USA. 81:5667–5671. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Schwartz S, Agarwala SD, Mumbach MR,
Jovanovic M, Mertins P, Shishkin A, Tabach Y, Mikkelsen TS, Satija
R, Ruvkun G, et al: High-resolution mapping reveals a conserved,
widespread, dynamic mRNA methylation program in yeast meiosis.
Cell. 155:1409–1421. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Luo GZ, MacQueen A, Zheng G, Duan H, Dore
LC, Lu Z, Liu J, Chen K, Jia G, Bergelson J and He C: Unique
features of the m6A methylome in Arabidopsis thaliana. Nat Commun.
5:56302014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao X, Yang Y, Sun BF, Shi Y, Yang X,
Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, et al: FTO-dependent
demethylation of N6-methyladenosine regulates mRNA splicing and is
required for adipogenesis. Cell Res. 24:1403–1419. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ping XL, Sun BF, Wang L, Xiao W, Yang X,
Wang WJ, Adhikari S, Shi Y, Lv Y, Chen YS, et al: Mammalian WTAP is
a regulatory subunit of the RNA N6-methyladenosine
methyltransferase. Cell Res. 24:177–189. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Smemo S, Tena JJ, Kim KH, Gamazon ER,
Sakabe NJ, Gómez-Marín C, Aneas I, Credidio FL, Sobreira DR,
Wasserman NF, et al: Obesity-associated variants within FTO form
long range functional connections with IRX3. Nature. 507:371–375.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Rottman F, Shatkin AJ and Perry RP:
Sequences containing methylated nucleotides at the 5′ termini of
messenger RNAs: Possible implications for processing. Cell.
3:197–199. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mauer J, Luo X, Blanjoie A, Jiao X,
Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q,
et al: Reversible methylation of m6Am in the
5′ cap controls mRNA stability. Nature. 541:371–375. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Wang Y, Li Y, Toth JI, Petroski MD, Zhang
Z and Zhao JC: N6-methyladenosine modification destabilizes
developmental regulators in embryonic stem cells. Nat Cell Biol.
16:191–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han
D, Fu Y, Parisien M, Dai Q, Jia G, et al:
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang Y, Sun BF, Xiao W, Yang X, Sun HY,
Zhao YL and Yang YG: Dynamic m6A modification and its
emerging regulatory role in mRNA splicing. Sci Bull. 60:21–32.
2015. View Article : Google Scholar
|
|
47
|
Meyer KD, Patil DP, Zhou J, Zinoviev A,
Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR
m(6)A promotes cap-independent translation. Cell. 163:999–1010.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Ke S, Pandya-Jones A, Saito Y, Fak JJ,
Vågbø CB, Geula S, Hanna JH, Black DL, Darnell JE Jr and Darnell
RB: m6A mRNA modifications are deposited in nascent
pre-mRNA and are not required for splicing but do specify
cytoplasmic turnover. Genes Dev. 31:990–1006. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ke S, Alemu EA, Mertens C, Gantman EC, Fak
JJ, Mele A, Haripal B, Zucker-Scharff I, Moore MJ, Park CY, et al:
A majority of m6A residues are in the last exons, allowing the
potential for 3′ UTR regulation. Genes Dev. 29:2037–2053. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bokar JA, Shambaugh ME, Polayes D, Matera
AG and Rottman FM: Purification and cDNA cloning of the
AdoMet-binding subunit of the human mRNA
(N6-adenosine)-methyltransferase. RNA. 3:1233–1247. 1997.PubMed/NCBI
|
|
51
|
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang
L, Jia G, Yu M, Lu Z, Deng X, et al: A METTL3-METTL14 complex
mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem
Biol. 10:93–95. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lin Z, Hsu PJ, Xing X, Fang J, Lu Z, Zou
Q, Zhang KJ, Zhang X, Zhou Y, Zhang T, et al:
Mettl3-/Mettl14-mediated mRNA N6-methyladenosine
modulates murine spermatogenesis. Cell Res. 27:1216–1230. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Yoon KJ, Ringeling FR, Vissers C, Jacob F,
Pokrass M, Jimenez-Cyrus D, Su Y, Kim NS, Zhu Y, Zheng L, et al:
Temporal control of mammalian cortical neurogenesis by
m6A methylation. Cell. 171(877–889): e172017.
