|
1
|
Oke S and Martin A: Insights into the role
of the intestinal microbiota in colon cancer. Therap Adv
Gastroenterol. 10:417–428. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Cheng F, Su L and Qian C: Circulating
tumor DNA: A promising biomarker in the liquid biopsy of cancer.
Oncotarget. 7:48832–48841. 2016.PubMed/NCBI
|
|
3
|
Crowley E, Di Nicolantonio F, Loupakis F
and Bardelli A: Liquid biopsy: Monitoring cancer-genetics in the
blood. Nat Rev Clin Oncol. 10:472–484. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Myint NNM, Verma AM, Fernandez-Garcia D,
Sarmah P, Tarpey PS, Al-Aqbi SS, Cai H, Trigg R, West K, Howells
LM, et al: Circulating tumor DNA in patients with colorectal
adenomas: Assessment of detectability and genetic heterogeneity.
Cell Death Dis. 9:8942018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Berger AW, Schwerdel D, Welz H, Marienfeld
R, Schmidt SA, Kleger A, Ettrich TJ and Seufferlein T: Treatment
monitoring in metastatic colorectal cancer patients by
quantification and KRAS genotyping of circulating cell-free DNA.
PLoS One. 12:e01743082017. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhang BO, Xu CW, Shao Y, Wang HT, Wu YF,
Song YY, Li XB, Zhang Z, Wang WJ, Li LQ and Cai CL: Comparison of
droplet digital PCR and conventional quantitative PCR for measuring
EGFR gene mutation. ExpTher Med. 9:1383–1388. 2015. View Article : Google Scholar
|
|
7
|
Leon SA, Shapiro B, Sklaroff DM and Yaros
MJ: Free DNA in the serum of cancer patients and the effect of
therapy. Cancer Res. 37:646–650. 1977.PubMed/NCBI
|
|
8
|
Garcia-Foncillas J, Alba E, Aranda E,
Díaz-Rubio E, López-López R, Tabernero J and Vivancos A:
Incorporating BEAMing technology as a liquid biopsy into clinical
practice for the management of colorectal cancer patients: An
expert taskforce review. Ann Oncol. 28:2943–2949. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Forshew T, Murtaza M, Parkinson C, Gale D,
Tsui DW, Kaper F, Dawson SJ, Piskorz AM, Jimenez-Linan M, Bentley
D, et al: Noninvasive identification and monitoring of cancer
mutations by targeted deep sequencing of plasma DNA. Sci Transl
Med. 4:136ra682012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Newman AM, Bratman SV, To J, Wynne JF,
Eclov NC, Modlin LA, Liu CL, Neal JW, Wakelee HA, Merritt RE, et
al: An ultrasensitive method for quantitating circulating tumor DNA
with broad patient coverage. Nat Med. 20:548–554. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Seidman AD, Fornier MN, Esteva FJ, Tan L,
Kaptain S, Bach A, Panageas KS, Arroyo C, Valero V, Currie V, et
al: Weekly trastuzumab and paclitaxel therapy for metastatic breast
cancer with analysis of efficacy by HER2 immunophenotype and gene
amplification. J Clin Oncol. 19:2587–2595. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
McGuire AL, Caulfield T and Cho MK:
Research ethics and the challenge of whole-genome sequencing. Nat
Rev Genet. 9:152–156. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kim H, Zheng S, Amini SS, Virk SM,
Mikkelsen T, Brat DJ, Grimsby J, Sougnez C, Muller F, Hu J, et al:
Whole-genome and multisector exome sequencing of primary and
post-treatment glioblastoma reveals patterns of tumor evolution.
Genome Res. 25:316–327. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lecomte T, Berger A, Zinzindohoué F,
Micard S, Landi B, Blons H, Beaune P, Cugnenc PH and Laurent-Puig
P: Detection of free-circulating tumor-associated DNA in plasma of
colorectal cancer patients and its association with prognosis. Int
J Cancer. 100:542–548. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wardenaar R, Liu H, Colot V, Colomé-Tatché
M and Johannes F: Evaluation of MeDIP-chip in the context of
whole-genome bisulfite sequencing (WGBS-seq) in Arabidopsis.
Methods Mol Biol. 1067:203–224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hon GC, Hawkins RD, Caballero OL, Lo C,
Lister R, Pelizzola M, Valsesia A, Ye Z, Kuan S, Edsall LE, et al:
Global DNA hypomethylation coupled to repressive chromatin domain
formation and gene silencing in breast cancer. Genome Res.
