Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2019 Volume 17 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Inflammation: A key process in skin tumorigenesis (Review)

  • Authors:
    • Monica Neagu
    • Carolina Constantin
    • Constantin Caruntu
    • Carmen Dumitru
    • Mihaela Surcel
    • Sabina Zurac
  • View Affiliations / Copyright

    Affiliations: Immunobiology Laboratory, ‘Victor Babes’ National Institute of Pathology, 050096 Bucharest, Romania, Department of Physiology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania, Department of Pathology, Colentina Clinical Hospital, 020125 Bucharest, Romania
    Copyright: © Neagu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 4068-4084
    |
    Published online on: November 19, 2018
       https://doi.org/10.3892/ol.2018.9735
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The extremely delicate shift from an inflammatory process to tumorigenesis is a field of major scientific interest. While the inflammation induced by environmental agents has well known underlying mechanisms, less is known concerning the oncogenic changes that follow an inflammatory chronic status in the tissue microenvironment that can lead to pro‑tumorigenic processes. Regardless of the origin of the environmental factors, the maintenance of an inflammatory microenvironment is a clear condition that favors tumorigenesis. Inflammation sustains the proliferation and survival of malignant transformed cells, can promote angiogenesis and metastatic processes, can negatively regulate the antitumoral adaptive and innate immune responses and may alter the efficacy of therapeutic agents. There is an abundance of studies focusing on molecular pathways that trigger inflammation-mediated tumorigenesis, and these data have revealed a series of biomarkers that can improve the diagnosis and prognosis in oncology. In skin there is a clear connection between tissue destruction, inflammation and tumor onset. Inflammation is a self‑limiting process in normal physiological conditions, while tumor is a constitutive process activating new pro‑tumor mechanisms. Among skin cancers, the most commonly diagnosed skin cancers, squamous cell carcinoma and basal cell carcinoma (BCC) have important inflammatory components. The most aggressive skin cancer, melanoma, is extensively research in regards to the new context of novel developed immune‑therapies. In skin cancers, inflammatory markers can find their place in the biomarker set for improvement of diagnosis and prognosis.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Νeagu M: The immune system: A hidden treasure for biomarker discovery in cutaneous melanoma. Adv Clin Chem. 58:89–140. 2012. View Article : Google Scholar : PubMed/NCBI

2 

Boda D, Docea AO, Calina D, Ilie MA, Caruntu C, Zurac S, Neagu M, Constantin C, Branisteanu DE, Voiculescu V, et al: Human papilloma virus: Apprehending the link with carcinogenesis and unveiling new research avenues (Review). Int J Oncol. 52:637–655. 2018.PubMed/NCBI

3 

Calleja-Agius J, Brincat M and Borg M: Skin connective tissue and ageing. Best Pract Res Clin Obstet Gynaecol. 27:727–740. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S and Voorhees JJ: Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 138:1462–1470. 2002. View Article : Google Scholar : PubMed/NCBI

5 

Martinon F, Burns K and Tschopp J: The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 10:417–426. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Sollberger G, Strittmatter GE, Grossi S, Garstkiewicz M, Auf dem Keller U, French LE and Beer HD: Caspase-1 activity is required for UVB-induced apoptosis of human keratinocytes. J Invest Dermatol. 135:1395–1404. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Ortiz ML, Kumar V, Martner A, Mony S, Donthireddy L, Condamine T, Seykora J, Knight SC, Malietzis G, Lee GH, et al: Immature myeloid cells directly contribute to skin tumor development by recruiting IL-17-producing CD4+ T cells. J Exp Med. 212:351–367. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Awad F, Assrawi E, Louvrier C, Jumeau C, Giurgea I, Amselem S and Karabina SA: Photoaging and skin cancer: Is the inflammasome the missing link? Mech Ageing Dev. 172:131–137. 2018. View Article : Google Scholar : PubMed/NCBI

9 

DeNardo DG and Coussens LM: Inflammation and breast cancer. Balancing immune response: Crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 9:2122007. View Article : Google Scholar : PubMed/NCBI

10 

Mantovani A, Allavena P, Sica A and Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Neagu M, Constantin C, Dumitrascu G, Lupu A, Caruntu C, Boda D and Zurac S: Inflammation markers in cutaneous melanoma-edgy biomarkers for prognosis. Discoveries (Craiova). 3:e382015. View Article : Google Scholar

12 

Lin WW and Karin M: A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 117:1175–1183. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Neagu M, Constantin C, Manda G and Margaritescu I: Biomarkers of metastatic melanoma. Biomarkers Med. 3:71–89. 2009. View Article : Google Scholar

14 

Mattii M, Lovászi M, Garzorz N, Atenhan A, Quaranta M, Lauffer F, Konstantinow A, Küpper M, Zouboulis CC, Kemeny L, et al: Sebocytes contribute to skin inflammation by promoting the differentiation of T helper 17 cells. Br J Dermatol. 178:722–730. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Neagu M, Caruntu C, Constantin C, Boda D, Zurac S, Spandidos DA and Tsatsakis AM: Chemically induced skin carcinogenesis: Updates in experimental models (Review). Oncol Rep. 35:2516–2528. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Martinon F: Dangerous liaisons: Mitochondrial DNA meets the NLRP3 inflammasome. Immunity. 36:313–315. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S and Beer HD: The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol. 17:1140–1145. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Broz P and Dixit VM: Inflammasomes: Mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16:407–420. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Kostyuk V, Potapovich A, Stancato A, De Luca C, Lulli D, Pastore S and Korkina L: Photo-oxidation products of skin surface squalene mediate metabolic and inflammatory responses to solar UV in human keratinocytes. PLoS One. 7:e444722012. View Article : Google Scholar : PubMed/NCBI

