|
1
|
Kim SI, Sohn J, Koo JS, Park SH, Park HS
and Park BW: Molecular subtypes and tumor response to neoadjuvant
chemotherapy in patients with locally advanced breast cancer.
Oncology. 79:324–330. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Novelli G, Ciccacci C, Borgiani P,
Papaluca Amati M and Abadie E: Genetic tests and genomic
biomarkers: Regulation, qualification and validation. Clin Cases
Miner Bone Metab. 5:149–154. 2008.PubMed/NCBI
|
|
3
|
Jin H, Lee HC, Park SS, Jeong YS and Kim
SY: Serum cancer biomarker discovery through analysis of gene
expression data sets across multiple tumor and normal tissues. J
Biomed Inform. 44:1076–1085. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Donato R, Cannon BR, Sorci G, Riuzzi F,
Hsu K, Weber DJ and Geczy CL: Functions of S100 proteins. Curr Mol
Med. 13:24–57. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chazin WJ: Relating form and function of
EF-hand calcium binding proteins. Acc Chem Res. 44:171–179. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Santamaria-Kisiel L and Shaw GS:
Identification of regions responsible for the open conformation of
S100A10 using chimaeric S100A11-S100A10 proteins. Biochem J.
434:37–48. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Svenningsson P and Greengard P: p11
(S100A10)-an inducible adaptor protein that modulates neuronal
functions. Curr Opin Pharmacol. 7:27–32. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bissonnette L, Drissennek L, Antoine Y,
Tiers L, Hirtz C, Lehmann S, Perrochia H, Bissonnette F, Kadoch IJ,
Haouzi D and Hamamah S: Human S100A10 plays a crucial role in the
acquisition of the endometrial receptivity phenotype. Cell Adhes
Migr. 10:282–298. 2016. View Article : Google Scholar
|
|
9
|
Domínguez F, Garrido-Gómez T, López JA,
Camafeita E, Quiñonero A, Pellicer A and Simón C: Proteomic
analysis of the human receptive versus non-receptive endometrium
using differential in-gel electrophoresis and MALDI-MS unveils
stathmin 1 and annexin A2 as differentially regulated. Hum Reprod.
24:2607–2617. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
He KL, Deora AB, Xiong H, Ling Q, Weksler
BB, Niesvizky R and Hajjar KA: Endothelial cell annexin A2
regulates polyubiquitination and degradation of its binding partner
S100A10/p11. J Biol Chem. 283:19192–19200. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
O'Connell PA, Madureira PA, Berman JN,
Liwski RS and Waisman DM: Regulation of S100A10 by the PML-RAR-α
oncoprotein. Blood. 117:4095–4105. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Phipps KD, Surette AP, O'Connell PA and
Waisman DM: Plasminogen receptor S100A10 is essential for the
migration of tumor-promoting macrophages into tumor sites. Cancer
Res. 71:6676–6683. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bharadwaj A, Bydoun M, Holloway R and
Waisman D: Annexin A2 heterotetramer: Structure and function. Int J
Mol Sci. 14:6259–6305. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Carpenter SL and Mathew P:
Alpha2-antiplasmin and its deficiency: Fibrinolysis out of balance.
Haemophilia. 14:1250–1254. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Sitek B, Sipos B, Alkatout I, Poschmann G,
Stephan C, Schulenborg T, Marcus K, Lüttges J, Dittert DD, Baretton
G, et al: Analysis of the pancreatic tumor progression by a
quantitative proteomic approach and immunhistochemical validation.
J Proteome Res. 8:1647–1656. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Swisher JF, Burton N, Bacot SM, Vogel SN
and Feldman GM: Annexin A2 tetramer activates human and murine
macrophages through TLR4. Blood. 115:549–558. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Miles LA and Parmer RJ: S100A10: A complex
inflammatory role. Blood. 116:1022–1024. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Huang B, Deora AB, He KL, Chen K, Sui G,
Jacovina AT, Almeida D, Hong P, Burgman P and Hajjar KA:
Hypoxia-inducible factor-1 drives annexin A2 system-mediated
perivascular fibrin clearance in oxygen-induced retinopathy in
mice. Blood. 118:2918–2929. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Duronio RJ and Xiong Y: Signaling pathways
that control cell proliferation. Cold Spring Harb Perspect Biol.
