|
1
|
Warburg O, Wind F and Negelein E: The
metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gatenby RA and Gillies RJ: Why do cancers
have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Vlassenko AG, McConathy J, Couture LE, Su
Y, Massoumzadeh P, Leeds HS, Chicoine MR, Tran DD, Huang J, Dahiya
S, et al: Aerobic glycolysis as a marker of tumor aggressiveness:
Preliminary data in high grade human brain tumors. Dis Markers.
2015:8749042015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lunt SY and Vander Heiden MG: Aerobic
glycolysis: Meeting the metabolic requirements of cell
proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Alberts B: Molecular biology of the cell.
4th. New York: Garland Science; 2002
|
|
8
|
Mathupala SP, Ko YH and Pedersen PL: The
pivotal roles of mitochondria in cancer: Warburg and beyond and
encouraging prospects for effective therapies. Biochim Biophys
Acta. 1797:1225–1230. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wajant H: The Fas signaling pathway: More
than a paradigm. Science. 296:1635–1636. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Desagher S and Martinou JC: Mitochondria
as the central control point of apoptosis. Trends Cell Biol.
10:369–377. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Luo X, Budihardjo I, Zou H, Slaughter C
and Wang X: Bid, a Bcl2 interacting protein, mediates cytochrome c
release from mitochondria in response to activation of cell surface
death receptors. Cell. 94:481–490. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Jiang X and Wang X: Cytochrome C-mediated
apoptosis. Annu Rev Biochem. 73:87–106. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ernster L and Schatz G: Mitochondria: A
historical review. J Cell Biol. 91:227s–255s. 1981. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Hill RA and Connolly JD: Triterpenoids.
Nat Prod Rep. 30:1028–1065. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jager S, Trojan H, Kopp T, Laszczyk MN and
Scheffler A: Pentacyclic triterpene distribution in various
plants-rich sources for a new group of multi-potent plant extracts.
Molecules. 14:2016–2031. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Szakiel A, Paczkowski C, Pensec F and
Bertsch C: Fruit cuticular waxes as a source of biologically active
triterpenoids. Phytochem Rev. 11:263–284. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Wozniak L, Skapska S and Marszalek K:
Ursolic Acid-A pentacyclic triterpenoid with a wide spectrum of
pharmacological activities. Molecules. 20:20614–20641. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kashyap D, Tuli HS and Sharma AK: Ursolic
acid (UA): A metabolite with promising therapeutic potential. Life
Sci. 146:201–213. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Santos Rosa C, Garcia Gimenez MD, Saenz
Rodriguez MT and De la Puerta Vazquez R: Antihistaminic and
antieicosanoid effects of oleanolic and ursolic acid fraction from
Helichrysum picardii. Pharmazie. 62:459–462. 2007.PubMed/NCBI
|
|
20
|
Xu T, Wang X, Zhong B, Nurieva RI, Ding S
and Dong C: Ursolic acid suppresses interleukin-17 (IL-17)
production by selectively antagonizing the function of RORgamma t
protein. J Biol Chem. 286:22707–22710. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP and
Piao HR: Design, synthesis, evaluation, and molecular docking of
ursolic acid derivatives containing a nitrogen heterocycle as
anti-inflammatory agents. Bioorg Med Chem Lett. 28:1797–1803. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Lee J, Lee HI, Seo KI, Cho HW, Kim MJ,
Park EM and Lee MK: Effects of ursolic acid on glucose metabolism,
the polyol pathway and dyslipidemia in non-obese type 2 diabetic
mice. Indian J Exp Biol. 52:683–691. 2014.PubMed/NCBI
|
|
23
|
Poongunran J, Perera HK, Jayasinghe L,
Fernando IT, Sivakanesan R, Araya H and Fujimoto Y: Bioassay-guided
fractionation and identification of α-amylase inhibitors from
Syzygium cumini leaves. Pharm Biol. 55:206–211. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lee J, Yee ST, Kim JJ, Choi MS, Kwon EY,
Seo KI and Lee MK: Ursolic acid ameliorates thymic atrophy and
hyperglycemia in streptozotocin-nicotinamide-induced diabetic mice.