20 

Oyewole AO and Birch-Machin MA: Sebum, inflammasomes and the skin: Current concepts and future perspective. Exp Dermatol. 24:651–654. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Ahmad I, Muneer KM, Chang ME, Nasr HM, Clay JM, Huang CC and Yusuf N: Ultraviolet radiation-induced downregulation of SERCA2 mediates activation of NLRP3 inflammasome in basal cell carcinoma. Photochem Photobiol. 93:1025–1033. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Latz E, Xiao TS and Stutz A: Activation and regulation of the inflammasomes. Nat Rev Immunol. 13:397–411. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Penuela S, Gyenis L, Ablack A, Churko JM, Berger AC, Litchfield DW, Lewis JD and Laird DW: Loss of pannexin 1 attenuates melanoma progression by reversion to a melanocytic phenotype. J Biol Chem. 287:29184–29193. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Zhong FL, Mamaï O, Sborgi L, Boussofara L, Hopkins R, Robinson K, Szeverényi I, Takeichi T, Balaji R, Lau A, et al: Germline NLRP1 mutations cause skin inflammatory and cancersusceptibility syndromes via inflammasome activation. Cell. 167:187–202. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Verma D, Bivik C, Farahani E, Synnerstad I, Fredrikson M, Enerbäck C, Rosdahl I and Söderkvist P: Inflammasome polymorphisms confer susceptibility to sporadic malignant melanoma. Pigment Cell Melanoma Res. 25:506–513. 2012. View Article : Google Scholar : PubMed/NCBI

26 

Da Silva WC, Oshiro TM, de Sá DC, Franco DD, Festa Neto C and Pontillo A: Genotyping and differential expression analysis of inflammasome genes in sporadic malignant melanoma reveal novel contribution of CARD8, IL1B and IL18 in melanoma susceptibility and progression. Cancer Genet. 209:474–480. 2016. View Article : Google Scholar : PubMed/NCBI

27 

Okamoto M, Liu W, Luo Y, Tanaka A, Cai X, Norris DA, Dinarello CA and Fujita M: Constitutively active inflammasome in human melanoma cells mediating autoinflammation via caspase-1 processing and secretion of interleukin-1β. J Biol Chem. 285:6477–6488. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Liu W, Luo Y, Dunn JH, Norris DA, Dinarello CA and Fujita M: Dual role of apoptosis-associated speck-like protein containing a CARD (ASC) in tumorigenesis of human melanoma. J Invest Dermatol. 133:518–527. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Drexler SK, Bonsignore L, Masin M, Tardivel A, Jackstadt R, Hermeking H, Schneider P, Gross O, Tschopp J and Yazdi AS: Tissue-specific opposing functions of the inflammasome adaptor ASC in the regulation of epithelial skin carcinogenesis. Proc Natl Acad Sci USA. 109:18384–18389. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, et al: Proteomics. Tissue-based map of the human proteome. Science. 347:12604192015. View Article : Google Scholar : PubMed/NCBI

31 

Gonda TA, Tu S and Wang TC: Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 8:2005–2013. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Neagu M, Constantin C and Tanase C: Immune-related biomarkers for diagnosis/prognosis and therapy monitoring of cutaneous melanoma. Expert Rev Mol Diagn. 10:897–919. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Nedoszytko B, Sokołowska-Wojdyło M, Ruckemann- Dziurdzińska K, Roszkiewicz J and Nowicki RJ: Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: Atopic dermatitis, psoriasis and skin mastocytosis. Postepy Dermatol Alergol. 31:84–91. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Justus CR, Leffler N, Ruiz-Echevarria M and Yang LV: In vitro cell migration and invasion assays. J Vis Exp. 1:882014.

35 

Kong D, Li Y, Wang Z and Sarkar FH: Cancer stem cells and epithelial-to-mesenchymal transition (EMT)-phenotypic cells: Are they cousins or twins? Cancers (Basel). 3:716–729. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Plikus MV, Guerrero-Juarez CF, Treffeisen E and Gay DL: Epigenetic control of skin and hair regeneration after wounding. Exp Dermatol. 24:167–170. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Yan C, Grimm WA, Garner WL, Qin L, Travis T, Tan N and Han YP: Epithelial to mesenchymal transition in human skin wound healing is induced by tumor necrosis factor-α through bone morphogenic protein-2. Am J Pathol. 176:2247–2258. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Leopold PL, Vincent J and Wang H: A comparison of epithelial-to-mesenchymal transition and re-epithelialization. Semin Cancer Biol. 22:471–483. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Egeblad M, Nakasone ES and Werb Z: Tumors as organs: Complex tissues that interface with the entire organism. Dev Cell. 18:884–901. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Kim Y and He YY: Ultraviolet radiation-induced non-melanoma skin cancer: Regulation of DNA damage repair and inflammation. Genes Dis. 1:188–198. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Pondicherry A, Martin R, Meredith I, Rolfe J, Emanuel P and Elwood M: The burden of non-melanoma skin cancers in Auckland, New Zealand. Australas J Dermatol. 59:210–213. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Avrămoiu I, Petrescu IO, Ciurea ME, Bold A, Siloşi I, ŢânŢu MM, Niculescu M, Anghel Savciu RE and Mogoantă SŞ: Peritumoral inflammatory reaction in non-melanoma skin cancers-histological and immunohistochemical study. Rom J Morphol Embryol. 57:943–950. 2016.PubMed/NCBI

43 

Nguyen AH, Detty SQ and Agrawal DK: Clinical implications of high-mobility group box-1 (HMGB1) and the receptor for advanced glycation end-products (RAGE) in cutaneous malignancy: A systematic review. Anticancer Res. 37:1–7. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Wu NL and Liu FT: The expression and function of galectins in skin physiology and pathology. Exp Dermatol. 27:217–226. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Kapucuoglu N, Basak PY, Bircan S, Sert S and Akkaya VB: Immunohistochemical galectin-3 expression in non-melanoma skin cancers. Pathol Res Pract. 205:97–103. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Nardinocchi L, Sonego G, Passarelli F, Avitabile S, Scarponi C, Failla CM, Simoni S, Albanesi C and Cavani A: Interleukin-17 and interleukin-22 promote tumor progression in human nonmelanoma skin cancer. Eur J Immunol. 45:922–931. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Von Schuckmann LA, Law MH, Montgomery GW, Green AC and Van Der Pols JC: Vitamin D pathway gene polymorphisms and keratinocyte cancers: A nested case-control study and meta-analysis. Anticancer Res. 36:2145–2152. 2016.PubMed/NCBI

