Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2018 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2018 Volume 16 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Th17 response in patients with cervical cancer (Review)

  • Authors:
    • Jayra Juliana Paiva Alves
    • Thales Allyrio Araújo de Medeiros Fernandes
    • Josélio Maria Galvão de Araújo
    • Ricardo Ney Oliveira Cobucci
    • Daniel Carlos Ferreira Lanza
    • Fabiana Lima Bezerra
    • Vânia Sousa Andrade
    • José Veríssimo Fernandes
  • View Affiliations / Copyright

    Affiliations: Department of Microbiology and Parasitology, Federal University of Rio Grande do Norte, Natal, RN 59072‑970, Brazil, Department of Biomedical Sciences, University of Rio Grande do Norte State, Mossoró, RN 59607‑360, Brazil, Department of Gynecology and Obstetrics, Potiguar University, Natal, RN 59056‑00, Brazil, Department of Biochemisty, Federal University of Rio Grande do Norte, Natal, RN 59072‑970, Brazil
    Copyright: © Alves et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 6215-6227
    |
    Published online on: September 21, 2018
       https://doi.org/10.3892/ol.2018.9481
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Persistent infection by high‑risk human papillomavirus (HR‑HPV) is the main risk factor for uterine cervical cancer (UCC). However, viral infection alone is not sufficient for the development and progression of premalignant cervical lesions for cancer. In previous years it has been suggested that the adaptive immune response triggered by the differentiation of naïve helper T cells in Th17 cells may serve an important role in disease development. It has been hypothesized that Th17 cells may be involved in the promotion of UCC, as high levels of interleukin 17 (IL17) expression have been detected in the mucosa of the uterine cervix of patients affected by the disease. However, the role of Th17 cells in the tumor development and progression remains unclear. It is believed that the immune response of the Th17 type during persistent infection of the genital tract with HR‑HPV triggers chronic inflammation with a long duration with the production of IL17 and other pro‑inflammatory cytokines, creating a favorable environment for tumor development. These cytokines are produced by immune system cells in addition to tumor cells and appear to function by modulating the host immune system, resulting in an immunosuppressive response as opposed to inducing an effective protective immune response, thus contributing to the growth and progression of the tumor. In the present review, the latest advances are presented about the function of Th17 cells and the cytokines produced by them in the development and progression of UCC.
View Figures

Figure 1

Figure 2

View References

1 

Catarino R, Petignat P, Dongui G and Vassilakos P: Cervical cancer screening in developing countries at a crossroad: Emerging technologies and policy choices. World J Clin Oncol. 6:281–290. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Bosch FX and de Sanjosé S: The epidemiology of human papillomavirus infection and cervical cancer. Dis Markers. 23:213–227. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Lima EG, de Lima DB, Miranda CA, de Sena Pereira VS, de Azevedo JC, de Araújo JM, de Medeiros Fernandes TA, de Azevedo PR and Fernandes JV: Knowledge about HPV and screening of cervical cancer among women from the metropolitan region of Natal, Brazil. ISRN Obstet Gynecol. 2013:9304792013. View Article : Google Scholar : PubMed/NCBI

6 

Lin Y and Zhan FB: Geographic variations of racial/ethnic disparities in cervical cancer mortality in Texas. South Med J. 107:281–288. 2014.PubMed/NCBI

7 

Forman D, de Martel C, Lacey CJ, Soerjomataram I, Lortet-Tieulent J, Bruni L, Vignat J, Ferlay J, Bray F, Plummer M and Franceschi S: Global burden of human papillomavirus and related diseases. Vaccine. 30 Suppl 5:F12–F23. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Vaccarella S, Lortet-Tieulent J, Plummer M, Franceschi S and Bray F: Worldwide trends in cervical cancer incidence: Impact of screening against changes in disease risk factors. Eur J Cancer. 49:3262–3273. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Castellsagué X: Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol. 110 3 Suppl 2:S4–S7. 2008. View Article : Google Scholar : PubMed/NCBI

