Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2019 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins

  • Authors:
    • Weihua Wang
    • Leilei Zhan
    • Dongqi Guo
    • Yanju Xiang
    • Yu Zhang
    • Muxing Tian
    • Zhanjiang Han
  • View Affiliations / Copyright

    Affiliations: Department of Food Science, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China, Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1741-1749
    |
    Published online on: December 6, 2018
       https://doi.org/10.3892/ol.2018.9807
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Grape seed proanthocyanidins (GSPs) have been demonstrated to exhibit potential chemotherapeutic efficacy against various cancer types. To determine the underlying molecular mechanisms involved in GSP‑induced apoptosis, the present study prepared pancreatic cancer (PC) cells samples, S3, S12 and S24, which were treated with 20 µg/ml GSPs for 3, 12 and 24 h, respectively. Control cell samples, C3, C12 and C24, were also prepared. Using RNA‑sequencing, transcriptome comparisons were performed, which identified 966, 3,543 and 4,944 differentially‑expressed genes (DEGs) in S3 vs. C3, S12 vs. C12 and S24 vs. C24, respectively. Gene Ontology analysis of the DEGs, revealed that treatment with GSPs is associated with disruption of the cell cycle (CC) in PC cells. Additionally, disruption of transcription, DNA replication and DNA repair were associated with GSP‑treatment in PC cells. Network analysis demonstrated that the common DEGs involved in the CC, transcription, DNA replication and DNA repair were integrated, and served essential roles in the control of CC progression in cancer cells. In summary, GSPs may exhibit a potential chemotherapeutic effect on PC cell proliferation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Kamisawa T, Wood LD, Itoi T and Takaori K: Pancreatic cancer. Lancet. 388:73–85. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Huang X, Zhi X, Gao Y, Ta N, Jiang H and Zheng J: LncRNAs in pancreatic cancer. Oncotarget. 7:57379–57390. 2016.PubMed/NCBI

3 

Yeo TP, Hruban RH, Leach SD, Wilentz RE, Sohn TA, Kern SE, Iacobuzio-Donahue CA, Maitra A, Goggins M, Canto MI, et al: Pancreatic cancer. Curr Probl Cancer. 26:176–275. 2002. View Article : Google Scholar : PubMed/NCBI

4 

Li D, Xie K, Wolff R and Abbruzzese JL: Pancreatic cancer. Lancet. 363:1049–1057. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Rajkumar SV and Moreau P: Decade in review-haematological cancer: Advances in biology and therapy. Nat Rev Clin Oncol. 11:628–630. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Gisselbrecht C and Sibon D: New perspectives in the therapeutic approach of peripheral T-cell lymphoma. Curr Opin Oncol. 30:285–291. 2018.PubMed/NCBI

7 

Lee Y: Cancer chemopreventive potential of procyanidin. Toxicol Res. 33:273–282. 2017. View Article : Google Scholar : PubMed/NCBI

8 

Bagchi D, Bagchi M, Stohs S, Ray SD, Sen CK and Preuss HG: Cellular protection with proanthocyanidins derived from grape seeds. Ann N Y Acad Sci. 957:260–270. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Dixon RA, Xie DY and Sharma SB: Proanthocyanidins-a final frontier in flavonoid research? New Phytol. 165:9–28. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Katiyar SK: Grape seed proanthocyanidines and skin cancer prevention: Inhibition of oxidative stress and protection of immune system. Mol Nutr Food Res. 52 Suppl 1:S71–S76. 2008.PubMed/NCBI

11 

Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS and Pruess HG: Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology. 148:187–197. 2000. View Article : Google Scholar : PubMed/NCBI

12 

Du Y and Lou H: Catechin and proanthocyanidin B4 from grape seeds prevent doxorubicin-induced toxicity in cardiomyocytes. Eur J Pharmacol. 591:96–101. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Rossi M, Negri E, Parpinel M, Lagiou P, Bosetti C, Talamini R, Montella M, Giacosa A, Franceschi S and La Vecchia C: Proanthocyanidins and the risk of colorectal cancer in Italy. Cancer Causes Control. 21:243–250. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Singh T, Sharma SD and Katiyar SK: Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo. PLoS One. 6:e274442011. View Article : Google Scholar : PubMed/NCBI

15 

Prasad R, Vaid M and Katiyar SK: Grape proanthocyanidin inhibit pancreatic cancer cell growth in vitro and in vivo through induction of apoptosis and by targeting the PI3K/Akt pathway. PLoS One. 7:e430642012. View Article : Google Scholar : PubMed/NCBI