48 

Dusingize JC, Olsen CM, Pandeya NP, Subramaniam P, Thompson BS, Neale RE, Green AC and Whiteman DC; QSkin Study, : Cigarette smoking and the risks of basal cell carcinoma and squamous cell carcinoma. J Invest Dermatol. 137:1700–1708. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Chaudhary SC, Waseem M, Rana M, Xu H, Kopelovich L, Elmets CA and Athar M: Naproxen inhibits UVB-induced basal cell and squamous cell carcinoma development in Ptch1+/−/SKH-1 hairless mice. Photochem Photobiol. 93:1016–1024. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Janda J, Burkett NB, Blohm-Mangone K, Huang V, Curiel-Lewandrowski C, Alberts DS, Petricoin EF III, Calvert VS, Einspahr J, Dong Z, et al: Resatorvid-based pharmacological antagonism of cutaneous TLR4 blocks UV-induced NF-κB and AP-1 signaling in keratinocytes and mouse skin. Photochem Photobiol. 92:816–825. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Matei C, Tampa M, Caruntu C, Ion RM, Georgescu SR, Dumitrascu GR, Constantin C and Neagu M: Protein microarray for complex apoptosis monitoring of dysplastic oral keratinocytes in experimental photodynamic therapy. Biol Res. 47:33–41. 2014. View Article : Google Scholar : PubMed/NCBI

52 

Voiculescu V, Calenic B, Ghita M, Lupu M, Caruntu A, Moraru L, Voiculescu S, Ion A, Greabu M, Ishkitiev N, et al: From normal skin to squamous cell carcinoma: A quest for novel biomarkers. Dis Markers. 2016:45174922016. View Article : Google Scholar : PubMed/NCBI

53 

Voiculescu VM, Caruntu C, Solomon I, Lupu M, Ilie MA, Boda D, Constantin C and Neagu M: Squamous cell carcinoma: Biomarkers and potential therapeutic targets. Human Skin Cancers - Pathways, Mechanisms, Targets and Treatments. Blumenberg M: IntechOpen; London: pp. 135–159. 2018

54 

Paulitschke V, Gerner C, Hofstätter E, Mohr T, Mayer RL, Pehamberger H and Kunstfeld R: Proteome profiling of keratinocytes transforming to malignancy. Electrophoresis. 36:564–576. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Farshchian M, Nissinen L, Siljamäki E, Riihilä P, Piipponen M, Kivisaari A, Kallajoki M, Grénman R, Peltonen J, Peltonen S, et al: Tumor cell-specific AIM2 regulates growth and invasion of cutaneous squamous cell carcinoma. Oncotarget. 8:45825–45836. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Muller HK and Woods GM: Ultraviolet radiation effects on the proteome of skin cells. Adv Exp Med Biol. 990:111–119. 2013. View Article : Google Scholar : PubMed/NCBI

57 

López-Camarillo C, Ocampo EA, Casamichana ML, Pérez-Plasencia C, Alvarez-Sánchez E and Marchat LA: Protein kinases and transcription factors activation in response to UV-radiation of skin: Implications for carcinogenesis. Int J Mol Sci. 13:142–172. 2012. View Article : Google Scholar : PubMed/NCBI

58 

Bertrand-Vallery V, Boilan E, Ninane N, Demazy C, Friguet B, Toussaint O, Poumay Y and Debacq-Chainiaux F: Repeated exposures to UVB induce differentiation rather than senescence of human keratinocytes lacking p16(INK-4A). Biogerontology. 11:167–181. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Föll MC, Fahrner M, Gretzmeier C, Thoma K, Biniossek ML, Kiritsi D, Meiss F, Schilling O, Nyström A and Kern JS: Identification of tissue damage, extracellular matrix remodeling and bacterial challenge as common mechanisms associated with high-risk cutaneous squamous cell carcinomas. Matrix Biol. 66:1–21. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Guerra L, Odorisio T, Zambruno G and Castiglia D: Stromal microenvironment in type VII collagen-deficient skin: The ground for squamous cell carcinoma development. Matrix Biol. 63:1–10. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Meier K, Drexler SK, Eberle FC, Lefort K and Yazdi AS: Silencing of ASC in cutaneous squamous cell carcinoma. PLoS One. 11:e01647422016. View Article : Google Scholar : PubMed/NCBI

62 

Kirkley KS, Walton KD, Duncan C and Tjalkens RB: Spontaneous development of cutaneous squamous cell carcinoma in mice with cell-specific deletion of inhibitor of κB kinase 2. Comp Med. 67:407–415. 2017.PubMed/NCBI