Chem Biol Interact. 188:635–642. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kazmi I, Rahman M, Afzal M, Gupta G,
Saleem S, Afzal O, Shaharyar MA, Nautiyal U, Ahmed S and Anwar F:
Anti-diabetic potential of ursolic acid stearoyl glucoside: A new
triterpenic gycosidic ester from Lantana camara. Fitoterapia.
83:142–146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang YL, Wang ZJ, Shen HL, Yin M and Tang
KX: Effects of artesunate and ursolic acid on hyperlipidemia and
its complications in rabbit. Eur J Pharm Sci. 50:366–371. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sundaresan A, Radhiga T and Pugalendi KV:
Effect of ursolic acid and Rosiglitazone combination on hepatic
lipid accumulation in high fat diet-fed C57BL/6J mice. Eur J
Pharmacol. 741:297–303. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Seo DY, Lee SR, Heo JW, No MH, Rhee BD, Ko
KS, Kwak HB and Han J: Ursolic acid in health and disease. Korean J
Physiol Pharmacol. 22:235–248. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kunkel SD, Elmore CJ, Bongers KS, Ebert
SM, Fox DK, Dyle MC, Bullard SA and Adams CM: Ursolic acid
increases skeletal muscle and brown fat and decreases diet-induced
obesity, glucose intolerance and fatty liver disease. PLoS One.
7:e393322012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ma JQ, Ding J, Zhang L and Liu CM:
Protective effects of ursolic acid in an experimental model of
liver fibrosis through Nrf2/ARE pathway. Clin Res Hepatol
Gastroenterol. 39:188–197. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hollosy F, Idei M, Csorba G, Szabó E,
Bökönyi G, Seprödi A, Mészáros G, Szende B and Kéri G: Activation
of caspase-3 protease during the process of ursolic acid and its
derivative-induced apoptosis. Anticancer Res. 21:3485–3491.
2001.PubMed/NCBI
|
|
32
|
Wu CC, Huang YF, Hsieh CP, Chueh PJ and
Chen YL: Combined use of zoledronic acid augments ursolic
Acid-induced apoptosis in human osteosarcoma cells through enhanced
oxidative stress and autophagy. Molecules. 21(pii): E16402016.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jiang K, Chi T, Li T, Zheng G, Fan L, Liu
Y, Chen X, Chen S, Jia L and Shao JW: Correction: A smart
pH-responsive nano-carrier as a drug delivery system for the
targeted delivery of ursolic acid: Suppresses cancer growth and
metastasis by modulating P53/MMP-9/PTEN/CD44 mediated multiple
signaling pathways. Nanoscale. 10:6212–6213. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Zhang H, Li X, Ding J, Xu H, Dai X, Hou Z,
Zhang K, Sun K and Sun W: Delivery of ursolic acid (UA) in
polymeric nanoparticles effectively promotes the apoptosis of
gastric cancer cells through enhanced inhibition of cyclooxygenase
2 (COX-2). Int J Pharm. 441:261–268. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Harmand PO, Duval R, Liagre B,
Jayat-Vignoles C, Beneytout JL, Delage C and Simon A: Ursolic acid
induces apoptosis through caspase-3 activation and cell cycle
arrest in HaCat cells. Int J Oncol. 23:105–112. 2003.PubMed/NCBI
|
|
36
|
Cha HJ, Park MT, Chung HY, Kim ND, Sato H,
Seiki M and Kim KW: Ursolic acid-induced down-regulation of MMP-9
gene is mediated through the nuclear translocation of
glucocorticoid receptor in HT1080 human fibrosarcoma cells.
Oncogene. 16:771–778. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Luo J, Hu YL and Wang H: Ursolic acid
inhibits breast cancer growth by inhibiting proliferation, inducing
autophagy, and apoptosis and suppressing inflammatory responses via
the PI3K/AKT and NF-κB signaling pathways in vitro. Exp Ther Med.
14:3623–3631. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lewinska A, Adamczyk-Grochala J,
Kwasniewicz E, Deregowska A and Wnuk M: Ursolic acid-mediated
changes in glycolytic pathway promote cytotoxic autophagy and
apoptosis in phenotypically different breast cancer cells.