10 

Bodily J and Laimins LA: Persistent of human papillomavirus infection: Keys to malignant progression. Trends Microbiol. 19:33–39. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Muñoz N, Castellsagué X, de González AB and Gissman L: Chapter 1-HPV in the etiology of human cancer. Vaccine. 24 Suppl 3:S3/1–10. 2006. View Article : Google Scholar

12 

Saavedra KP, Brebi PM and Roa JC: Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clin Epigenetics. 4:132012. View Article : Google Scholar : PubMed/NCBI

13 

Daud II, Scott ME, Ma Y, Shiboski S, Farhat S and Moscicki AB: Association between toll-like receptor expression and human papillomavirus type 16 persistence. Int J Cancer. 128:879–886. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Mora-García ML and Monroy-García A: Immune response in cervical cancer. Strategies for the development of therapeutic vaccines. Rev Med Inst Mex Seguro Soc. 53 Suppl 2:S206–S211. 2015.PubMed/NCBI

15 

Stanley MA: Immune responses to human papilloma viruses. Indian J Med Res. 130:266–276. 2009.PubMed/NCBI

16 

Song D, Li H, Li H and Dai J: Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett. 10:600–606. 2015. View Article : Google Scholar : PubMed/NCBI

17 

Iwasaki A: Antiviral immune responses in the genital tract: Clues for vaccines. Nat Rev Immunol. 10:699–711. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Sasagawa T, Takagi H and Makinoda S: Immune responses against human papillomavirus (HPV) infection and evasion of host defense in cervical cancer. J Infect Chemother. 18:807–815. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Stanley M: Immunobiology of HPV and HPV vaccines. Gynecol Oncol. 109 Suppl 2:S15–S21. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Blaskewicz CD, Pudney J and Anderson DJ: Structure and function of intercellular junctions in human cervical and vaginal mucosal epithelia. Biol Reprod. 85:97–104. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Hervouet C, Luci C, Rol N, Rousseau D, Kissenpfennig A, Malissen B, Czerkinsky C and Anjuère F: Langerhans cells prime IL-17-producing T cells and dampen genital cytotoxic responses following mucosal immunization. J Immunol. 184:4842–4851. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Kemp TJ, Hildesheim A, García-Piñeres A, Williams MC, Shearer GM, Rodriguez AC, Schiffman M, Burk R, Freer E, Bonilla J, et al: Elevated systemic levels of inflammatory cytokines in older women with persistent cervical human papillomavirus infection. Cancer Epidemiol Biomarkers Prev. 19:1954–1959. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Zhang Y, Ma D, Zhang Y, Tian Y, Wang X, Qiao Y and Cui B: The imbalance of Th17/Treg in patients with uterine cervical cancer. Clin Chim Acta. 412:894–900. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Paradkar PH, Joshi JV, Mertia PN, Agashe SV and Vaidya RA: Role of cytokines in genesis, progression and prognosis of cervical cancer. Asian Pac J Cancer Prev. 15:3851–3864. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Cong J, Liu R, Wang X, Sheng L, Jiang H, Wang W, Zhang Y, Yang S and Li C: Association between interluekin-17 gene polymorphisms and the risk of cervical cancer in a Chinese population. Int J Clin Exp Pathol. 8:9567–9573. 2015.PubMed/NCBI

26 

Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES and Gorter A: Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology. 4:e9845392015. View Article : Google Scholar : PubMed/NCBI

27 

Dong C: Targeting Th17 cells in immune diseases. Cell Res. 24:901–903. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Schmitt E, Klein M and Bopp T: Th9 cells, new players in adaptive immunity. Trends Immunol. 35:61–68. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Kaplan MH: Th9 cells: Differentiation and disease. Immunol Rev. 252:104–115. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Goldszmid RS, Dzutsev A and Trinchieri G: Host immune response to infection and cancer: Unexpected commonalities. Cell Host Microbe. 15:295–305. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Damsker JM, Hansen AM and Caspi RR: Th1 and Th17 cells: Adversaries and collaborators. Ann N Y Acad Sci. 1183:211–221. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Mosmann TR, Cherwinski H, Bond MW, Giedlin MA and Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 136:2348–2357. 1986.PubMed/NCBI