63 

Mohanan S, Horibata S, Anguish LJ, Mukai C, Sams K, McElwee JL, McLean D, Yan A and Coonrod SA: PAD2 overexpression in transgenic mice augments malignancy and tumor-associated inflammation in chemically initiated skin tumors. Cell Tissue Res. 370:275–283. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Atmatzidis DH, Lambert WC and Lambert MW: Langerhans cell: Exciting developments in health and disease. J Eur Acad Dermatol Venereol. 31:1817–1824. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Lin M, Sutherland DR, Horsfall W, Totty N, Yeo E, Nayar R, Wu XF and Schuh AC: Cell surface antigen CD109 is a novel member of the α(2) macroglobulin/C3, C4, C5 family of thioester-containing proteins. Blood. 99:1683–1691. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Sunagawa M, Mii S, Enomoto A, Kato T, Murakumo Y, Shiraki Y, Asai N, Asai M, Nagino M and Takahashi M: Suppression of skin tumorigenesis in CD109-deficient mice. Oncotarget. 7:82836–82850. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Varricchi G, Galdiero MR and Marone G, Granata F, Borriello F and Marone G: Controversial role of mast cells in skin cancers. Exp Dermatol. 26:11–17. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Latil M, Nassar D, Beck B, Boumahdi S, Wang L, Brisebarre A, Dubois C, Nkusi E, Lenglez S, Checinska A, et al: Cell-type-specific chromatin states differentially prime squamous cell carcinoma tumor-initiating cells for epithelial to mesenchymal transition. Cell Stem Cell. 20:191–204. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Dibra D, Mitra A, Newman M, Xia X, Keenan C, Cutrera JJ, Mathis JM, Wang XJ, Myers J and Li S: IL27 controls skin tumorigenesis via accumulation of ETAR-positive CD11b cells in the pre-malignant skin. Oncotarget. 7:77138–77151. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Ghita MA, Caruntu C, Rosca AE, Kaleshi H, Caruntu A, Moraru L, Docea AO, Zurac S, Boda D, Neagu M, et al: Reflectance confocal microscopy and dermoscopy for in vivo, non-invasive skin imaging of superficial basal cell carcinoma. Oncol Lett. 11:3019–3024. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Tilley C, Deep G and Agarwal R: Chemopreventive opportunities to control basal cell carcinoma: Current perspectives. Mol Carcinog. 54:688–697. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Jia J, Shi Y, Yan B, Xiao D, Lai W, Pan Y, Jiang Y, Chen L, Mao C, Zhou J, et al: LGR5 expression is controled by IKKα in basal cell carcinoma through activating STAT3 signaling pathway. Oncotarget. 7:27280–27294. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Larsimont JC, Youssef KK, Sánchez-Danés A, Sukumaran V, Defrance M, Delatte B, Liagre M, Baatsen P, Marine JC, Lippens S, et al: Sox9 controls self-renewal of oncogene targeted cells and links tumor initiation and invasion. Cell Stem Cell. 17:60–73. 2015. View Article : Google Scholar : PubMed/NCBI

74 

Chastkofsky MI, Bie W, Ball-Kell SM, He YY and Tyner AL: Protein tyrosine kinase 6 regulates UVB-induced signaling and tumorigenesis in mouse skin. J Invest Dermatol. 135:2492–2501. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Baykan H, Cihan YB and Ozyurt K: Roles of white blood cells and subtypes as inflammatory markers in skin cancer. Asian Pac J Cancer Prev. 16:2303–2306. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Lupu M, Caruntu A, Caruntu C, Papagheorghe LML, Ilie MA, Voiculescu V, Boda D, Constantin C, Tanase C, Sifaki M, et al: Neuroendocrine factors: The missing link in non melanoma skin cancer (Review). Oncol Rep. 38:1327–1340. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Lin Y, Chahal HS, Wu W, Cho HG, Ransohoff KJ, Dai H, Tang JY, Sarin KY and Han J: Association between genetic variation within vitamin D receptor-DNA binding sites and risk of basal cell carcinoma. Int J Cancer. 140:2085–2091. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Κaukinen A, Siiskonen H, Pelkonen J and Harvima IT: Immunoreactivity to CYP24A1, but not vitamin D receptor, is increased in mast cells of keratinocyte skin cancers. Eur J Dermatol. 27:590–598. 2017.PubMed/NCBI

79 

Weidenbusch M, Rodler S, Song S, Romoli S, Marschner JA, Kraft F, Holderied A, Kumar S, Mulay SR, Honarpisheh M, et al: Gene expression profiling of the Notch-AhR-IL22 axis at homeostasis and in response to tissue injury. Biosci Rep. 37:BSR201700992017.doi: 10.1042/BSR20170099. View Article : Google Scholar : PubMed/NCBI

80 

Rubina KA, Sysoeva VY, Zagorujko EI, Tsokolaeva ZI, Kurdina MI, Parfyonova YV and Tkachuk VA: Increased expression of uPA, uPAR, and PAI-1 in psoriatic skin and in basal cell carcinomas. Arch Dermatol Res. 309:433–442. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Kuznetsova EV, Snarskaya ES, Zavalishina LE and Tkachenko SB: Immunohistochemical study of the specific features of expression of matrix metalloproteinases 1, 9 in the photoaged skin, the foci of actinic keratosis and basal cell carcinoma. Arkh Patol. 78:17–22. 2016.(In Russian). View Article : Google Scholar : PubMed/NCBI

82 

Papakostas D and Stockfleth E: Topical treatment of basal cell carcinoma with the immune response modifier imiquimod. Future Oncol. 11:2985–2990. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Muranushi C, Olsen CM, Green AC and Pandeya N: Can oral nonsteroidal antiinflammatory drugs play a role in the prevention of basal cell carcinoma? A systematic review and metaanalysis. J Am Acad Dermatol. 74:108–119.e1. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Barnes TA and Amir E: HYPE or HOPE: The prognostic value of infiltrating immune cells in cancer. Br J Cancer. 117:451–460. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Weiss SA, Han SW, Lui K, Tchack J, Shapiro R, Berman R, Zhong J, Krogsgaard M, Osman I and Darvishian F: Immunologic heterogeneity of tumor-infiltrating lymphocyte composition in primary melanoma. Hum Pathol. 57:116–125. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Zurac S, Negroiu G, Andrei R, Petrescu S, Tebeica T, Petre M, Neagu M, Constantin C, Chitu V, Salavastru C, et al: Inflammatory infiltrate in melanoma with regression as prognostic parameter. Virchows Arch. 463:1272013.

