Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2019 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2019 Volume 17 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1

  • Authors:
    • Minglei Zhang
    • Hai Li
    • Yun Zhang
    • Hongyan Li
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, China and Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China, Department of Urology, China and Japan Union Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2257-2265
    |
    Published online on: December 11, 2018
       https://doi.org/10.3892/ol.2018.9822
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Prostate cancer (PCa) is one of the most common malignancies worldwide, and with a limited number of treatments for this type of cancer, its incidence is rapidly increasing. Patients presenting with PCa are likely to experience disease recurrence, which represents a considerable clinical challenge. MicroRNAs (miRNAs) have been widely characterized as a critical regulator in a number of types of cancer, including PCa. miRNA‑744 (miR‑744) has been reported to be involved in cancer regulation; however, its role in PCa remained poorly understood. In a recent study, it was demonstrated that miR‑744 was overexpressed in prostate tissue from PCa patients when compared with the surrounding tissues, and knockdown of miR‑744 resulted in reduced cell growth. In addition, an increased population of apoptotic cells was detected upon miR‑744 knockdown, together with a decrease in cell proliferation. Cell cycle analysis demonstrated a higher number of cells in the G1 phase and lower numbers in the S phase following miR‑744 silencing. The levels of key proteins involved in cell cycle progression (cyclin D1, cyclin‑dependent kinase 4, and proliferating cell nuclear antigen) were increased, whereas those proteins responsible for cell cycle inhibition (cyclin‑dependent kinase inhibitor p21) were decreased. The tumor suppressor liver kinase B1 (LKB1) was revealed to be a potential target of miR‑744, suggesting its potential mechanism of action. LKB1 levels were negatively correlated with miR‑744, and LKB1 was indicated to be a direct target of miR‑744. Furthermore, it was revealed that by targeting LKB1, miR‑744 may regulate adenosine monophosphate‑activated protein kinase (AMPK); the AMPK signaling pathway was activated by miR‑744 knockdown, with subsequent inhibition of the mammalian target of rapamycin (mTOR) signaling pathway. Taken together, these results demonstrated that miR‑744 promoted cell growth through the AMPK signaling pathway, by targeting LKB1. The present study revealed a novel insight into the biological function of miR‑744 in PCa, and that miR‑744 may be a potential therapeutic target.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Siegel R, Ma J, Zou Z and Jemal A: Cancer statistics, 2014. CA Cancer J Clin. 64:9–29. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Jemal A, Bray F, Center MM, Ferlay J, Ward E and Forman D: Global cancer statistics. CA Cancer J Clin. 61:69–90. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Chen W, Zheng R, Zeng H, Zhang S and He J: Annual report on status of cancer in China, 2011. Chin J Cancer Res. 27:2–12. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Pound CR, Partin AW, Eisenberger MA, Chan DW, Pearson JD and Walsh PC: Natural history of progression after PSA elevation following radical prostatectomy. JAMA. 281:1591–1597. 1999. View Article : Google Scholar : PubMed/NCBI

5 

Xie H, Li C, Dang Q, Chang LS and Li L: Infiltrating mast cells increase prostate cancer chemotherapy and radiotherapy resistances via modulation of p38/p53/p21 and ATM signals. Oncotarget. 7:1341–1353. 2016.PubMed/NCBI

6 

Sutherland SI, Pe Benito R, Henshall SM, Horvath LG and Kench JG: Expression of phosphorylated-mTOR during the development of prostate cancer. Prostate. 74:1231–1239. 2014. View Article : Google Scholar : PubMed/NCBI

7 

Galardi S, Mercatelli N, Farace MG and Ciafrè SA: NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells. Nucleic Acids Res. 39:3892–3902. 2011. View Article : Google Scholar : PubMed/NCBI