22:246–258. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
van der Vaart M and Pretorius PJ: The
origin of circulating free DNA. Clin Chem. 53:22152007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Schmiegel W, Scott RJ, Dooley S, Lewis W,
Meldrum CJ, Pockney P, Draganic B, Smith S, Hewitt C, Philimore H,
et al: Blood-based detection of RAS mutations to guide anti-EGFR
therapy in colorectal cancer patients: Concordance of results from
circulating tumor DNA and tissue-based RAS testing. Mol Oncol.
11:208–219. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Underhill HR, Kitzman JO, Hellwig S,
Welker NC, Daza R, Baker DN, Gligorich KM, Rostomily RC, Bronner MP
and Shendure J: Fragment length of circulating tumor DNA. PLoS
Genet. 12:e10061622016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Haber DA and Velculescu VE: Blood-based
analyses of cancer: Circulating tumor cells and circulating tumor
DNA. Cancer Discov. 4:650–661. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gao Y, Zhang K, Xi H, Cai A, Wu X, Cui J,
Li J, Qiao Z, Wei B and Chen L: Diagnostic and prognostic value of
circulating tumor DNA in gastric cancer: A meta-analysis.
Oncotarget. 8:6330–6340. 2017.PubMed/NCBI
|
|
22
|
Sameen S, Barbuti R, Milazzo P, Cerone A,
Del Re M and Danesi R: Mathematical modeling of drug resistance due
to KRAS mutation in colorectal cancer. J Theor Biol. 389:263–273.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhai Z, Yu X, Yang B, Zhang Y, Zhang L, Li
X and Sun H: Colorectal cancer heterogeneity and targeted therapy:
Clinical implications, challenges and solutions for treatment
resistance. Semin Cell Dev Biol. 64:107–115. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tie J, Kinde I, Wang Y, Wong HL, Roebert
J, Christie M, Tacey M, Wong R, Singh M, Karapetis CS, et al:
Circulating tumor DNA as an early marker of therapeutic response in
patients with metastatic colorectal cancer. Ann Oncol.
26:1715–1722. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Takayama Y, Suzuki K, Muto Y, Ichida K,
Fukui T, Kakizawa N, Ishikawa H, Watanabe F, Hasegawa F, Saito M,
et al: Monitoring circulating tumor DNA revealed dynamic changes in
KRAS status in patients with metastatic colorectal cancer.
Oncotarget. 9:24398–24413. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Habr-Gama A, Gama-Rodrigues J, São Julião
GP, Proscurshim I, Sabbagh C, Lynn PB and Perez RO: Local
recurrence after complete clinical response and watch and wait in
rectal cancer after neoadjuvant chemoradiation: Impact of salvage
therapy on local disease control. Int J Radiat Oncol Biol Phys.
88:822–828. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Zhou J, Chang L, Guan Y, Yang L, Xia X,
Cui L, Yi X and Lin G: Application of circulating tumor DNA as a
non-invasive tool for monitoring the progression of colorectal
cancer. PLoS One. 11:e01597082016. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zippi M, De Toma G, Minervini G, Cassieri
C, Pica R, Colarusso D, Stock S and Crispino P: Desmoplasia
influenced recurrence of disease and mortality in stage III
colorectal cancer within five years after surgery and adjuvant
therapy. Saudi J Gastroenterol. 23:39–44. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Reinert T, Schøler LV, Thomsen R, Tobiasen
H, Vang S, Nordentoft I, Lamy P, Kannerup AS, Mortensen FV,
Stribolt K, et al: Analysis of circulating tumour DNA to monitor
disease burden following colorectal cancer surgery. Gut.
65:625–634. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Scholefield JH and Steele RJ: British
Society For Gastroenterology; Association of Coloproctology for
Great Britain and Ireland: Guidelines for follow up after resection
of colorectal cancer. Gut. 51 Suppl 5:V3–V5. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Carpinetti P, Donnard E, Bettoni F,
Asprino P, Koyama F, Rozanski A, Sabbaga J, Habr-Gama A, Parmigiani
RB, Galante PA, et al: The use of personalized biomarkers and
liquid biopsies to monitor treatment response and disease
recurrence in locally advanced rectal cancer after neoadjuvant
chemoradiation. Oncotarget. 6:38360–38371. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Diehl F, Schmidt K, Choti MA, Romans K,
Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, et al:
Circulating mutant DNA to assess tumor dynamics. Nat Med.