33 

Wilson JN, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, et al: Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol. 8:950–957. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Murphy KM and Reiner SL: The lineage decisions of helper T cells. Nat Rev Immunol. 2:933–944. 2002. View Article : Google Scholar : PubMed/NCBI

35 

Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA and Rudensky AY: Foxp3-dependent programme of regulatory T-cell differentiation. Nature. 445:771–775. 2007. View Article : Google Scholar : PubMed/NCBI

36 

Josefowicz SZ, Lu LF and Rudensky AY: Regulatory T cells: Mechanisms of differentiation and function. Annu Rev Immunol. 30:531–564. 2012. View Article : Google Scholar : PubMed/NCBI

37 

Asadzadeh Z, Mohammadi H, Safarzadeh E, Hemmatzadeh M, Mahdian-Shakib A, Jadidi-Niaragh F, Azizi G and Baradaran B: The paradox of Th17 cell functions in tumor immunity. Cell Immunol. 322:15–25. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C and Stockinger B: Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol. 9:1341–1346. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, et al: Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest. 119:3573–3585. 2009.PubMed/NCBI

40 

Maddur MS, Miossec P, Kaveri SV and Bayry J: Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol. 181:8–18. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Peters A, Lee Y and Kuchroo VK: The many faces of Th17 cells. Curr Opin Immunol. 23:702–706. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Ziegler SF and Buckner JH: FOXP3 and the regulation of Treg/Th17 differentiation. Microbes Infect. 11:594–598. 2009. View Article : Google Scholar : PubMed/NCBI

43 

van Hamburg JP, Mus AM, de Bruijn MJ, de Vogel L, Boon L, Cornelissen F, Asmawidjaja P, Hendriks RW and Lubberts E: GATA-3 protects against severe joint inflammation and bone erosion and reduces differentiation of Th17 cells during experimental arthritis. Arthritis Rheum. 60:750–759. 2009. View Article : Google Scholar : PubMed/NCBI

44 

Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J and Wang RF: Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA. 105:15505–15510. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Nalbant A and Eskier D: Genes associated with T helper 17 cell differentiation and function. Front Biosci (Elite Ed). 8:427–435. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Zhang S, Takaku M, Zou L, Gu AD, Chou WC, Zhang G, Wu B, Kong Q, Thomas SY, Serody JS, et al: Reversing SKI-SMAD4-mediated suppression is essential for TH17 cell differentiation. Nature. 551:105–109. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Kim HS, Jang SW, Lee W, Kim K, Sohn H, Hwang SS and Lee GR: PTEN drives Th17 cell differentiation by preventing IL-2 production. J Exp Med. 214:3381–3398. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Zhao M, Tan Y, Peng Q, Huang C, Guo Y, Liang G, Zhu B, Huang Y, Liu A, Wang Z, et al: IL-6/STAT3 pathway induced deficiency of RFX1 contributes to Th17-dependent autoimmune diseases via epigenetic regulation. Nat Commun. 9:5832018. View Article : Google Scholar : PubMed/NCBI

49 

Karczmarczyk A, Karp M and Giannopoulos K: The role of Th17 cells in tumor immunity Znaczenie limfocytów Th17 w odporności przeciwnowotworowej. Acta Haematol Polonica. 45:155–160. 2014. View Article : Google Scholar

50 

Shabgah AG, Fattahi E and Shahneh FZ: Interleukin-17 in human inflammatory diseases. Postepy Dermatol Alergol. 31:256–261. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Fu B, Tian Z and Wei H: Th17 cells in human recurrent pregnancy loss and pre-eclampsia. Cell Mol Immunol. 11:564–570. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Arnold CE, Gordon P, Barker RN and Wilson HM: The activation status of human macrophages presenting antigen determines the efficiency of Th17 responses. Immunobiology. 220:10–19. 2015. View Article : Google Scholar : PubMed/NCBI

53 

Guéry L and Hugues S: Th17 cell plasticity and functions in cancer immunity. Biomed Res Int. 2015:3146202015. View Article : Google Scholar : PubMed/NCBI