5:a0089042013. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Madureira PA, O'Connell PA, Surette AP,
Miller VA and Waisman DM: The biochemistry and regulation of
S100A10: A multifunctional plasminogen receptor involved in
oncogenesis. J Biomed Biotechnol. 2012:3536872012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Suzuki S and Tanigawara Y: Forced
expression of S100A10 reduces sensitivity to oxaliplatin in
colorectal cancer cells. Proteome Sci. 12:262014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shan X, Miao Y, Fan R, Qian H, Chen P, Liu
H, Yan X, Li J and Zhou F: MiR-590-5P inhibits growth of HepG2
cells via decrease of S100A10 expression and inhibition of the Wnt
pathway. Int J Mol Sci. 14:8556–8569. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Egeland M, Warner-Schmidt J, Greengard P
and Svenningsson P: Neurogenic effects of fluoxetine are attenuated
in p11 (S100A10) knockout mice. Biol Psychiatry. 67:1048–1056.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Liu W, Ren H, Ren J, Yin T, Hu B, Xie S,
Dai Y, Wu W, Xiao Z, Yang X and Xie D: The role of
EGFR/PI3K/Akt/cyclinD1 signaling pathway in acquired middle ear
cholesteatoma. Mediators Inflamm. 2013:6512072013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Johnson H, Del Rosario AM, Bryson BD,
Schroeder MA, Sarkaria JN and White FM: Molecular characterization
of EGFR and EGFRvIII signaling networks in human glioblastoma tumor
xenografts. Mol Cell Proteomics. 11:1724–1740. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li J, Riau AK, Setiawan M, Mehta JS, Ti
SE, Tong L, Tan DT and Beuerman RW: S100A expression in normal
corneal-limbal epithelial cells and ocular surface squamous cell
carcinoma tissue. Mol Vis. 17:2263–2271. 2011.PubMed/NCBI
|
|
28
|
Shang J, Zhang Z, Song W, Zhou B, Zhang Y,
Li G and Qiu S: S100A10 as a novel biomarker in colorectal cancer.
Tumour Biol. 34:3785–3790. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang CY and Lin CF: Annexin A2: Its
molecular regulation and cellular expression in cancer development.
Dis Markers. 2014:3089762014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Grivennikov SI, Greten FR and Karin M:
Immunity, inflammation, and cancer. Cell. 140:883–899. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Neurath MF and Finotto S: IL-6 signaling
in autoimmunity, chronic inflammation and inflammation-associated
cancer. Cytokine Growth Factor Rev. 22:83–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dufour A and Overall CM: Missing the
target: Matrix metalloproteinase antitargets in inflammation and
cancer. Trends Pharmacol Sci. 34:233–242. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Godier A and Hunt BJ: Plasminogen
receptors and their role in the pathogenesis of inflammatory,
autoimmune and malignant disease. J Thromb Haemost. 11:26–34. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hajjar KA: The Biology of Annexin A2: From
vascular fibrinolysis to innate immunity. Trans Am Clin Climatol
Assoc. 126:144–155. 2015.PubMed/NCBI
|
|
35
|
Hoesel B and Schmid JA: The complexity of
NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang D, Yang Y, Sun J, Dong X, Wang J,
Liu H, Lu C, Chen X, Shao J and Yan J: Annexin A2-S100A10
heterotetramer is upregulated by PML/RARα fusion protein and
promotes plasminogen-dependent fibrinolysis and matrix invasion in
acute promyelocytic leukemia. Front Med. 11:410–422. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Qian Y, Deng J, Xie H, Geng L, Zhou L,
Wang Y, Yin S, Feng X and Zheng S: Regulation of TLR4-induced IL-6
response in bladder cancer cells by opposing actions of MAPK and
PI3K signaling. J Cancer Res Clin Oncol. 135:379–386. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li C, Hou Y, Zhang J and Zhang L: The
expressions and roles of S100A6 and S100A10 in gastric cancer.