14:985–990. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tie J, Wang Y, Tomasetti C, Li L, Springer
S, Kinde I, Silliman N, Tacey M, Wong HL, Christie M, et al:
Circulating tumor DNA analysis detects minimal residual disease and
predicts recurrence in patients with stage II colon cancer. Sci
Transl Med. 8:346ra922016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pantel K and Alix-Panabières C: Liquid
biopsy: Potential and challenges. Mol Oncol. 10:371–373. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Moore LD, Le T and Fan G: DNA methylation
and its basic function. Neuropsychopharmacology. 38:23–38. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kadiyska T and Nossikoff A: Stool DNA
methylation assays in colorectal cancer screening. World J
Gastroenterol. 21:10057–10061. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kuo CC, Shih YL, Su HY, Yan MD, Hsieh CB,
Liu CY, Huang WT, Yu MH and Lin YW: Methylation of IRAK3 is a novel
prognostic marker in hepatocellular carcinoma. World J
Gastroenterol. 21:3960–3969. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Takai D: Aberrant methylation of
circulating DNA for prediction of chemo-sensitivity of non-small
cell lung cancer. Gan To Kagaku Ryoho. 37:189–193. 2010.(In
Japanese). PubMed/NCBI
|
|
39
|
Fackler MJ, Lopez Bujanda Z, Umbricht C,
Teo WW, Cho S, Zhang Z, Visvanathan K, Jeter S, Argani P, Wang C,
et al: Novel methylated biomarkers and a robust assay to detect
circulating tumor DNA in metastatic breast cancer. Cancer Res.
74:2160–2170. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mitchell SM, Ho T, Brown GS, Baker RT,
Thomas ML, McEvoy A, Xu ZZ, Ross JP, Lockett TJ, Young GP, et al:
Evaluation of methylation biomarkers for detection of circulating
tumor DNA and application to colorectal cancer. Genes. 7(pii):
E1252016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Racila E, Euhus D, Weiss AJ, Rao C,
McConnell J, Terstappen LW and Uhr JW: Detection and
characterization of carcinoma cells in the blood. Proc Natl Acad
Sci USA. 95:4589–4594. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Harouaka R, Kang Z, Zheng SY and Cao L:
Circulating tumor cells: Advances in isolation and analysis, and
challenges for clinical applications. Pharmacol Ther. 141:209–221.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lu CY, Tsai HL, Uen YH, Hu HM, Chen CW,
Cheng TL, Lin SR and Wang JY: Circulating tumor cells as a
surrogate marker for determining clinical outcome to mFOLFOX
chemotherapy in patients with stage III colon cancer. Br J Cancer.
108:791–797. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Krebs MG, Renehan AG, Backen A, Gollins S,
Chau I, Hasan J, Valle JW, Morris K, Beech J, Ashcroft L, et al:
Circulating tumor cell enumeration in a phase II trial of a
four-drug regimen in advanced colorectal cancer. Clin Colorectal
Cancer. 14:115–122, e1-e2. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Pailler E, Adam J, Barthélémy A, Oulhen M,
Auger N, Valent A, Borget I, Planchard D, Taylor M, André F, et al:
Detection of circulating tumor cells harboring a unique ALK
rearrangement in ALK-positive non-small-cell lung cancer. J Clin
Oncol. 31:2273–2281. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Lan YT, Chen MH, Fang WL, Hsieh CC, Lin
CH, Jhang FY, Yang SH, Lin JK, Chen WS, Jiang JK, et al: Clinical
relevance of cell-free DNA in gastrointestinal tract malignancy.
Oncotarget. 8:3009–3017. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Boni L, Cassinotti E, Canziani M, Dionigi
G, Rovera F and Dionigi R: Free circulating DNA as possible tumour
marker in colorectal cancer. Surg Oncol. 16 Suppl 1:S29–S31. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yu D, An G and Xu L: Investigation of
efficacy evaluation comparison of cfDNA and CEA in colorectal
cancer. Clin La. 62:1947–1953. 2016.
|
|
49
|
Seifert L, Werba G, Tiwari S, Giao Ly NN,
Alothman S, Alqunaibit D, Avanzi A, Barilla R, Daley D, Greco SH,
et al: The necrosome promotes pancreatic oncogenesis via CXCL1 and
Mincle-induced immune suppression. Nature. 532:245–249. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lin JK, Lin PC, Lin CH, Jiang JK, Yang SH,
Liang WY, Chen WS and Chang SC: Clinical relevance of alterations
in quantity and quality of plasma DNA in colorectal cancer
patients: Based on the mutation spectra detected in primary tumors.