87 

Klechevsky E: Functional diversity of human dendritic cells. Adv Exp Med Biol. 850:43–54. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Hargadon KM: Strategies to improve the efficacy of dendritic cell-based immunotherapy for melanoma. Front Immunol. 8:15942017. View Article : Google Scholar : PubMed/NCBI

89 

Van de Ven R, van den Hout MF, Lindenberg JJ, Sluijter BJ, Van Leeuwen PA, Lougheed SM, Meijer S, Van den Tol MP, Scheper RJ and De Gruijl TD: Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood. 118:2502–2510. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Deckers J, Hammad H and Hoste E: Langerhans cells: Sensing the environment in health and disease. Front Immunol. 9:932018. View Article : Google Scholar : PubMed/NCBI

91 

Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, et al: Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 29:497–510. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Price JG, Idoyaga J, Salmon H, Hogstad B, Bigarella CL, Ghaffari S, Leboeuf M and Merad M: CDKN1A regulates Langerhans cell survival and promotes Treg cell generation upon exposure to ionizing irradiation. Nat Immunol. 16:1060–1068. 2015. View Article : Google Scholar : PubMed/NCBI

93 

Hieronymus T, Zenke M, Baek JH and Seré K: The clash of Langerhans cell homeostasis in skin: Should I stay or should I go? Semin Cell Dev Biol. 41:30–38. 2015. View Article : Google Scholar : PubMed/NCBI

94 

Yasmin N, Bauer T, Modak M, Wagner K, Schuster C, Köffel R, Seyerl M, Stöckl J, Elbe-Bürger A, Graf D, et al: Identification of bone morphogenetic protein 7 (BMP7) as an instructive factor for human epidermal Langerhans cell differentiation. J Exp Med. 210:2597–2610. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Arwert EN, Hoste E and Watt FM: Epithelial stem cells, wound healing and cancer. Nat Rev Cancer. 12:170–180. 2012. View Article : Google Scholar : PubMed/NCBI

96 

Baek JH, Birchmeier C, Zenke M and Hieronymus T: The HGF receptor/Met tyrosine kinase is a key regulator of dendritic cell migration in skin immunity. J Immunol. 189:1699–1707. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Yen JH, Khayrullina T and Ganea D: PGE2-induced metalloproteinase-9 is essential for dendritic cell migration. Blood. 111:260–270. 2008. View Article : Google Scholar : PubMed/NCBI

98 

Haanen JB, Baars A, Gomez R, Weder P, Smits M, De Gruijl TD, Von Blomberg BM, Bloemena E, Scheper RJ, Van Ham SM, et al: Melanoma-specific tumor-infiltrating lymphocytes but not circulating melanoma-specific T cells may predict survival in resected advanced-stage melanoma patients. Cancer Immunol Immunother. 55:451–458. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Ladányi A, Kiss J, Somlai B, Gilde K, Fejos Z, Mohos A, Gaudi I and Tímár J: Density of DC-LAMP+ mature dendritic cells in combination with activated T lymphocytes infiltrating primary cutaneous melanoma is a strong independent prognostic factor. Cancer Immunol Immunother. 56:1459–1469. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Dai J, El Gazzar M, Li GY, Moorman JP and Yao ZQ: Myeloid-derived suppressor cells: Paradoxical roles in infection and immunity. J Innate Immun. 7:116–126. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Mao Y, Poschke I, Wennerberg E, Pico de Coaña Y, Egyhazi Brage S, Schultz I, Hansson J, Masucci G, Lundqvist A and Kiessling R: Melanoma-educated CD14+ cells acquire a myeloid-derived suppressor cell phenotype through COX-2-dependent mechanisms. Cancer Res. 73:3877–3887. 2013. View Article : Google Scholar : PubMed/NCBI

102 

Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI

103 

Tarhini AA, Edington H, Butterfield LH, Lin Y, Shuai Y, Tawbi H, Sander C, Yin Y, Holtzman M, Johnson J, et al: Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS One. 9:e877052014. View Article : Google Scholar : PubMed/NCBI

104 

Rudolph BM, Loquai C, Gerwe A, Bacher N, Steinbrink K, Grabbe S and Tuettenberg A: Increased frequencies of CD11b+ CD33+ CD14+ HLA-DRlow myeloid-derived suppressor cells are an early event in melanoma patients. Exp Dermatol. 23:202–204. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Martens A, Zelba H, Garbe C, Pawelec G and Weide B: Monocytic myeloid-derived suppressor cells in advanced melanoma patients: Indirect impact on prognosis through inhibition of tumor-specific T-cell responses? OncoImmunology. 3:e278452014. View Article : Google Scholar : PubMed/NCBI

106 

Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, Maurichi A, Cova A, Rigamonti G, Giardino F, et al: Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clin Cancer Res. 18:6485–6496. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Brandau S, Trellakis S, Bruderek K, Schmaltz D, Steller G, Elian M, Suttmann H, Schenck M, Welling J, Zabel P, et al: Myeloid-derived suppressor cells in the peripheral blood of cancer patients contain a subset of immature neutrophils with impaired migratory properties. J Leukoc Biol. 89:311–317. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Schilling B, Sucker A, Griewank K, Zhao F, Weide B, Görgens A, Giebel B, Schadendorf D and Paschen A: Vemurafenib reverses immunosuppression by myeloid derived suppressor cells. Int J Cancer. 133:1653–1663. 2013. View Article : Google Scholar : PubMed/NCBI

109 

Ene CD, Anghel AE, Neagu M and Nicolae I: 25-OH Vitamin D and interleukin-8 emerging biomarkers in cutaneous melanoma development and progression. Mediators Inflam. 2015:1–8. 2015. View Article : Google Scholar

110 

Mandruzzato S, Solito S, Falisi E, Francescato S, Chiarion-Sileni V, Mocellin S, Zanon A, Rossi CR, Nitti D, Bronte V, et al: IL4Rα+ myeloid-derived suppressor cell expansion in cancer patients. J Immunol. 182:6562–6568. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Jiang H, Gebhardt C, Umansky L, Beckhove P, Schulze TJ, Utikal J and Umansky V: Elevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patients. Int J Cancer. 136:2352–2360. 2015. View Article : Google Scholar : PubMed/NCBI

112 

Zhai Z, Liu W, Kaur M, Luo Y, Domenico J, Samson JM, Shellman YG, Norris DA, Dinarello CA, Spritz RA, et al: NLRP1 promotes tumor growth by enhancing inflammasome activation and suppressing apoptosis in metastatic melanoma. Oncogene. 36:3820–3830. 2017. View Article : Google Scholar : PubMed/NCBI