Biomed Res. 28:2131–2138. 2017.
|
|
39
|
O'Connell PA, Surette AP, Liwski RS,
Svenningsson P and Waisman DM: S100A10 regulates
plasminogen-dependent macrophage invasion. Blood. 116:1136–1146.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Kaelin WG Jr and Ratcliffe PJ: Oxygen
sensing by metazoans: The central role of the HIF hydroxylase
pathway. Mol Cell. 30:393–402. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Liu Y and Cao X: Immunosuppressive cells
in tumor immune escape and metastasis. J Mol Med (Berl).
94:509–522. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bhatia A and Kumar Y: Cellular and
molecular mechanisms in cancer immune escape: A comprehensive
review. Expert Rev Clin Immunol. 10:41–62. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Han J, Alvarez-Breckenridge CA, Wang QE
and Yu J: TGF-β signaling and its targeting for glioma treatment.
AM J Cancer Res. 5:945–955. 2015.PubMed/NCBI
|
|
44
|
Crane CA, Han SJ, Barry JJ, Ahn BJ, Lanier
LL and Parsa AT: TGF-beta downregulates the activating receptor
NKG2D on NK cells and CD8+ T cells in glioma patients. Neuro Oncol.
12:7–13. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lindau D, Gielen P, Kroesen M, Wesseling P
and Adema GJ: The immunosuppressive tumour network: Myeloid-derived
suppressor cells, regulatory T cells and natural killer T cells.
Immunology. 138:105–115. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Terabe M and Berzofsky JA: The role of NKT
cells in tumor immunity. Adv Cancer Res. 101:277–348. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Krock BL, Skuli N and Simon MC:
Hypoxia-induced angiogenesis: Good and evil. Genes Cancer.
2:1117–1133. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Siemann DW: The unique characteristics of
tumor vasculature and preclinical evidence for its selective
disruption by Tumor-vascular disrupting agents. Cancer Treat Rev.
37:63–74. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Luo M and Hajjar KA: Annexin A2 system in
human biology: Cell surface and beyond. Semin Thromb Hemost.
39:338–346. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bydoun M and Waisman DM: On the
contribution of S100A10 and annexin A2 to plasminogen activation
and oncogenesis: An enduring ambiguity. Future Oncol. 10:2469–2479.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Deryugina EI and Quigley JP: Cell surface
remodeling by plasmin: A new function for an old enzyme. J Biomed
Biotechnol. 2012:5642592012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
van Hinsbergh VW and Koolwijk P:
Endothelial sprouting and angiogenesis: Matrix metalloproteinases
in the lead. Cardiovasc Res. 78:203–212. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Montuori N and Ragno P: Role of uPA/uPAR
in the modulation of angiogenesis. Chem Immunol Allergy.
99:105–122. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kumari S and Malla R: New Insight on the
role of plasminogen receptor in cancer progression. Cancer Growth
Metastasis. 8:35–42. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Surette AP, Madureira PA, Phipps KD,
Miller VA, Svenningsson P and Waisman DM: Regulation of
fibrinolysis by S100A10 in vivo. Blood. 118:3172–3181. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu W and Hajjar KA: The annexin A2 system
and angiogenesis. Biol Chem. 397:1005–1016. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Valapala M, Thamake SI and Vishwanatha JK:
A competitive hexapeptide inhibitor of annexin A2 prevents
hypoxia-induced angiogenic events. J Cell Sci. 124:1453–1464. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Vempati P, Mac Gabhann F and Popel AS:
Quantifying the proteolytic release of extracellular
matrix-sequestered VEGF with a computational model. PLoS One.
5:e118602010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Myrvang HK, Guo X, Li C and Dekker LV:
Protein interactions between surface annexin A2 and S100A10 mediate
adhesion of breast cancer cells to microvascular endothelial cells.