54 

Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA and Takayanagi H: Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med. 20:62–68. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Gagliani N, Vesely Amezcua MC, Iseppon A, Brockmann L, Xu H, Palm NW, de Zoete MR, Licona-Limón P, Paiva RS, Ching T, et al: Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature. 523:221–225. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Eyerich S, Eyerich K, Cavani A and Schmidt-Weber C: IL-17 and IL-22: Siblings, not twins. Trends Immunol. 31:354–361. 2010. View Article : Google Scholar : PubMed/NCBI

57 

Ye J, Livergood RS and Peng G: The role and regulation of human Th17 cells in tumor immunity. Am J Pathol. 182:10–20. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Gálvez J: Role of Th17 cells in the pathogenesis of human IBD. ISRN Inflamm. 2014:9284612014. View Article : Google Scholar : PubMed/NCBI

59 

Annunziato F, Cosmi L, Liotta F, Maggi E and Romagnani S: Human T helper type 1 dichotomy: Origin, phenotype and biological activities. Immunology. 144:343–351. 2015. View Article : Google Scholar

60 

Barnes MJ and Powrie F: Regulatory T cells reinforce intestinal homeostasis. Immunity. 31:401–411. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Davidson MG, Alonso MN, Yuan R, Axtell RC, Kenkel JA, Suhoski MM, González JC, Steinman L and Engleman EG: Th17 cells induce Th1-polarizing monocyte-derived dendritic cells. J Immunol. 191:1175–1187. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Morrison PJ, Ballantyne SJ and Kullberg MC: Interleukin-23 and T helper 17-type responses in intestinal inflammation: From cytokines to T-cell plasticity. Immunology. 133:397–408. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Wei L, Wang H, Yang F, Ding Q and Zhao J: Interleukin-17 potently increases non-small cell lung cancer growth. Mol Med Rep. 13:1673–1680. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Young MR, Levingston CA and Johnson SD: Treatment to sustain a Th17-type phenotype to prevent skewing toward Treg and to limit premalignant lesion progression to cancer. Int J Cancer. 138:2487–2498. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Yu Q, Lou XM and He Y: Preferential recruitment of Th17 cells to cervical cancer via CCR6-CCL20 pathway. PLoS One. 10:e01208552015. View Article : Google Scholar : PubMed/NCBI

66 

Wu MY, Kuo TY and Ho HN: Tumor-infiltrating lymphocytes contain a higher proportion of FOXP3(+) T lymphocytes in cervical cancer. J Formos Med Assoc. 110:580–586. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Hou F, Li Z, Ma D, Zhang W, Zhang Y, Zhang T, Kong B and Cui B: Distribution of Th17 cells and Foxp3-expressing T cells in tumor-infiltrating lymphocytes in patients with uterine cervical cancer. Clin Chim Acta. 413:1848–1854. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Chen Z, Ding J, Pang N, Du R, Meng W, Zhu Y, Zhang Y, Ma C and Ding Y: The Th17/Treg balance and the expression of related cytokines in Uygur cervical cancer patients. Diagn Pathol. 8:612013. View Article : Google Scholar : PubMed/NCBI

69 

Hou F, Ma D and Cui B: Treg cells in different forms of uterine cancer. Clin Chim Acta. 415:337–340. 2013. View Article : Google Scholar : PubMed/NCBI

70 

Gosmann C, Mattarollo SR, Bridge JA, Frazer IH and Blumenthal A: IL-17 suppresses immune effector functions in human papillomavirus-associated epithelial hyperplasia. J Immunol. 193:2248–2257. 2014. View Article : Google Scholar : PubMed/NCBI

71 

Shukla S, Mahata S, Shishodia G, Pandey A, Tyagi A, Vishnoi K, Basir SF, Das BC and Bharti AC: Functional regulatory role of STAT3 in HPV16-mediated cervical carcinogenesis. PLoS One. 8:e678492013. View Article : Google Scholar : PubMed/NCBI

72 

Backert I, Koralov SB, Wirtz S, Kitowski V, Billmeier U, Martini E, Hofmann K, Hildner K, Wittkopf N, Brecht K, et al: STAT3 activation in Th17 and Th22 cells controls IL-22-mediated epithelial host defense during infectious colitis. J Immunol. 193:3779–3791. 2014. View Article : Google Scholar : PubMed/NCBI

