|
1
|
Siegel RL, Miller KD and Jemal A: Cancer
Statistics, 2017. CA Cancer J Clin. 67:7–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China,
2015. CA Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
American Cancer Society, Cancer Facts
& Figures, 2016. https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2016.htmlJanuary
20–2018
|
|
4
|
Carrato A, Vergnenègre A, Thomas M,
McBride K, Medina J and Cruciani G: Clinical management patterns
and treatment outcomes in patients with non-small cell lung cancer
(NSCLC) across Europe: EPICLIN-Lung study. Curr Med Res Opin.
30:447–461. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Hunt T and Nasmyth K: Cell multiplication.
Curr Opin Cell Biol. 9:765–767. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mueller BM, Yu YB and Laug WE:
Overexpression of plasminogen activator inhibitor 2 in human
melanoma cells inhibits spontaneous metastasis in scid/scid mice.
Proc Natl Acad Sci USA. 92:205–209. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hirschi KK, Xu CE, Tsukamoto T and Sager
R: Gap junction genes Cx26 and Cx43 individually suppress the
cancer phenotype of human mammary carcinoma cells and restore
differentiation potential. Cell Growth Differ. 7:861–870.
1996.PubMed/NCBI
|
|
9
|
Sancar A: DNA repair in humans. Annu Rev
Genet. 29:69–105. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hanawalt PC: Transcription-coupled repair
and human disease. Science. 266:1957–1958. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Stetler-Stevenson WG, Aznavoorian S and
Liotta LA: Tumor cell interactions with the extracellular matrix
during invasion and metastasis. Annu Rev Cell Biol. 9:541–573.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ichihara S, Toyooka S, Fujiwara Y, Hotta
K, Shigematsu H, Tokumo M, Soh J, Asano H, Ichimura K, Aoe K, et
al: The impact of epidermal growth factor receptor gene status on
gefitinib-treated Japanese patients with non-small-cell lung
cancer. Int J Cancer. 120:1239–1247. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Soh J, Okumura N, Lockwood WW, Yamamoto H,
Shigematsu H, Zhang W, Chari R, Shames DS, Tang X, MacAulay C, et
al: Oncogene mutations, copy number gains and mutant allele
specific imbalance (MASI) frequently occur together in tumor cells.
PLoS One. 4:e74642009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wei Y, Zou Z, Becker N, Anderson M,
Sumpter R, Xiao G, Kinch L, Koduru P, Christudass CS, Veltri RW, et
al: EGFR-mediated Beclin 1 phosphorylation in autophagy
suppression, tumor progression, and tumor chemoresistance. Cell.
154:1269–1284. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Menges CW, Kadariya Y, Altomare D,
Talarchek J, Neumann-Domer E, Wu Y, Xiao GH, Shapiro IM, Kolev VN,
Pachter JA, et al: Tumor suppressor alterations cooperate to drive
aggressive mesotheliomas with enriched cancer stem cells via a
p53-miR-34a-c-Met axis. Cancer Res. 74:1261–1271. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Toyooka S, Mitsudomi T, Soh J, Aokage K,
Yamane M, Oto T, Kiura K and Miyoshi S: Molecular oncology of lung
cancer. Gen Thorac Cardiovasc Surg. 59:527–537. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Guo Y, Du J and Kwiatkowski DJ: Molecular
dissection of AKT activation in lung cancer cell lines. Mol Cancer
Res. 11:282–293. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Collisson EA, Trejo CL, Silva JM, Gu S,
Korkola JE, Heiser LM, Charles RP, Rabinovich BA, Hann B, Dankort
D, et al: A central role for RAF→MEK→ERK signaling in the genesis
of pancreatic ductal adenocarcinoma. Cancer Discov. 2:685–693.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
De Luca A, Maiello MR, D'Alessio A,
Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT
signalling pathways: Role in cancer pathogenesis and implications
for therapeutic approaches. Expert Opin Ther Targets. 16 Suppl
2:S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Suda K, Tomizawa K, Yatabe Y and Mitsudomi
T: Lung cancers unrelated to smoking: Characterized by single
oncogene addiction? Int J Clin Oncol. 16:294–305. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu SG, Kuo YW, Chang YL, Shih JY, Chen YH,
Tsai MF, Yu CJ, Yang CH and Yang PC: EML4-ALK translocation
predicts better outcome in lung adenocarcinoma patients with
wild-type EGFR. J Thorac Oncol. 7:98–104. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Paci M, Rapicetta C and Maramotti S: New
biomarkers for lung cancer. Expert Opin Med Diagn. 4:201–224. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shen J, Liu Z, Todd NW, Zhang H, Liao J,
Yu L, Guarnera MA, Li R, Cai L, Zhan M and Jiang F: Diagnosis of
lung cancer in individuals with solitary pulmonary nodules by
plasma microRNA biomarkers. BMC Cancer. 11:3742011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Claesson-Welsh L: Blood vessels as targets
in tumor therapy. Ups J Med Sci. 117:178–186. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Timmer T, Terpstra P, van den Berg A,
Veldhuis PM, Ter Elst A, Voutsinas G, Hulsbeek MM, Draaijers TG,
Looman MW, Kok K, et al: A comparison of genomic structures and
expression patterns of two closely related flanking genes in a
critical lung cancer region at 3p21.3. Eur J Hum Genet. 7:478–486.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Daigo Y, Nishiwaki T, Kawasoe T, Tamari M,
Tsuchiya E and Nakamura Y: Molecular cloning of a candidate tumor
suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res.