FEBS Lett. 587:3210–3215. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
López-Soto A, Gonzalez S, Smyth MJ and
Galluzzi L: Control of Metastasis by NK Cells. Cancer Cell.
32:135–154. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Surette A and Waisman D: S100A10: A Key
Regulator of Fibrinolysis. Fibrinolysis Thrombolysis. 2014.
View Article : Google Scholar
|
|
62
|
Kessenbrock K, Plaks V and Werb Z: Matrix
metalloproteinases: Regulators of the tumor microenvironment. Cell.
141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hitchcock JK, Katz AA and Schäfer G:
Dynamic reciprocity: The role of annexin A2 in tissue integrity. J
Cell Commun Signal. 8:125–133. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Madureira PA, Bharadwaj AG, Bydoun M,
Garant K, O'Connell P, Lee P and Waisman DM: Cell surface protease
activation during RAS transformation: Critical role of the
plasminogen receptor, S100A10. Oncotarget. 7:47720–47737. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Katono K, Sato Y, Jiang SX, Kobayashi M,
Saito K, Nagashio R, Ryuge S, Satoh Y, Saegusa M and Masuda N:
Clinicopathological significance of S100A10 expression in lung
adenocarcinomas. Asian Pac J Cancer Prev. 17:289–294. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ito Y, Arai K, Nozawa R, Yoshida H,
Higashiyama T, Takamura Y, Miya A, Kobayashi K, Kuma K and Miyauchi
A: S100A10 expression in thyroid neoplasms originating from the
follicular epithelium: Contribution to the aggressive
characteristic of anaplastic carcinoma. Anticancer Res.
27:2679–2683. 2007.PubMed/NCBI
|
|
67
|
Zhang J, Guo B, Zhang Y, Cao J and Chen T:
Silencing of the annexin II gene down-regulates the levels of
S100A10, c-Myc and plasmin and inhibits breast cancer cell
proliferation and invasion. Saudi Med J. 31:374–381.
2010.PubMed/NCBI
|
|
68
|
Lokman NA, Pyragius CE, Ruszkiewicz A,
Oehler MK and Ricciardelli C: Annexin A2 and S100A10 are
independent predictors of serous ovarian cancer outcome. Transl
Res. 171:83–95.e2. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
O'Connell PA and Waisman DM: Regulation of
plasmin generation by the annexin A2 heterotetramer: A shift in
perspective. Future Oncol. 8:763–765. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Yang X, Popescu NC and Zimonjic DB: DLC1
interaction with S100A10 mediates inhibition of in vitro cell
invasion and tumorigenicity of lung cancer cells through a
RhoGAP-independent mechanism. Cancer Res. 71:2916–2925. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ohno Y, Izumi M, Kawamura T, Nishimura T,
Mukai K and Tachibana M: Annexin II represents metastatic potential
in clear-cell renal cell carcinoma. Br J Cancer. 101:287–294. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Domoto T, Miyama Y, Suzuki H, Teratani T,
Arai K, Sugiyama T, Takayama T, Mugiya S, Ozono S and Nozawa R:
Evaluation of S100A10, annexin II and B-FABP expression as markers
for renal cell carcinoma. Cancer Sci. 98:77–82. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yamamoto N, Nakamura Y, Morinaga S, Numata
K, Sawazaki S, Watanabe T, Numata M, Tamagawa H, Godai T, Shiozawa
M, et al: The clinical significance of S100A10 in pancreatic
cancer. J Clin Oncol. 31:1942013. View Article : Google Scholar
|
|
74
|
Liu J, Li X, Dong GL, Zhang HW, Chen DL,
Du JJ, Zheng JY, Li JP and Wang WZ: In silico analysis and
verification of S100 gene expression in gastric cancer. BMC Cancer.