16 

Prasad R and Katiyar SK: Grape seed proanthocyanidins inhibit migration potential of pancreatic cancer cells by promoting mesenchymal-to-epithelial transition and targeting NF-κB. Cancer Lett. 334:118–126. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Vaid M, Singh T and Katiyar SK: Grape seed proanthocyanidins inhibit melanoma cell invasiveness by reduction of PGE2 synthesis and reversal of epithelial-to-mesenchymal transition. PLoS One. 6:e215392011. View Article : Google Scholar : PubMed/NCBI

18 

Punathil T and Katiyar SK: Inhibition of non-small cell lung cancer cell migration by grape seed proanthocyanidins is mediated through the inhibition of nitric oxide, guanylate cyclase, and ERK1/2. Mol Carcinog. 48:232–242. 2009. View Article : Google Scholar : PubMed/NCBI

19 

Sun Q, Prasad R, Rosenthal E and Katiyar SK: Grape seed proanthocyanidins inhibit the invasive potential of head and neck cutaneous squamous cell carcinoma cells by targeting EGFR expression and epithelial-to-mesenchymal transition. BMC Complement Altern Med. 11:1342011. View Article : Google Scholar : PubMed/NCBI

20 

Smeriglio A, Barreca D, Bellocco E and Trombetta D: Proanthocyanidins and hydrolysable tannins: Occurrence, dietary intake and pharmacological effects. Br J Pharmacol. 174:1244–1262. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Regier N, Beauvais-Flück R, Slaveykova VI and Cosio C: Elodea nuttallii exposure to mercury exposure under enhanced ultraviolet radiation: Effects on bioaccumulation, transcriptome, pigment content and oxidative stress. Aquat Toxicol. 180:218–226. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Trapnell C, Pachter L and Salzberg SL: TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics. 25:1105–1111. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Robinson MD, McCarthy DJ and Smyth GK: edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 26:139–140. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar : PubMed/NCBI

25 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

27 

Wang P, Larouche M, Normandin K, Kachaner D, Mehsen H, Emery G and Archambault V: Spatial regulation of greatwall by Cdk1 and PP2A-Tws in the cell cycle. Cell Cycle. 15:528–539. 2016. View Article : Google Scholar : PubMed/NCBI

28 

Mendoza M, Mandani G and Momand J: The MDM2 gene family. Biomol Concepts. 5:9–19. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Liszka L: Ductal adenocarcinoma of the pancreas usually retained SMAD4 and p53 protein status as well as expression of epithelial-to-mesenchymal transition markers and cell cycle regulators at the stage of liver metastasis. Pol J Pathol. 65:100–112. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Dynlacht BD: Regulation of transcription by proteins that control the cell cycle. Nature. 389:149–152. 1997. View Article : Google Scholar : PubMed/NCBI

31 

Ping Z, Lim R, Bashir T, Pagano M and Guardavaccaro D: APC/C (Cdh1) controls the proteasome-mediated degradation of E2F3 during cell cycle exit. Cell Cycle. 11:1999–2005. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Hubbi ME and Semenza GL: An essential role for chaperone-mediated autophagy in cell cycle progression. Autophagy. 11:850–851. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Zou L: DNA replication checkpoint: New ATR activator identified. Curr Biol. 27:R33–R35. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Pennisi R, Antoccia A, Leone S, Ascenzi P and di Masi A: Hsp90α regulates ATM and NBN functions in sensing and repair of DNA double-strand breaks. FEBS J. 284:2378–2395. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Wei L, Nakajima S, Böhm S, Bernstein KA, Shen Z, Tsang M, Levine AS and Lan L: DNA damage during the G0/G1 phase triggers RNA-templated, Cockayne syndrome B-dependent homologous recombination. PNAS. 112:E3495–3504. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Manthei KA and Keck JL: The BLM dissolvasome in DNA replication and repair. Cell Mol Life Sci. 70:4067–4084. 2013. View Article : Google Scholar : PubMed/NCBI

37 

Lafrance-Vanasse J, Williams GJ and Tainer JA: Envisioning the dynamics and flexibility of Mre11-Rad50-Nbs1 complex to decipher its roles in DNA replication and repair. Prog Biophys Mol Biol. 117:182–193. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Franko J, Ashley C and Xiao W: Molecular cloning and functional characterization of two murine cDNAs which encode Ubc variants involved in DNA repair and mutagenesis. Biochim Biophys Acta. 1519:70–77. 2001. View Article : Google Scholar : PubMed/NCBI