8 

David R: Small RNAs: miRNA machinery disposal. Nat Rev Mol Cell Biol. 14:4–5. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Xiao R, Li C and Chai B: miRNA-144 suppresses proliferation and migration of colorectal cancer cells through GSPT1. Biomed Pharmacother. 74:138–144. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Xue J, Chi Y, Chen Y, Huang S, Ye X, Niu J, Wang W, Pfeffer LM, Shao ZM, Wu ZH and Wu J: MiRNA-621 sensitizes breast cancer to chemotherapy by suppressing FBXO11 and enhancing p53 activity. Oncogene. 35:448–458. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Lewis H, Lance R, Troyer D, Beydoun H, Hadley M, Orians J, Benzine T, Madric K, Semmes OJ, Drake R, et al: miR-888 is an expressed prostatic secretions-derived microRNA that promotes prostate cell growth and migration. Cell Cycle. 13:227–239. 2014. View Article : Google Scholar : PubMed/NCBI

12 

Jin M, Zhang T, Liu C, Badeaux MA, Liu B, Liu R, Jeter C, Chen X, Vlassov AV and Tang DG: miRNA-128 suppresses prostate cancer by inhibiting BMI-1 to inhibit tumor-initiating cells. Cancer Res. 74:4183–4195. 2014. View Article : Google Scholar : PubMed/NCBI

13 

Xuan H, Xue W, Pan J, Sha J, Dong B and Huang Y: Downregulation of miR-221, −30d and −15a contributes to pathogenesis of prostate cancer by targeting Bmi-1. Biochemistry (Mosc). 80:276–283. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Singh PK, Preus L, Hu Q, Yan L, Long MD, Morrison CD, Nesline M, Johnson CS, Koochekpour S, Kohli M, et al: Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients. Oncotarget. 5:824–840. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Miyamae M, Komatsu S, Ichikawa D, Kawaguchi T, Hirajima S, Okajima W, Ohashi T, Imamura T, Konishi H, Shiozaki A, et al: Plasma microRNA profiles: Identification of miR-744 as a novel diagnostic and prognostic biomarker in pancreatic cancer. Br J Cancer. 113:1467–1476. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Song MY, Pan KF, Su HJ, Zhang L, Ma JL, Li JY, Yuasa Y, Kang D, Kim YS and You WC: Identification of serum microRNAs as novel non-invasive biomarkers for early detection of gastric cancer. PLoS One. 7:e336082012. View Article : Google Scholar : PubMed/NCBI

17 

Fang Y, Zhu X, Wang J, Li N, Li D, Sakib N, Sha Z and Song W: MiR-744 functions as a proto-oncogene in nasopharyngeal carcinoma progression and metastasis via transcriptional control of ARHGAP5. Oncotarget. 6:13164–13175. 2015. View Article : Google Scholar : PubMed/NCBI

18 

Zhou W, Li Y, Gou S, Xiong J, Wu H, Wang C, Yan H and Liu T: MiR-744 increases tumorigenicity of pancreatic cancer by activating Wnt/β-catenin pathway. Oncotarget. 6:37557–37569. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Lin F, Lei S, Ma J, Shi L, Mao D and Zhang S, Huang J, Liu X, Ding D, Zhang Y and Zhang S: Inhibitory effect of jianpi-jiedu prescription-contained serum on colorectal cancer SW48 cell proliferation by mTOR-P53-P21 signalling pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 41:1128–1136. 2016.(In Chinese). PubMed/NCBI

20 

Jackson BL, Grabowska A and Ratan HL: MicroRNA in prostate cancer: Functional importance and potential as circulating biomarkers. BMC Cancer. 14:9302014. View Article : Google Scholar : PubMed/NCBI

21 

Song C, Chen H, Wang T, Zhang W, Ru G and Lang J: Expression profile analysis of microRNAs in prostate cancer by next-generation sequencing. Prostate. 75:500–516. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Josson S, Gururajan M, Hu P, Shao C, Chu GY, Zhau HE, Liu C, Lao K, Lu CL, Lu YT, et al: miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer. Clin Cancer Res. 20:4636–4646. 2014. View Article : Google Scholar : PubMed/NCBI

23 

Wei P, Qiao B, Li Q, Han X, Zhang H, Huo Q and Sun J: microRNA-340 suppresses tumorigenic potential of prostate cancer cells by targeting high-mobility group nucleosome-binding domain 5. DNA Cell Biol. 35:33–43. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Ji H, Li Y, Jiang F, Wang X, Zhang J, Shen J and Yang X: Inhibition of transforming growth factor beta/SMAD signal by MiR-155 is involved in arsenic trioxide-induced anti-angiogenesis in prostate cancer. Cancer Sci. 105:1541–1549. 2014. View Article : Google Scholar : PubMed/NCBI