113 

Lopes RL, Borges TJ, Araújo JF, Pinho NG, Bergamin LS, Battastini AM, Muraro SP, Souza AP, Zanin RF and Bonorino C: Extracellular mycobacterial DnaK polarizes macrophages to the M2-like phenotype. PLoS One. 9:e1134412014. View Article : Google Scholar : PubMed/NCBI

114 

Scali E, Mignogna C, Di Vito A, Presta I, Camastra C, Donato G and Bottoni U: Inflammation and macrophage polarization in cutaneous melanoma: Histopathological and immunohistochemical study. Int J Immunopathol Pharmacol. 29:715–719. 2016. View Article : Google Scholar : PubMed/NCBI

115 

Falleni M, Savi F, Tosi D, Agape E, Cerri A, Moneghini L and Bulfamante GP: M1 and M2 macrophages' clinicopathological significance in cutaneous melanoma. Melanoma Res. 27:200–210. 2017. View Article : Google Scholar : PubMed/NCBI

116 

Bønnelykke-Behrndtz ML, Steiniche T, Damsgaard TE, Georgsen JB, Danielsen A, Bastholt L, Møller HJ, Nørgaard PH and Schmidt H: MelanA-negative spindle-cell associated melanoma, a distinct inflammatory phenotype correlated with dense infiltration of CD163 macrophages and loss of E-cadherin. Melanoma Res. 25:113–118. 2015. View Article : Google Scholar : PubMed/NCBI

117 

Jacquelot N, Pitt JM, Enot DP, Roberti MP, Duong CPM, Rusakiewicz S, Eggermont AM and Zitvogel L: Immune biomarkers for prognosis and prediction of responses to immune checkpoint blockade in cutaneous melanoma. OncoImmunology. 6:e12993032017. View Article : Google Scholar : PubMed/NCBI

118 

Hernberg M, Mattila PS, Rissanen M, Hansson J, Aamdal S, Bastholt L, Von der Maase H, Schmidt H, Stierner U and Tarkkanen J: The prognostic role of blood lymphocyte subset distribution in patients with resected high-risk primary or regionally metastatic melanoma. J Immunother. 30:773–779. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Fridman WH, Galon J, Pagès F, Tartour E, Sautès-Fridman C and Kroemer G: Prognostic and predictive impact of intra- and peritumoral immune infiltrates. Cancer Res. 71:5601–5605. 2011. View Article : Google Scholar : PubMed/NCBI

120 

Jacobs JFM, Nierkens S, Figdor CG, de Vries IJM and Adema GJ: Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 13:e32–e42. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA and Markovic SN: Melanoma study group of the Mayo Clinic Cancer Center: Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res. 15:1931–1939. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Umansky V and Sevko A: Melanoma-induced immunosuppression and its neutralization. Semin Cancer Biol. 22:319–326. 2012. View Article : Google Scholar : PubMed/NCBI

123 

Burkholder B, Huang RY, Burgess R, Luo S, Jones VS, Zhang W, Lv ZQ, Gao CY, Wang BL, Zhang YM, et al: Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta. 1845:182–201. 2014.PubMed/NCBI

124 

Neagu M, Constantin C and Longo C: Chemokines in the melanoma metastasis biomarkers portrait. J Immunoassay Immunochem. 36:559–566. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Wang W, Edington HD, Rao UN, Jukic DM, Radfar A, Wang H and Kirkwood JM: Effects of high-dose IFNα2b on regional lymph node metastases of human melanoma: Modulation of STAT5, FOXP3, and IL-17. Clin Cancer Res. 14:8314–8320. 2008. View Article : Google Scholar : PubMed/NCBI

126 

Neagu M, Constantin C and Zurac S: Immune parameters in the prognosis and therapy monitoring of cutaneous melanoma patients: Experience, role, and limitations. BioMed Res Int. 2013:1079402013. View Article : Google Scholar : PubMed/NCBI

127 

Nguyen LT, Yen PH, Nie J, Liadis N, Ghazarian D, Al-Habeeb A, Easson A, Leong W, Lipa J, McCready D, et al: Expansion and characterization of human melanoma tumor-infiltrating lymphocytes (TILs). PLoS One. 5:e139402010. View Article : Google Scholar : PubMed/NCBI

128 

Ηussein MR, Elsers DA, Fadel SA and Omar AE: Immunohistological characterisation of tumour infiltrating lymphocytes in melanocytic skin lesions. J Clin Pathol. 59:316–324. 2006. View Article : Google Scholar : PubMed/NCBI

129 

Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP and Thompson JF: Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol. 30:2678–2683. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Burton AL, Roach BA, Mays MP, Chen AF, Ginter BA, Vierling AM, Scoggins CR, Martin RC, Stromberg AJ, Hagendoorn L, et al: Prognostic significance of tumor infiltrating lymphocytes in melanoma. Am Surg. 77:188–192. 2011.PubMed/NCBI

131 

Kluger HM, Zito CR, Barr ML, Baine MK, Chiang VL, Sznol M, Rimm DL, Chen L and Jilaveanu LB: Characterization of PD-L1 expression and associated T-cell infiltrates in metastatic melanoma samples from variable anatomic sites. Clin Cancer Res. 21:3052–3060. 2015. View Article : Google Scholar : PubMed/NCBI

132 

Ancuceanu R and Neagu M: Immune based therapy for melanoma. Indian J Med Res. 143:135–144. 2016. View Article : Google Scholar : PubMed/NCBI

133 

Ménard C, Ghiringhelli F, Roux S, Chaput N, Mateus C, Grohmann U, Caillat-Zucman S, Zitvogel L and Robert C: Ctla-4 blockade confers lymphocyte resistance to regulatory T-cells in advanced melanoma: Surrogate marker of efficacy of tremelimumab? Clin Cancer Res. 14:5242–5249. 2008. View Article : Google Scholar : PubMed/NCBI