39 

Katiyar SK, Pal HC and Prasad R: Dietary proanthocyanidins prevent ultraviolet radiation-induced non-melanoma skin cancer through enhanced repair of damaged DNA-dependent activation of immune sensitivity. Semin Cancer Biol. 46:138–145. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Chung YC, Huang CC, Chen CH, Chiang HC, Chen KB, Chen YJ, Liu CL, Chuang LT, Liu M and Hsu CP: Grape-seed procyanidins inhibit the in vitro growth and invasion of pancreatic carcinoma cells. Pancreas. 41:447–454. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Katiyar SK and Athar M: Grape seeds: Ripe for cancer chemoprevention. Cancer Prev Res (Phila). 6:617–621. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Zhang C, Chen W, Zhang X, Zheng Y, Yu F, Liu Y and Wang Y: Grape seed proanthocyanidins induce mitochondrial pathway-mediated apoptosis in human colorectal carcinoma cells. Oncol Lett. 14:5853–5860. 2017.PubMed/NCBI

43 

Yang N, Gao J, Cheng X, Hou C, Yang Y, Qiu Y, Xu M, Zhang Y and Huang S: Grape seed proanthocyanidins inhibit the proliferation, migration and invasion of tongue squamous cell carcinoma cells through suppressing the protein kinase B/nuclear factor-κB signaling pathway. Int J Mol Med. 40:1881–1888. 2017.PubMed/NCBI

44 

Chu H, Tang Q, Huang H, Hao W and Wei X: Grape-seed proanthocyanidins inhibit the lipopolysaccharide-induced inflammatory mediator expression in RAW264.7 macrophages by suppressing MAPK and NF-κb signal pathways. Environ Toxicol Pharmacol. 41:159–166. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Fischer M and Müller GA: Cell cycle transcription control: DREAM/MuvB and RB-E2F complexes. Crit Rev Biochem Mol Biol. 52:638–662. 2017. View Article : Google Scholar : PubMed/NCBI

46 

Sadasivam S and DeCaprio JA: The DREAM complex: Master coordinator of cell cycle-dependent gene expression. Nat Rev Cancer. 13:585–595. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Toden S, Ravindranathan P, Gu J, Cardenas J, Yuchang M and Goel A: Oligomeric proanthocyanidins (OPCs) target cancer stem-like cells and suppress tumor organoid formation in colorectal cancer. Sci Rep. 8:33352018. View Article : Google Scholar : PubMed/NCBI

48 

Vermeulen K, Van Bockstaele DR and Berneman ZN: The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003. View Article : Google Scholar : PubMed/NCBI

49 

Nishitani H and Lygerou Z: Control of DNA replication licensing in a cell cycle. Genes Cells. 7:523–534. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Murai J: Targeting DNA repair and replication stress in the treatment of ovarian cancer. Int J Clin Oncol. 22:619–628. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Helleday T: Amplifying tumour-specific replication lesions by DNA repair inhibitors-a new era in targeted cancer therapy. Eur J Cancer. 44:921–927. 2008. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang W, Zhan L, Guo D, Xiang Y, Zhang Y, Tian M and Han Z: Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins. Oncol Lett 17: 1741-1749, 2019.
APA
Wang, W., Zhan, L., Guo, D., Xiang, Y., Zhang, Y., Tian, M., & Han, Z. (2019). Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins. Oncology Letters, 17, 1741-1749. https://doi.org/10.3892/ol.2018.9807
MLA
Wang, W., Zhan, L., Guo, D., Xiang, Y., Zhang, Y., Tian, M., Han, Z."Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins". Oncology Letters 17.2 (2019): 1741-1749.
Chicago
Wang, W., Zhan, L., Guo, D., Xiang, Y., Zhang, Y., Tian, M., Han, Z."Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins". Oncology Letters 17, no. 2 (2019): 1741-1749. https://doi.org/10.3892/ol.2018.9807
Copy and paste a formatted citation
x
Spandidos Publications style
Wang W, Zhan L, Guo D, Xiang Y, Zhang Y, Tian M and Han Z: Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins. Oncol Lett 17: 1741-1749, 2019.
APA
Wang, W., Zhan, L., Guo, D., Xiang, Y., Zhang, Y., Tian, M., & Han, Z. (2019). Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins. Oncology Letters, 17, 1741-1749. https://doi.org/10.3892/ol.2018.9807
MLA
Wang, W., Zhan, L., Guo, D., Xiang, Y., Zhang, Y., Tian, M., Han, Z."Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins". Oncology Letters 17.2 (2019): 1741-1749.
Chicago
Wang, W., Zhan, L., Guo, D., Xiang, Y., Zhang, Y., Tian, M., Han, Z."Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins". Oncology Letters 17, no. 2 (2019): 1741-1749. https://doi.org/10.3892/ol.2018.9807
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team