73 

Gagliani N, Hu B, Huber S, Elinav E and Flavell RA: The fire within: Microbes inflame tumors. Cell. 157:776–783. 2014. View Article : Google Scholar : PubMed/NCBI

74 

Li YX, Zhang L, Simayi D, Zhang N, Tao L, Yang L, Zhao J, Chen YZ, Li F and Zhang WJ: Human papillomavirus infection correlates with inflammatory Stat3 signaling activity and IL-17 level in patients with colorectal cancer. PLoS One. 10:e01183912015. View Article : Google Scholar : PubMed/NCBI

75 

Vidal AC, Skaar D, Maguire R, Dodor S, Musselwhite LW, Bartlett JA, Oneko O, Obure J, Mlay P, Murphy SK and Hoyo C: IL-10, IL-15, IL-17, and GMCSF levels in cervical cancer tissue of Tanzanian women infected with HPV16/18 vs. non-HPV16/18 genotypes. Infect Agent Cancer. 10:102015. View Article : Google Scholar : PubMed/NCBI

76 

Liang W and Ferrara N: The complex role of neutrophils in tumor angiogenesis and metastasis. Cancer Immunol Res. 4:83–91. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Gaffen SL: An overview of IL-17 function and signaling. Cytokine. 43:402–407. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Bettelli E, Korn T, Oukka M and Kuchroo VK: Induction and effector functions of T(H)17 cells. Nature. 453:1051–1057. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Cua DJ and Tato CM: Innate IL-17-producin cells: The sentinels of the immune system. Nat Rev Immunol. 10:479–489. 2010. View Article : Google Scholar : PubMed/NCBI

80 

Pappu R, Ramirez-Carrozzi V and Sambandam A: The interleukin-17 cytokine family: Critical players in host defence and inflammatory diseases. Immunology. 134:8–16. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Bie Q, Jin C, Zhang B and Dong H: IL-17B: A new area of study in the IL-17 family. Mol Immunol. 90:50–56. 2017. View Article : Google Scholar : PubMed/NCBI

82 

Mills KH: Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 38:2636–2649. 2008. View Article : Google Scholar : PubMed/NCBI

83 

Huber M, Heink S, Grothe H, Guralnik A, Reinhard K, Elflein K, Hünig T, Mittrücker HW, Brüstle A, Kamradt T and Lohoff M: A Th17-like developmental process leads to CD8(+) Tc17 cells with reduced cytotoxic activity. Eur J Immunol. 39:1716–1725. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Tajima M, Wakita D, Satoh T, Kitamura H and Nishimura T: IL-17/IFN-γ double producing CD8+ T (Tc17/IFN-γ) cells: A novel cytotoxic T-cell subset converted from Tc17 cells by IL-12. Int Immunol. 23:751–759. 2011. View Article : Google Scholar : PubMed/NCBI

85 

Zhang Y, Hou F, Liu X, Ma D, Zhang Y, Kong B and Cui B: Tc17 cells in patients with uterine cervical cancer. PLoS One. 9:e868122014. View Article : Google Scholar : PubMed/NCBI

86 

Hu Y, Shen F, Crellin NK and Ouyang W: The IL-17 pathway as a major therapeutic target in autoimmune diseases. Ann N Y Acad Sci. 1217:60–76. 2011. View Article : Google Scholar : PubMed/NCBI

87 

Liang SC, Long AJ, Bennett F, Whitters MJ, Karim R, Collins M, Goldman SJ, Dunussi-Joannopoulos K, Williams CM, Wright JF and Fouser LA: An IL-17F/A heterodimer protein is produced by mouse Th17 cells and induces airway neutrophil recruitment. J Immunol. 179:7791–7799. 2007. View Article : Google Scholar : PubMed/NCBI

88 

Wright JF, Guo Y, Quazi A, Luxenberg DP, Bennett F, Ross JF, Qiu Y, Whitters MJ, Tomkinson KN, Dunussi-Joannopoulos K, et al: Identification of an interleukin 17F/17A heterodimer in activated human CD4+ T cells. J Biol Chem. 282:13447–13455. 2007. View Article : Google Scholar : PubMed/NCBI