134 

Sarff M, Edwards D, Dhungel B, Wegmann KW, Corless C, Weinberg AD and Vetto JT: OX40 (CD134) expression in sentinel lymph nodes correlates with prognostic features of primary melanomas. Am J Surg. 195:621–625. 2008. View Article : Google Scholar : PubMed/NCBI

135 

Garg K, Maurer M, Griss J, Brüggen MC, Wolf IH, Wagner C, Willi N, Mertz KD and Wagner SN: Tumor-associated B cells in cutaneous primary melanoma and improved clinical outcome. Hum Pathol. 54:157–164. 2016. View Article : Google Scholar : PubMed/NCBI

136 

Chiou SH, Sheu BC, Chang WC, Huang SC and Hong-Nerng H: Current concepts of tumor-infiltrating lymphocytes in human malignancies. J Reprod Immunol. 67:35–50. 2005. View Article : Google Scholar : PubMed/NCBI

137 

Staquicini FI, Tandle A, Libutti SK, Sun J, Zigler M, Bar-Eli M, Aliperti F, Pérez EC, Gershenwald JE, Mariano M, et al: A subset of host B-lymphocytes control melanoma metastasis through a MCAM/MUC18-dependent interaction: Evidence from mice and humans. Cancer Res. 68:8419–8428. 2008. View Article : Google Scholar : PubMed/NCBI

138 

Sadozai H, Gruber T, Hunger RE and Schenk M: Recent successes and future directions in immunotherapy of cutaneous melanoma. Front Immunol. 8:16172017. View Article : Google Scholar : PubMed/NCBI

139 

Tarazona R, Duran E and Solana R: Natural killer cell recognition of melanoma: New clues for a more effective immunotherapy. Front Immunol. 6:6492016. View Article : Google Scholar : PubMed/NCBI

140 

Ballas ZK, Buchta CM, Rosean TR, Heusel JW and Shey MR: Role of NK cell subsets in organ-specific murine melanoma metastasis. PLoS One. 8:e655992013. View Article : Google Scholar : PubMed/NCBI

141 

Ali TH, Pisanti S, Ciaglia E, Mortarini R, Anichini A, Garofalo C, Tallerico R, Santinami M, Gulletta E, Ietto C, et al: Enrichment of CD56dimKIR+CD57+ highly cytotoxic NK cells in tumour-infiltrated lymph nodes of melanoma patients. Nat Commun. 5:56392014. View Article : Google Scholar : PubMed/NCBI

142 

Nielsen N, Ødum N, Ursø B, Lanier LL and Spee P: Cytotoxicity of CD56bright NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA-1 and TRAIL and dampened via CD94/NKG2A. PLoS One. 7:e319592012. View Article : Google Scholar : PubMed/NCBI

143 

Morvan MG and Lanier LL: NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer. 16:7–19. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Mendez R, Aptsiauri N, Del Campo A, Maleno I, Cabrera T, Ruiz-Cabello F, Garrido F and Garcia-Lora A: HLA and melanoma: Multiple alterations in HLA class I and II expression in human melanoma cell lines from ESTDAB cell bank. Cancer Immunol Immunother. 58:1507–1515. 2009. View Article : Google Scholar : PubMed/NCBI

145 

Baumeister SH, Freeman GJ, Dranoff G and Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI

146 

Terme M, Ullrich E, Aymeric L, Meinhardt K, Desbois M, Delahaye N, Viaud S, Ryffel B, Yagita H, Kaplanski G, et al: IL-18 induces PD-1-dependent immunosuppression in cancer. Cancer Res. 71:5393–5399. 2011. View Article : Google Scholar : PubMed/NCBI

147 

Singh S, Singh AP, Sharma B, Owen LB and Singh RK: CXCL8 and its cognate receptors in melanoma progression and metastasis. Future Oncol. 6:111–116. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Gras Navarro A, Bjorklund AT and Chekenya M: Therapeutic potential and challenges of natural killer cells in treatment of solid tumors. Front Immunol. 6:2022015. View Article : Google Scholar : PubMed/NCBI

149 

Rosenberg J and Huang J: CD8+ T cells and NK cells: Parallel and complementary soldiers of immunotherapy. Curr Opin Chem Eng. 19:9–20. 2018. View Article : Google Scholar : PubMed/NCBI

150 

De Lecea MV, Palomares T, Al Kassam D, Cavia M, Geh JLC, De Llano P, Muñiz P, Armesto D, Martinez-Indart L and Alonso-Varona A: Indoleamine 2,3 dioxygenase as a prognostic and follow-up marker in melanoma. A comparative study with LDH and S100B. J Eur Acad Dermatol Venereol. 31:636–642. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Tarhini AA, Lin Y, Yeku O, LaFramboise WA, Ashraf M, Sander C, Lee S and Kirkwood JM: A four-marker signature of TNF-RII, TGF-α, TIMP-1 and CRP is prognostic of worse survival in high-risk surgically resected melanoma. J Transl Med. 12:192014. View Article : Google Scholar : PubMed/NCBI

152 

Zurac S, Neagu M, Constantin C, Cioplea M, Nedelcu R, Bastian A, Popp C, Nichita L, Andrei R, Tebeica T, et al: Variations in the expression of TIMP1, TIMP2 and TIMP3 in cutaneous melanoma with regression and their possible function as prognostic predictors. Oncol Lett. 11:3354–3360. 2016. View Article : Google Scholar : PubMed/NCBI

153 

Hofmann MA, Kiecker F, Küchler I, Kors C and Trefzer U: Serum TNF-α, B2M and sIL-2R levels are biological correlates of outcome in adjuvant IFN-α2b treatment of patients with melanoma. J Cancer Res Clin Oncol. 137:455–462. 2011. View Article : Google Scholar : PubMed/NCBI

154 

Porter GA, Abdalla J, Lu M, Smith S, Montgomery D, Grimm E, Ross MI, Mansfield PF, Gershenwald JE and Lee JE: Significance of plasma cytokine levels in melanoma patients with histologically negative sentinel lymph nodes. Ann Surg Oncol. 8:116–122. 2001. View Article : Google Scholar : PubMed/NCBI