59:1966–1972. 1999.PubMed/NCBI
|
|
27
|
Aravind L and Koonin EV: G-patch: A new
conserved domain in eukaryotic RNA-processing proteins and type D
retroviral polyproteins. Trends Biochem Sci. 24:342–344. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Drabkin HA, West JD, Hotfilder M, Heng YM,
Erickson P, Calvo R, Dalmau J, Gemmill RM and Sablitzky F:
DEF-3(g16/NY-LU-12), an RNA binding protein from the 3p21.3
homozygous deletion region in SCLC. Oncogene. 18:2589–2597. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sutherland LC, Rintala-Maki ND, White RD
and Morin CD: RNA binding motif (RBM) proteins: A novel family of
apoptosis modulators? J Cell Biochem. 94:5–24. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Oh JJ, Razfar A, Delgado I, Reed RA,
Malkina A, Boctor B and Slamon DJ: 3p21.3 tumor suppressor gene
H37/Luca15/RBM5 inhibits growth of human lung cancer cells through
cell cycle arrest and apoptosis. Cancer Res. 66:3419–3427. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Loiselle JJ and Sutherland LC:
Differential downregulation of Rbm5 and Rbm10 during skeletal and
cardiac differentiation. In Vitro Cell Dev Biol Anim. 50:331–339.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
O'Bryan MK, Clark BJ, McLaughlin EA,
D'Sylva RJ, O'Donnell L, Wilce JA, Sutherland J, O'Connor AE,
Whittle B, Goodnow CC, et al: RBM5 is a male germ cell splicing
factor and is required for spermatid differentiation and male
fertility. PLoS Genet. 9:e10036282013. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bonnal S, Martinez C, Förch P, Bachi A,
Wilm M and Valcárcel J: RBM5/Luca-15/H37 regulates Fas alternative
splice site pairing after exon definition. Mol Cell. 32:81–95.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Fushimi K, Ray P, Kar A, Wang L,
Sutherland LC and Wu JY: Up-regulation of the proapoptotic caspase
2 splicing isoform by a candidate tumor suppressor, RBM5. Proc Natl
Acad Sci USA. 105:15708–15713. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mourtada-Maarabouni M, Sutherland LC and
Williams GT: Candidate tumour suppressor LUCA-15 can regulate
multiple apoptotic pathways. Apoptosis. 7:421–432. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Sutherland LC, Lerman M, Williams GT and
Miller BA: LUCA-15 suppresses CD95-mediated apoptosis in Jurkat T
cells. Oncogene. 20:2713–2719. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sutherland LC, Wang K and Robinson AG:
RBM5 as a putative tumor suppressor gene for lung cancer. J Thorac
Oncol. 5:294–298. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Li P, Wang K, Zhang J, Zhao L, Liang H,
Shao C and Sutherland LC: The 3p21.3 tumor suppressor RBM5
resensitizes cisplatin-resistant human non-small cell lung cancer
cells to cisplatin. Cancer Epidemiol. 36:481–489. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mourtada-Maarabouni M, Sutherland LC,
Meredith JM and Williams GT: Simultaneous acceleration of the cell
cycle and suppression of apoptosis by splice variant delta-6 of the
candidate tumour suppressor LUCA-15/RBM5. Genes Cells. 8:109–119.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Rintala-Maki ND and Sutherland LC:
LUCA-15/RBM5, a putative tumour suppressor, enhances multiple
receptor-initiated death signals. Apoptosis. 9:475–484. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sutherland KD, Lindeman GJ, Choong DY,
Wittlin S, Brentzell L, Phillips W, Campbell IG and Visvader JE:
Differential hypermethylation of SOCS genes in ovarian and breast
carcinomas. Oncogene. 23:7726–7733. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sutherland LC, Edwards SE, Cable HC,
Poirier GG, Miller BA, Cooper CS and Williams GT: LUCA-15-encoded
sequence variants regulate CD95-mediated apoptosis. Oncogene.