8:2612008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Zhang Q, Zhu M, Cheng W, Xing R, Li W,
Zhao M, Xu L, Li E, Luo G and Lu Y: Downregulation of 425G>a
variant of calcium-binding protein S100A14 associated with poor
differentiation and prognosis in gastric cancer. J Cancer Res Clin
Oncol. 141:691–703. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Foley K, Muth S, Jaffee E and Zheng L:
Hedgehog signaling stimulates Tenascin C to promote invasion of
pancreatic ductal adenocarcinoma cells through Annexin A2. Cell
Adhes Migr. 11:514–523. 2017. View Article : Google Scholar
|
|
77
|
DeBerardinis RJ, Lum JJ, Hatzivassiliou G
and Thompson CB: The biology of cancer: Metabolic reprogramming
fuels cell growth and proliferation. Cell Metab. 7:11–20. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Jones RG and Thompson CB: Tumor
suppressors and cell metabolism: A recipe for cancer growth. Genes
Dev. 23:537–548. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Labak CM, Wang PY, Arora R, Guda MR,
Asuthkar S, Tsung AJ and Velpula KK: Glucose transport: Meeting the
metabolic demands of cancer and applications in glioblastoma
treatment. Am J Cancer Res. 6:1599–1608. 2016.PubMed/NCBI
|
|
80
|
Barron CC, Bilan PJ, Tsakiridis T and
Tsiani E: Facilitative glucose transporters: Implications for
cancer detection, prognosis and treatment. Metabolism. 65:124–139.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Masoud GN and Li W: HIF-1α pathway: Role,
regulation and intervention for cancer therapy. Acta Pharm Sin B.
5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sertel S, Eichhorn T, Simon CH, Plinkert
PK, Johnson SW and Efferth T: Pharmacogenomic identification of
c-Myc/Max-regulated genes associated with cytotoxicity of
artesunate towards human colon, ovarian and lung cancer cell lines.
Molecules. 15:2886–2910. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Miller DM, Thomas SD, Islam A, Muench D
and Sedoris K: c-Myc and cancer metabolism. Clin Cancer Res.
18:5546–5553. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Leśniak W: Epigenetic regulation of S100
protein expression. Clin Epigenetics. 2:77–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Woodham AW, Da Silva DM, Skeate JG, Raff
AB, Ambroso MR, Brand HE, Isas JM, Langen R and Kast WM: The
S100A10 subunit of the annexin A2 heterotetramer facilitates
L2-mediated human papillomavirus infection. PLoS One. 7:e435192012.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Dziduszko A and Ozbun MA: Annexin A2 and
S100A10 regulate human papillomavirus type 16 entry and
intracellular trafficking in human keratinocytes. J Virol.
87:7502–7515. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Woodham AW, Taylor JR, Jimenez AI, Skeate
JG, Schmidt T, Brand HE, Da Silva DM and Kast WM: Small molecule
inhibitors of the annexin A2 heterotetramer prevent human
papillomavirus type 16 infection. J Antimicrob Chemother.
70:1686–1690. 2015.PubMed/NCBI
|
|
88
|
Litwin TR, Clarke MA, Dean M and
Wentzensen N: Somatic host cell alterations in HPV carcinogenesis.
Viruses. 9:2062017. View Article : Google Scholar
|
|
89
|
Stiasny A, Freier CP, Kuhn C, Schulze S,
Mayr D, Alexiou C, Janko C, Wiest I, Dannecker C, Jeschke U and
Kost BP: The involvement of E6, p53, p16, MDM2 and Gal-3 in the
clinical outcome of patients with cervical cancer. Oncol Lett.
14:4467–4476. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Genova C, Rijavec E and Grossi F: Tumor
microenvironment as a potential source of clinical biomarkers in
non-small cell lung cancer: Can we use enemy territory at our
advantage? J Thorac Dis. 9:4300–4304. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tan Y, Ma SY, Wang FQ, Meng HP, Mei C, Liu
A and Wu HR: Proteomic-based analysis for identification of
potential serum biomarkers in gallbladder cancer. Oncol Rep.
26:853–859. 2011.PubMed/NCBI
|