Ann Surg Oncol. 21 Suppl 4:S680–S686. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kitahara M, Hazama S, Tsunedomi R,
Takenouchi H, Kanekiyo S, Inoue Y, Nakajima M, Tomochika S,
Tokuhisa Y, Iida M, et al: Prediction of the efficacy of
immunotherapy by measuring the integrity of cell-free DNA in plasma
in colorectal cancer. Cancer Sci. 107:1825–1829. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hindson CM, Chevillet JR, Briggs HA,
Gallichotte EN, Ruf IK, Hindson BJ, Vessella RL and Tewari M:
Absolute quantification by droplet digital PCR versus analog
real-time PCR. Nat Methods. 10:1003–1005. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Isobe K, Hata Y, Tochigi N, Kaburaki K,
Kobayashi H, Makino T, Otsuka H, Ishida F, Hirota N, Sano G, et al:
Usefulness of nanofluidic digital PCR arrays to quantify T790M
mutation in EGFR-mutant lung adenocarcinoma. Cancer Genomics
Proteomics. 12:31–37. 2015.PubMed/NCBI
|
|
54
|
Link-Lenczowska D, Pallisgaard N, Cordua
S, Zawada M, Czekalska S, Krochmalczyk D, Kanduła Z and Sacha T: A
comparison of qPCR and ddPCR used for quantification of the JAK2
V617F allele burden in Ph negative MPNs. Ann Hematol. Jul
28–2018.(Epub ahead of print). View Article : Google Scholar
|
|
55
|
Dressman D, Yan H, Traverso G, Kinzler KW
and Vogelstein B: Transforming single DNA molecules into
fluorescent magnetic particles for detection and enumeration of
genetic variations. Proc Natl Acad Sci USA. 100:8817–8822. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nakamura K: Circulating tumor DNA (ctDNA)
detection using BEAMing and its clinical significance. Rinshobyori.
Rinsho Byori. 64:400–406. 2016.(In Japanese).
|
|
57
|
Bratman SV, Newman AM, Alizadeh AA and
Diehn M: Potential clinical utility of ultrasensitive circulating
tumor DNA detection with CAPP-Seq. Expert Rev Mol Diagn.
15:715–719. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Przybyl J, Chabon JJ, Spans L, Ganjoo KN,
Vennam S, Newman AM, Forgó E, Varma S, Zhu S, Debiec-Rychter M, et
al: Combination approach for detecting different types of
alterations in circulating tumor DNA in leiomyosarcoma. Clin Cancer
Res. 24:2688–2699. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Heitzer E, Ulz P, Belic J, Gutschi S,
Quehenberger F, Fischereder K, Benezeder T, Auer M, Pischler C,
Mannweiler S, et al: Tumor-associated copy number changes in the
circulation of patients with prostate cancer identified through
whole-genome sequencing. Genome Med. 5:302013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Casuscelli J, Weinhold N, Gundem G, Wang
L, Zabor EC, Drill E, Wang PI, Nanjangud GJ, Redzematovic A,
Nargund AM, et al: Genomic landscape and evolution of metastatic
chromophobe renal cell carcinoma. JCI Insight. 2(pii):
926882017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dolzhenko E, van Vugt JJFA, Shaw RJ,
Bekritsky MA, van Blitterswijk M, Narzisi G, Ajay SS, Rajan V,
Lajoie BR, Johnson NH, et al: Detection of long repeat expansions
from PCR-free whole-genome sequence data. Genome Res. 27:1895–1903.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hintzsche JD, Robinson WA and Tan AC: A
survey of computational tools to analyze and interpret whole exome
sequencing data. Int J Genomics. 2016:79832362016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Church TR, Wandell M, Lofton-Day C, Mongin
SJ, Burger M, Payne SR, Castaños-Vélez E, Blumenstein BA, Rösch T,
Osborn N, et al: Prospective evaluation of methylated SEPT9 in
plasma for detection of asymptomatic colorectal cancer. Gut.