19:3774–3781. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kobayashi T, Ishida J, Musashi M, Ota S,
Yoshida T, Shimizu Y, Chuma M, Kawakami H, Asaka M, Tanaka J, et
al: p53 transactivation is involved in the antiproliferative
activity of the putative tumor suppressor RBM5. Int J Cancer.
128:304–318. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Mourtada-Maarabouni M, Keen J, Clark J,
Cooper CS and Williams GT: Candidate tumor suppressor
LUCA-15/RBM5/H37 modulates expression of apoptosis and cell cycle
genes. Exp Cell Res. 312:1745–1752. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shao C, Yang B, Zhao L, Wang S, Zhang J
and Wang K: Tumor suppressor gene RBM5 delivered by attenuated
Salmonella inhibits lung adenocarcinoma through diverse apoptotic
signaling pathways. World J Surg Oncol. 11:1232013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shao C, Zhao L, Wang K, Xu W, Zhang J and
Yang B: The tumor suppressor gene RBM5 inhibits lung adenocarcinoma
cell growth and induces apoptosis. World J Surg Oncol. 10:1602012.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Su Z, Yin J, Zhao L, Li R, Liang H, Zhang
J and Wang K: Lentiviral vector-mediated RBM5 overexpression
downregulates EGFR expression in human non-small cell lung cancer
cells. World J Surg Oncol. 12:3672014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rintala-Maki ND, Goard CA, Langdon CE,
Wall VE, Traulsen KE, Morin CD, Bonin M and Sutherland LC:
Expression of RBM5-related factors in primary breast tissue. J Cell
Biochem. 100:1440–1458. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zabarovsky ER, Lerman MI and Minna JD:
Tumor suppressor genes on chromosome 3p involved in the
pathogenesis of lung and other cancers. Oncogene. 21:6915–6935.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Graveley BR: Alternative splicing:
Increasing diversity in the proteomic world. Trends Genet.
17:100–107. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nissim-Rafinia M and Kerem B: Splicing
regulation as a potential genetic modifier. Trends Genet.
18:123–127. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wang Z, Lo HS, Yang H, Gere S, Hu Y,
Buetow KH and Lee MP: Computational analysis and experimental
validation of tumor-associated alternative RNA splicing in human
cancer. Cancer Res. 63:655–657. 2003.PubMed/NCBI
|
|
53
|
Zhou Z, Licklider LJ, Gygi SP and Reed R:
Comprehensive proteomic analysis of the human spliceosome. Nature.
419:182–185. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Jin W, Niu Z, Xu D and Li X: RBM5 promotes
exon 4 skipping of AID pre-mRNA by competing with the binding of
U2AF65 to the polypyrimidine tract. FEBS Lett. 586:3852–3857. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
U.S. Department of Health and Human
Services: Smoking, Tobacco, and Cancer Program (1985–1989 Status
Report). Public Health Service, USA. 1990.
|
|
56
|
Hecht SS: Cigarette smoking: Cancer risks,
carcinogens, and mechanisms. Langenbecks Arch Surg. 391:603–613.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Harvey RG: Polycyclic aromatic
hydrocarbons. Chemistry and Carcinogenicity. Cambridge University
Press; Cambridge: pp. 3961991
|
|
58
|
Beland FA, Cain LG, Felton JS, et al:
Chemical Carcinogenesis and Mutagenesis I. Springer-Verlag. 33–572.