89 

Gaffen SL: Structure and signalling in the IL-17 receptor family. Nat Rev Immunol. 9:556–567. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Ron D, Fuchs Y and Chorev DS: Know thy Sef: A novel class of feedback antagonists of receptor tyrosine kinase signaling. Int J Biochem Cell Biol. 40:2040–2052. 2008. View Article : Google Scholar : PubMed/NCBI

91 

Mellett M, Atzei P, Horgan A, Hams E, Floss T, Wurst W, Fallon PG and Moynagh PN: Orphan receptor IL-17RD tunes IL-17A signalling and is required for neutrophilia. Nat Commun. 3:11192012. View Article : Google Scholar : PubMed/NCBI

92 

Trajkovic V, Stosic-Grujicic S, Samardzic T, Markovic M, Miljkovic D, Ramic Z and Stojkovic Mostarica M: Interleukin-17 stimulates inducible nitric oxide synthase activation in rodent astrocytes. J Neuroimmunol. 119:183–191. 2001. View Article : Google Scholar : PubMed/NCBI

93 

Ruddy MJ, Wong GC, Liu XK, Yamamoto H, Kasayama S, Kirkwood KL and Gaffen SL: Functional cooperation between interleukin-17 and tumor necrosis factor-alpha is mediated by CCAAT/enhancer-binding protein family members. J Biol Chem. 279:2559–2567. 2004. View Article : Google Scholar : PubMed/NCBI

94 

Zhu S and Qian Y: IL-17/IL-17 receptor system in autoimmune disease: Mechanisms and therapeutic potential. Clin Sci (Lond). 122:487–511. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Huang F, Kao CY, Wachi S, Thai P, Ryu J and Wu R: Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J Immunol. 179:6504–6513. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Saleh A, Shan L, Halayko AJ, Kung S and Gounni AS: Critical role for STAT3 in IL-17A-mediated CCL11 expression in human airway smooth muscle cells. J Immunol. 182:3357–3365. 2009. View Article : Google Scholar : PubMed/NCBI

97 

Hartupee J, Liu C, Novotny M, Sun D, Li X and Hamilton TA: IL-17 signaling for mRNA stabilization does not require TNF receptor-associated factor 6. J Immunol. 182:1660–1666. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Sun D, Novotny M, Bulek K, Liu C, Li X and Hamilton TA: Treatment with IL-17 prolongs the half-life of chemokine CXCL1 mRNA via the adaptor TRAF5 and the splicing-regulatory factor SF2 (ASF). Nature Immunol. 12:853–860. 2011. View Article : Google Scholar

99 

Lv Q, Zhu D, Zhang J, Yi Y, Yang S and Zhang W: Association between six genetic variants of IL-17A and IL-17F and cervical cancer risk: A case-control study. Tumour Biol. 36:3979–3984. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives V, et al: Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res. 59:3698–3704. 1999.PubMed/NCBI

101 

Feng M, Wang Y, Chen K, Bian Z, Jinfang Wu and Gao Q: IL-17A promotes the migration and invasiveness of cervical cancer cells by coordinately activating MMPs expression via the p38/NF-κB signal pathway. PLoS One. 9:e1085022014. View Article : Google Scholar : PubMed/NCBI

102 

Walch-Rückheim B, Mavrova R, Henning M, Vicinus B, Kim YJ, Bohle RM, Juhasz-Böss I, Solomayer EF and Smola S: Stromal fibroblasts induce CCL20 through IL6/C/EBPβ to support the recruitment of Th17 cells during cervical cancer progression. Cancer Res. 75:5248–5259. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Xue J, Wang Y, Chen C, Zhu X, Zhu H and Hu Y: Effects of Th17 cells and IL-17 in the progression of cervical carcinogenesis with high-risk human papillomavirus infection. Cancer Med. 7:297–306. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Quan Y, Zhou B, Wang Y, Duan R, Wang K, Gao Q, Shi S, Song Y, Zhang L and Xi M: Association between IL17 polymorphisms and risk of cervical cancer in Chinese women. Clin Dev Immunol. 2012:2582932012. View Article : Google Scholar : PubMed/NCBI