25 

Guan H, Liu C, Fang F, Huang Y, Tao T, Ling Z, You Z, Han X, Chen S, Xu B and Chen M: MicroRNA-744 promotes prostate cancer progression through aberrantly activating Wnt/β-catenin signaling. Oncotarget. 8:14693–14707. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Pencheva N and Tavazoie SF: Control of metastatic progression by microRNA regulatory networks. Nat Cell Biol. 15:546–554. 2013. View Article : Google Scholar : PubMed/NCBI

27 

Zhang X, Han X, Tang Y, Wu Y, Qu B and Shen N: miR-744 enhances type I interferon signaling pathway by targeting PTP1B in primary human renal mesangial cells. Sci Rep. 5:129872015. View Article : Google Scholar : PubMed/NCBI

28 

Zeng H, Qu J, Jin N, Xu J, Lin C, Chen Y, Yang X, He X, Tang S, Lan X, et al: Feedback activation of leukemia inhibitory factor receptor limits response to histone deacetylase inhibitors in breast cancer. Cancer Cell. 30:459–473. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Vislovukh A, Kratassiouk G, Porto E, Gralievska N, Beldiman C, Pinna G, El'skaya A, Harel-Bellan A, Negrutskii B and Groisman I: Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744. Br J Cancer. 108:2304–2311. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Hezel AF and Bardeesy N: LKB1; linking cell structure and tumor suppression. Oncogene. 27:6908–6919. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Blagih J, Krawczyk CM and Jones RG: LKB1 and AMPK: Central regulators of lymphocyte metabolism and function. Immunol Rev. 249:59–71. 2012. View Article : Google Scholar : PubMed/NCBI

32 

Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA and Cantley LC: The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 101:3329–3335. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Agarwal S, Bell CM, Rothbart SB and Moran RG: AMP-activated protein kinase (AMPK) control of mTORC1 is p53- and TSC2-independent in pemetrexed-treated carcinoma cells. J Biol Chem. 290:27473–27486. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Jozwiak J, Jozwiak S, Grzela T and Lazarczyk M: Positive and negative regulation of TSC2 activity and its effects on downstream effectors of the mTOR pathway. Neuromolecular Med. 7:287–296. 2005. View Article : Google Scholar : PubMed/NCBI

35 

Chen MB, Zhang Y, Wei MX, Shen W, Wu XY, Yao C and Lu PH: Activation of AMP-activated protein kinase (AMPK) mediates plumbagin-induced apoptosis and growth inhibition in cultured human colon cancer cells. Cell Signal. 25:1993–2002. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang M, Li H, Zhang Y and Li H: Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1. Oncol Lett 17: 2257-2265, 2019.
APA
Zhang, M., Li, H., Zhang, Y., & Li, H. (2019). Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1. Oncology Letters, 17, 2257-2265. https://doi.org/10.3892/ol.2018.9822
MLA
Zhang, M., Li, H., Zhang, Y., Li, H."Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1". Oncology Letters 17.2 (2019): 2257-2265.
Chicago
Zhang, M., Li, H., Zhang, Y., Li, H."Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1". Oncology Letters 17, no. 2 (2019): 2257-2265. https://doi.org/10.3892/ol.2018.9822
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang M, Li H, Zhang Y and Li H: Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1. Oncol Lett 17: 2257-2265, 2019.
APA
Zhang, M., Li, H., Zhang, Y., & Li, H. (2019). Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1. Oncology Letters, 17, 2257-2265. https://doi.org/10.3892/ol.2018.9822
MLA
Zhang, M., Li, H., Zhang, Y., Li, H."Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1". Oncology Letters 17.2 (2019): 2257-2265.
Chicago
Zhang, M., Li, H., Zhang, Y., Li, H."Oncogenic miR‑744 promotes prostate cancer growth through direct targeting of LKB1". Oncology Letters 17, no. 2 (2019): 2257-2265. https://doi.org/10.3892/ol.2018.9822
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team