1990.
|
|
59
|
Bartsch H: DNA adducts in human
carcinogenesis: Etiological relevance and structure-activity
relationship. Mutat Res. 340:67–79. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Mass MJ, Jeffers AJ, Ross JA, Nelson G,
Galati AJ, Stoner GD and Nesnow S: Ki-ras oncogene mutations in
tumors and DNA adducts formed by benz[j]aceanthrylene and
benzo[a]pyrene in the lungs of strain A/J mice. Mol Carcinog.
8:186–192. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Venkatachalam S, Denissenko MF, Alvi N and
Wani AA: Rapid activation of apoptosis in human promyelocytic
leukemic cells by (+/-)-anti-benzo[a]pyrene diol epoxide induced
DNA damage. Biochem Biophys Res Commun. 197:722–729. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Denissenko MF, Pao A, Tang M and Pfeifer
GP: Preferential formation of benzo[a]pyrene adducts at lung cancer
mutational hotspots in P53. Science. 274:430–432. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wistuba II, Lam S, Behrens C, Virmani AK,
Fong KM, LeRiche J, Samet JM, Srivastava S, Minna JD and Gazdar AF:
Molecular damage in the bronchial epithelium of current and former
smokers. J Natl Cancer Inst. 89:1366–1373. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jamsai D, Watkins DN, O'Connor AE,
Merriner DJ, Gursoy S, Bird AD, Kumar B, Miller A, Cole TJ, Jenkins
BJ, et al: In vivo evidence that RBM5 is a tumour suppressor in the
lung. Sci Rep. 7:163232017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Prabhu VV and Devaraj N: Regulating RNA
binding Motif 5 gene expression-a novel therapeutic target for lung
cancer. J Environ Pathol Toxicol Oncol. 36:99–105. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Canoz O, Ozkan M, Arsav V, Er O, Coskun
HS, Soyuer S and Altinbas M: The role of c-erbB-2 expression on the
survival of patients with small-cell lung cancer. Lung.
184:267–272. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hirsch FR, Franklin WA, Veve R,
Varella-Garcia M and Bunn PA Jr: HER2/neu expression in malignant
lung tumors. Semin Oncol. 29:51–58. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bae NC, Chae MH, Lee MH, Kim KM, Lee EB,
Kim CH, Park TI, Han SB, Jheon S, Jung TH and Park JY: EGFR, ERBB2,
and KRAS mutations in Korean non-small cell lung cancer patients.
Cancer Genet Cytogenet. 173:107–113. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Buttitta F, Barassi F, Fresu G, Felicioni
L, Chella A, Paolizzi D, Lattanzio G, Salvatore S, Camplese PP,
Rosini S, et al: Mutational analysis of the HER2 gene in lung
tumors from Caucasian patients: Mutations are mainly present in
adenocarcinomas with bronchioloalveolar features. Int J Cancer.
119:2586–2591. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hao YQ, Su ZZ, Lv XJ, Li P, Gao P, Wang C,
Bai Y and Zhang J: RNA-binding motif protein 5 negatively regulates
the activity of Wnt/β-catenin signaling in cigarette smoke-induced
alveolar epithelial injury. Oncol Rep. 33:2438–2444. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lerman MI and Minna JD: The 630-kb lung
cancer homozygous deletion region on human chromosome 3p21.3:
Identification and evaluation of the resident candidate tumor
suppressor genes. The International Lung Cancer Chromosome 3p21.3
Tumor Suppressor Gene Consortium. Cancer Res. 60:6116–6133.
2000.PubMed/NCBI
|
|
72
|
Edamatsu H, Kaziro Y and Itoh H: LUCA15, a
putative tumour suppressor gene encoding an RNA-binding nuclear
protein, is down-regulated in ras-transformed Rat-1 cells. Genes
Cells. 5:849–858. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Welling DB, Lasak JM, Akhmametyeva E,
Ghaheri B and Chang LS: cDNA microarray analysis of vestibular
schwannomas. Otol Neurotol. 23:736–748. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Zhao L, Li R, Shao C, Li P, Liu J and Wang
K: 3p21.3 tumor suppressor gene RBM5 inhibits growth of human
prostate cancer PC-3 cells through apoptosis. World J Surg Oncol.