63:317–325. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Cabel L, Riva F, Servois V, Livartowski A,
Daniel C, Rampanou A, Lantz O, Romano E, Milder M, Buecher B, et
al: Circulating tumor DNA changes for early monitoring of anti-PD1
immunotherapy: A proof-of-concept study. Ann Oncol. 28:1996–2001.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Xu JM, Wang Y, Wang YL, Wang Y, Liu T, Ni
M, Li MS, Lin L, Ge FJ, Gong C, et al: PIK3CA mutations contribute
to acquired cetuximab resistance in patients with metastatic
colorectal cancer. Clin Cancer Res. 23:4602–4616. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Vidal J, Muinelo L, Dalmases A, Jones F,
Edelstein D, Iglesias M, Orrillo M, Abalo A, Rodríguez C, Brozos E,
et al: Plasma ctDNA RAS mutation analysis for the diagnosis and
treatment monitoring of metastatic colorectal cancer patients. Ann
Oncol. 28:1325–1332. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Grasselli J, Elez E, Caratù G, Matito J,
Santos C, Macarulla T, Vidal J, Garcia M, Viéitez JM, Paéz D, et
al: Concordance of blood- and tumor-based detection of RAS
mutations to guide anti-EGFR therapy in metastatic colorectal
cancer. Ann Oncol. 28:1294–1301. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kakizawa N, Suzuki K, Fukui T, Takayama Y,
Ichida K, Muto Y, Hasegawa F, Watanabe F, Kikugawa R, Tsujinaka S,
et al: Clinical and molecular assessment of regorafenib
monotherapy. Oncol Rep. 37:2506–2512. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ng SB, Chua C, Ng M, Gan A, Poon PS, Teo
M, Fu C, Leow WQ, Lim KH, Chung A, et al: Individualised
multiplexed circulating tumour DNA assays for monitoring of tumour
presence in patients after colorectal cancer surgery. Sci Rep.
7:407372017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Garrigou S, Perkins G, Garlan F, Normand
C, Didelot A, Le Corre D, Peyvandi S, Mulot C, Niarra R,
Aucouturier P, et al: A study of hypermethylated circulating tumor
DNA as a universal colorectal cancer biomarker. Clin Chem.
62:1129–1139. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Siravegna G, Mussolin B, Buscarino M,
Corti G, Cassingena A, Crisafulli G, Ponzetti A, Cremolini C, Amatu
A, Lauricella C, et al: Clonal evolution and resistance to EGFR
blockade in the blood of colorectal cancer patients. Nat Med.
21:8272015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Mouliere F, Robert B, ArnauPeyrotte E, Del
Rio M, Ychou M, Molina F, Gongora C and Thierry AR: High
fragmentation characterizes tumour-derived circulating DNA. PLoS
One. 6:e234182011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
van Ginkel JH, Huibers MMH, van Es RJJ, de
Bree R and Willems SM: Droplet digital PCR for detection and
quantification of circulating tumor DNA in plasma of head and neck
cancer patients. BMC Cancer. 17:4282017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Husain H, Melnikova VO, Kosco K, Woodward
B, More S, Pingle SC, Weihe E, Park BH, Tewari M, Erlander MG, et
al: Monitoring daily dynamics of early tumor response to targeted
therapy by detecting circulating tumor DNA in urine. Clin Cancer
Res. 23:4716–4723. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Villaflor V, Won B, Nagy R, Banks K,
Lanman RB, Talasaz A and Salgia R: Biopsy-free circulating tumor
DNA assay identifies actionable mutations in lung cancer.
Oncotarget. 7:66880–66891. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chen KZ, Lou F, Yang F, Zhang JB, Ye H,
Chen W, Guan T, Zhao MY, Su XX, Shi R, et al: Circulating Tumor DNA
Detection in early-stage non-small cell lung cancer patients by
targeted sequencing. Sci Rep. 6:319852016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Pal SK, Sonpavde G, Agarwal N, Vogelzang
NJ, Srinivas S, Haas NB, Signoretti S, McGregor BA, Jones J, Lanman
RB, et al: Evolution of circulating tumor DNA profile from
first-line to subsequent therapy in metastatic renal cell
carcinoma. Eur Urol. 72:557–564. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhao H, Nolley R, Chan AMW, Rankin EB and
Peehl DM: Cabozantinib inhibits tumor growth and metastasis of a
patient-derived xenograft model of papillary renal cell carcinoma
with MET mutation. Cancer Biol Ther. 18:863–871. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Riva F, Bidard FC, Houy A, Saliou A, Madic
J, Rampanou A, Hego C, Milder M, Cottu P, Sablin MP, et al:
Patient-specific circulating tumor DNA detection during neoadjuvant
chemotherapy in triple-negative breast cancer. Clin Chem.
63:691–699. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Parkinson CA, Gale D, Piskorz AM, Biggs H,
Hodgkin C, Addley H, Freeman S, Moyle P, Sala E, Sayal K, et al:
Exploratory analysis of TP53 mutations in circulating tumour DNA as
biomarkers of treatment response for patients with relapsed
high-grade serous ovarian carcinoma: A retrospective study. PLoS
Med. 13:e10021982016. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Hrebien S, O'Leary B, Beaney M, Schiavon
G, Fribbens C, Bhambra A, Johnson R, Garcia-Murillas I and Turner
N: Reproducibility of digital PCR assays for circulating tumor DNA
analysis in advanced breast cancer. PLoS One. 11:e01650232016.
View Article : Google Scholar : PubMed/NCBI
|