105 

Li L, Tian YL, Lv XM, Yu HF, Xie YY, Wang JD and Shi W: Association analysis of IL-17A and IL-17F polymorphisms in Chinese women with cervical cancer. Genet Mol Res. 14:12178–12183. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Sun LX, Wang XB and Huang XJ: Association analysis of rs2275913G>A and rs763780T>C interleukin 17 polymorphisms in Chinese women with cervical cancer. Genet Mol Res. 14:13612–13617. 2015.PubMed/NCBI

107 

Hardikar S, Johnson LG, Malkki M, Petersdorf EW, Galloway DA, Schwartz SM and Madeleine MM: A population-based case-control study of genetic variation in cytokine genes associated with risk of cervical and vulvar cancers. Gynecol Oncol. 139:90–96. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Huang Q, Duan L, Qian X, Fan J, Lv Z, Zhang X, Han J, Wu F, Guo M, Hu G, et al: IL-17 promotes angiogenic factors IL-6, IL-8, and Vegf production via Stat1 in lung adenocarcinoma. Sci Rep. 6:365512016. View Article : Google Scholar : PubMed/NCBI

109 

Mandic A, Knezevic Usaj S and Ivkovic Kapicl T: Tissue expression of VEGF in cervical intraepithelial neoplasia and cervical cancer. J BUON. 19:958–964. 2014.PubMed/NCBI

110 

Zhang J, Liu J, Zhu C, He J, Chen J, Liang Y, Yang F, Wu X and Ma X: Prognostic role of vascular endothelial growth factor in cervical cancer: A meta-analysis. Oncotarget. 8:24797–24803. 2017.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Alves JJ, Fernandes TA, de Araújo JM, Cobucci RN, Lanza DC, Bezerra FL, Andrade VS and Fernandes JV: Th17 response in patients with cervical cancer (Review). Oncol Lett 16: 6215-6227, 2018.
APA
Alves, J.J., Fernandes, T.A., de Araújo, J.M., Cobucci, R.N., Lanza, D.C., Bezerra, F.L. ... Fernandes, J.V. (2018). Th17 response in patients with cervical cancer (Review). Oncology Letters, 16, 6215-6227. https://doi.org/10.3892/ol.2018.9481
MLA
Alves, J. J., Fernandes, T. A., de Araújo, J. M., Cobucci, R. N., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Fernandes, J. V."Th17 response in patients with cervical cancer (Review)". Oncology Letters 16.5 (2018): 6215-6227.
Chicago
Alves, J. J., Fernandes, T. A., de Araújo, J. M., Cobucci, R. N., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Fernandes, J. V."Th17 response in patients with cervical cancer (Review)". Oncology Letters 16, no. 5 (2018): 6215-6227. https://doi.org/10.3892/ol.2018.9481
Copy and paste a formatted citation
x
Spandidos Publications style
Alves JJ, Fernandes TA, de Araújo JM, Cobucci RN, Lanza DC, Bezerra FL, Andrade VS and Fernandes JV: Th17 response in patients with cervical cancer (Review). Oncol Lett 16: 6215-6227, 2018.
APA
Alves, J.J., Fernandes, T.A., de Araújo, J.M., Cobucci, R.N., Lanza, D.C., Bezerra, F.L. ... Fernandes, J.V. (2018). Th17 response in patients with cervical cancer (Review). Oncology Letters, 16, 6215-6227. https://doi.org/10.3892/ol.2018.9481
MLA
Alves, J. J., Fernandes, T. A., de Araújo, J. M., Cobucci, R. N., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Fernandes, J. V."Th17 response in patients with cervical cancer (Review)". Oncology Letters 16.5 (2018): 6215-6227.
Chicago
Alves, J. J., Fernandes, T. A., de Araújo, J. M., Cobucci, R. N., Lanza, D. C., Bezerra, F. L., Andrade, V. S., Fernandes, J. V."Th17 response in patients with cervical cancer (Review)". Oncology Letters 16, no. 5 (2018): 6215-6227. https://doi.org/10.3892/ol.2018.9481
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team