|
|
54
|
Horiuchi K, Umetani M, Minami T, Okayama
H, Takada S, Yamamoto M, Aburatani H, Reid PC, Housman DE, Hamakubo
T and Kodama T: Wilms' tumor 1-associating protein regulates G2/M
transition through stabilization of cyclin A2 mRNA. Proc Natl Acad
Sci USA. 103:17278–17283. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gerken T, Girard CA, Tung YC, Webby CJ,
Saudek V, Hewitson KS, Yeo GS, McDonough MA, Cunliffe S, McNeill
LA, et al: The obesity associated FTO gene encodes a
2-oxoglutarate-dependent nucleic acid demethylase. Science.
318:1469–1472. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Fischer J, Koch L, Emmerling C, Vierkotten
J, Peters T, Brüning JC and Rüther U: Inactivation of the Fto gene
protects from obesity. Nature. 458:894–898. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Li L, Zang L, Zhang F, Chen J, Shen H, Shu
L, Liang F, Feng C, Chen D, Tao H, et al: Fat mass and
obesity-associated (FTO) protein regulates adult neurogenesis. Hum
Mol Genet. 26:2398–2411. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zheng G, Dahl JA, Niu Y, Fedorcsak P,
Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, et al: ALKBH5
is a mammalian RNA demethylase that impacts RNA metabolism and
mouse fertility. Mol Cell. 49:18–29. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Feng C, Liu Y, Wang G, Deng Z, Zhang Q, Wu
W, Tong Y, Cheng C and Chen Z: Crystal structures of the human RNA
demethylase Alkbh5 reveal basis for substrate recognition. J Biol
Chem. 289:11571–11583. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang Z, Theler D, Kaminska KH, Hiller M,
de la Grange P, Pudimat R, Rafalska I, Heinrich B, Bujnicki JM,
Allain FH and Stamm S: The YTH domain is novel RNA binding domain.
J Biol Chem. 285:14701–14710. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Wang X, Zhao BS, Roundtree IA, Lu Z, Han
D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine
modulates messenger RNA translation efficiency. Cell.
161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li A, Chen YS, Ping XL, Yang X, Xiao W,
Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic
m6A reader YTHDF3 promotes mRNA translation. Cell Res.
27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ivanova I, Much C, Di Giacomo M, Azzi C,
Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ and
O'Carroll D: The RNA m6A reader YTHDF2 is essential for
the post-transcriptional regulation of the maternal transcriptome
and oocyte competence. Mol Cell. 67(1059–1067): e42017.
|
|
64
|
Zhao BS, Wang X, Beadell AV, Lu Z, Shi H,
Kuuspalu A, Ho RK and He C: m6A-dependent maternal mRNA
clearance facilitates zebrafish maternal-to-zygotic transition.
Nature. 542:475–478. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
De Kouchkovsky I and Abdul-Hay M: Acute
myeloid leukemia: A comprehensive review and 2016 update. Blood
Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Touat M, Idbaih A, Sanson M and Ligon KL:
Glioblastoma targeted therapy: Updated approaches from recent
biological insights. Ann Oncol. 28:1457–1472. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lieberman F: Glioblastoma update:
Molecular biology, diagnosis, treatment, response assessment, and
translational clinical trials. F1000Res. 6:18922017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Saletore Y, Meyer K, Korlach J, Vilfan ID,
Jaffrey S and Mason CE: The birth of the Epitranscriptome:
Deciphering the function of RNA modifications. Genome Biol.
13:1752012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hussain S, Aleksic J, Blanco S, Dietmann S
and Frye M: Characterizing 5-methylcytosine in the mammalian
epitranscriptome. Genome Biol. 14:2152013. View Article : Google Scholar : PubMed/NCBI
|