155 

Hu X, Li B, Li X, Zhao X, Wan L, Lin G, Yu M, Wang J, Jiang X, Feng W, et al: Transmembrane TNF-α promotes suppressive activities of myeloid-derived suppressor cells via TNFR2. J Immunol. 192:1320–1331. 2014. View Article : Google Scholar : PubMed/NCBI

156 

Polz J, Remke A, Weber S, Schmidt D, Weber-Steffens D, Pietryga-Krieger A, Müller N, Ritter U, Mostböck S and Männel DN: Myeloid suppressor cells require membrane TNFR2 expression for suppressive activity. Immun Inflamm Dis. 2:121–130. 2014. View Article : Google Scholar : PubMed/NCBI

157 

Chen X and Oppenheim JJ: TNF-α: An activator of CD4+FoxP3+TNFR2+ regulatory T cells. Curr Dir Autoimmun. 11:119–134. 2010. View Article : Google Scholar : PubMed/NCBI

158 

Balch CM, Buzaid AC, Soong SJ, Atkins MB, Cascinelli N, Coit DG, Fleming ID, Gershenwald JE, Houghton A Jr, Kirkwood JM, et al: Final version of the American Joint Committee on cancer staging system for cutaneous melanoma. J Clin Oncol. 19:3635–3648. 2001. View Article : Google Scholar : PubMed/NCBI

159 

Gershenwald JE, Scolyer RA, Hess KR, Sondak VK, Long GV, Ross MI, Lazar AJ, Faries MB, Kirkwood JM, McArthur GA, et al: Melanoma staging: Evidence-based changes in the American Joint Committee on cancer eighth edition cancer staging manual. CA Cancer J Clin. 67:472–492. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Weide B, Richter S, Büttner P, Leiter U, Forschner A, Bauer J, Held L, Eigentler TK, Meier F and Garbe C: Serum S100B, lactate dehydrogenase and brain metastasis are prognostic factors in patients with distant melanoma metastasis and systemic therapy. PLoS One. 8:e816242013. View Article : Google Scholar : PubMed/NCBI

161 

Karonidis A, Mantzourani M, Gogas H and Tsoutsos D: Serum S100B levels correlate with stage, N status, mitotic rate and disease outcome in melanoma patients independent to LDH. J BUON. 22:1296–1302. 2017.PubMed/NCBI

162 

Von Bauer R, Oikonomou D, Sulaj A, Mohammed S, Hotz-Wagenblatt A, Gröne HJ, Arnold B, Falk C, Luethje D, Erhardt A, et al: CD166/ALCAM mediates proinflammatory effects of S100B in delayed type hypersensitivity. J Immunol. 191:369–377. 2013. View Article : Google Scholar : PubMed/NCBI

163 

Dumitraşcu G, Constantin C, Manda G, Hristescu S, Mărgaritescu I, Chiriţă D and Neagu M: Serum markers in skin melanoma-preliminary study. Roum Arch Microbiol Immunol. 68:125–135. 2009.PubMed/NCBI

164 

Schmidt J, Riechers A, Stoll R, Amann T, Fink F, Spruss T, Gronwald W, König B, Hellerbrand C and Bosserhoff AK: Targeting melanoma metastasis and immunosuppression with a new mode of melanoma inhibitory activity (MIA) protein inhibition. PLoS One. 7:e379412012. View Article : Google Scholar : PubMed/NCBI

165 

Findeisen P, Zapatka M, Peccerella T, Matzk H, Neumaier M, Schadendorf D and Ugurel S: Serum amyloid A as a prognostic marker in melanoma identified by proteomic profiling. J Clin Oncol. 27:2199–2208. 2009. View Article : Google Scholar : PubMed/NCBI

166 

Neagu M and Constantin C: Immune-therapy in cutaneous melanoma-efficacy immune markers. Advancements in Tumor Immunotherapy and Cancer Vaccines. Arnouk H: InTech; Rijeka, Croatia: pp. 83–106. 2012

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M and Zurac S: Inflammation: A key process in skin tumorigenesis (Review). Oncol Lett 17: 4068-4084, 2019.
APA
Neagu, M., Constantin, C., Caruntu, C., Dumitru, C., Surcel, M., & Zurac, S. (2019). Inflammation: A key process in skin tumorigenesis (Review). Oncology Letters, 17, 4068-4084. https://doi.org/10.3892/ol.2018.9735
MLA
Neagu, M., Constantin, C., Caruntu, C., Dumitru, C., Surcel, M., Zurac, S."Inflammation: A key process in skin tumorigenesis (Review)". Oncology Letters 17.5 (2019): 4068-4084.
Chicago
Neagu, M., Constantin, C., Caruntu, C., Dumitru, C., Surcel, M., Zurac, S."Inflammation: A key process in skin tumorigenesis (Review)". Oncology Letters 17, no. 5 (2019): 4068-4084. https://doi.org/10.3892/ol.2018.9735
Copy and paste a formatted citation
x
Spandidos Publications style
Neagu M, Constantin C, Caruntu C, Dumitru C, Surcel M and Zurac S: Inflammation: A key process in skin tumorigenesis (Review). Oncol Lett 17: 4068-4084, 2019.
APA
Neagu, M., Constantin, C., Caruntu, C., Dumitru, C., Surcel, M., & Zurac, S. (2019). Inflammation: A key process in skin tumorigenesis (Review). Oncology Letters, 17, 4068-4084. https://doi.org/10.3892/ol.2018.9735
MLA
Neagu, M., Constantin, C., Caruntu, C., Dumitru, C., Surcel, M., Zurac, S."Inflammation: A key process in skin tumorigenesis (Review)". Oncology Letters 17.5 (2019): 4068-4084.
Chicago
Neagu, M., Constantin, C., Caruntu, C., Dumitru, C., Surcel, M., Zurac, S."Inflammation: A key process in skin tumorigenesis (Review)". Oncology Letters 17, no. 5 (2019): 4068-4084. https://doi.org/10.3892/ol.2018.9735
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team