10:2472012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kim YS, Hwan JD, Bae S, Bae DH and Shick
WA: Identification of differentially expressed genes using an
annealing control primer system in stage III serous ovarian
carcinoma. BMC Cancer. 10:5762010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Peng J, Valeshabad AK, Li Q and Wang Y:
Differential expression of RBM5 and KRAS in pancreatic ductal
adenocarcinoma and their association with clinicopathological
features. Oncol Lett. 5:1000–1004. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Oh JJ, Taschereau EO, Koegel AK, Ginther
CL, Rotow JK, Isfahani KZ and Slamon DJ: RBM5/H37 tumor suppressor,
located at the lung cancer hot spot 3p21.3, alters expression of
genes involved in metastasis. Lung Cancer. 70:253–262. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Toyooka S, Maruyama R, Toyooka KO,
McLerran D, Feng Z, Fukuyama Y, Virmani AK, Zochbauer-Muller S,
Tsukuda K, Sugio K, et al: Smoke exposure, histologic type and
geography-related differences in the methylation profiles of
non-small cell lung cancer. Int J Cancer. 103:153–160. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bechara EG, Sebestyén E, Bernardis I,
Eyras E and Valcárcel J: RBM5, 6, and 10 differentially regulate
NUMB alternative splicing to control cancer cell proliferation. Mol
Cell. 52:720–733. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wistuba II, Behrens C, Virmani AK, Mele G,
Milchgrub S, Girard L, Fondon JW III, Garner HR, McKay B, Latif F,
et al: High resolution chromosome 3p allelotyping of human lung
cancer and preneoplastic/preinvasive bronchial epithelium reveals
multiple, discontinuous sites of 3p allele loss and three regions
of frequent breakpoints. Cancer Res. 60:1949–1960. 2000.PubMed/NCBI
|
|
81
|
Liang H, Zhang J, Shao C, Zhao L, Xu W,
Sutherland LC and Wang K: Differential expression of RBM5, EGFR and
KRAS mRNA and protein in non-small cell lung cancer tissues. J Exp
Clin Cancer Res. 31:362012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Oh JJ, West AR, Fishbein MC and Slamon DJ:
A candidate tumor suppressor gene, H37, from the human lung cancer
tumor suppressor locus 3p21.3. Cancer Res. 62:3207–3213.
2002.PubMed/NCBI
|
|
83
|
ter Elst A, Hiemstra BE, van der Vlies P,
Kamminga W, van der Veen AY, Davelaar I, Terpstra P, te Meerman GJ,
Gerbens F, Kok K, et al: Functional analysis of lung tumor
suppressor activity at 3p21.3. Genes Chromosomes Cancer.
45:1077–1093. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ji L and Roth JA: Tumor suppressor FUS1
signaling pathway. J Thorac Oncol. 3:327–330. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Agathanggelou A, Bièche I, Ahmed-Choudhury
J, Nicke B, Dammann R, Baksh S, Gao B, Minna JD, Downward J, Maher
ER and Latif F: Identification of novel gene expression targets for
the Ras association domain family 1 (RASSF1A) tumor suppressor gene
in non-small cell lung cancer and neuroblastoma. Cancer Res.
63:5344–5351. 2003.PubMed/NCBI
|
|
86
|
Castro-Rivera E, Ran S, Thorpe P and Minna
JD: Semaphorin 3B (SEMA3B) induces apoptosis in lung and breast
cancer, whereas VEGF165 antagonizes this effect. Proc Natl Acad Sci
USA. 101:11432–11437. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Carboni GL, Gao B, Nishizaki M, Xu K,
Minna JD, Roth JA and Ji L: CACNA2D2-mediated apoptosis in NSCLC
cells is associated with alterations of the intracellular calcium
signaling and disruption of mitochondria membrane integrity.
Oncogene. 22:615–626. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Qiu TH, Chandramouli GV, Hunter KW,
Alkharouf NW, Green JE and Liu ET: Global expression profiling
identifies signatures of tumor virulence in MMTV-PyMT-transgenic
mice: Correlation to human disease. Cancer Res. 64:5973–5981. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ramaswamy S, Ross KN, Lander ES and Golub
TR: A molecular signature of metastasis in primary solid tumors.
Nat Genet. 33:49–54. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
90
|
Loiselle JJ, Roy JG and Sutherland LC:
RBM5 reduces small cell lung cancer growth, increases cisplatin
sensitivity and regulates key transformation-associated pathways.
Heliyon. 2:e002042016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Loiselle JJ, Roy JG and Sutherland LC:
RBM10 promotes transformation-associated processes in small cell
lung cancer and is directly regulated by RBM5. PLoS One.
12:e01802582017. View Article : Google Scholar : PubMed/NCBI
|