Apoptosis. 22:800–815. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yeh CT, Wu CH and Yen GC: Ursolic acid, a
naturally occurring triterpenoid, suppresses migration and invasion
of human breast cancer cells by modulating c-Jun N-terminal kinase,
Akt and mammalian target of rapamycin signaling. Mol Nutr Food Res.
54:1285–1295. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Subbaramaiah K, Michaluart P, Sporn MB and
Dannenberg AJ: Ursolic acid inhibits cyclooxygenase-2 transcription
in human mammary epithelial cells. Cancer Res. 60:2399–2404.
2000.PubMed/NCBI
|
|
41
|
Liu L, Zhang J, Li M, Zhang X, Li Z, Wang
L, Wu J and Luo C: Inhibition of HepG2 cell proliferation by
ursolic acid and polysaccharides via the downregulation of
cyclooxygenase-2. Mol Med Rep. 9:2505–2511. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tian Z, Lin G, Zheng RX, Huang F, Yang MS
and Xiao PG: Anti-hepatoma activity and mechanism of ursolic acid
and its derivatives isolated from Aralia decaisneana. World J
Gastroenterol. 12:874–879. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Limami Y, Pinon A, Leger DY, Pinault E,
Delage C, Beneytout JL, Simon A and Liagre B: The
P2Y2/Src/p38/COX-2 pathway is involved in the resistance to ursolic
acid-induced apoptosis in colorectal and prostate cancer cells.
Biochimie. 94:1754–1763. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang HC, Huang CY, Lin-Shiau SY and Lin
JK: Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma
invasion through suppressing the association ZIP/p62 with PKC-zeta
and downregulating the MMP-9 expression. Mol Carcinog. 48:517–531.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang X, Zhang F, Yang L, Mei Y, Long H,
Zhang X, Zhang J, Qimuge S and Su X: Ursolic acid inhibits
proliferation and induces apoptosis of cancer cells in vitro and in
vivo. J Biomed Biotechnol. 2011:4193432011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li R, Wang X, Zhang XH, Chen HH and Liu
YD: Ursolic acid promotes apoptosis of SGC-7901 gastric cancer
cells through ROCK/PTEN mediated mitochondrial translocation of
cofilin-1. Asian Pac J Cancer Prev. 15:9593–9597. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tang Q, Ji Q, Tang Y, Chen T, Pan G, Hu S,
Bao Y, Peng W and Yin P: Mitochondrial translocation of cofilin-1
promotes apoptosis of gastric cancer BGC-823 cells induced by
ursolic acid. Tumour Biol. 35:2451–2459. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tang C, Lu YH, Xie JH, Wang F, Zou JN,
Yang JS, Xing YY and Xi T: Downregulation of survivin and
activation of caspase-3 through the PI3K/Akt pathway in ursolic
acid-induced HepG2 cell apoptosis. Anticancer Drugs. 20:249–258.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wallace DC: A mitochondrial paradigm of
metabolic and degenerative diseases, aging, and cancer: A dawn for
evolutionary medicine. Annu Rev Genet. 39:359–407. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cheng TL, Liao CC, Tsai WH, Lin CC, Yeh
CW, Teng CF and Chang WT: Identification and characterization of
the mitochondrial targeting sequence and mechanism in human citrate
synthase. J Cell Biochem. 107:1002–1015. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wilson JE: Isozymes of mammalian
hexokinase: Structure, subcellular localization and metabolic
function. J Exp Biol. 206:2049–2057. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pedersen PL, Mathupala S, Rempel A,
Geschwind JF and Ko YH: Mitochondrial bound type II hexokinase: A
key player in the growth and survival of many cancers and an ideal
prospect for therapeutic intervention. Biochim Biophys Acta.
1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Mathupala SP, Ko YH and Pedersen PL:
Hexokinase-2 bound to mitochondria: Cancer's stygian link to the
‘Warburg Effect’ and a pivotal target for effective therapy. Semin
Cancer Biol. 19:17–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shoshan-Barmatz V, Zakar M, Rosenthal K
and Abu-Hamad S: Key regions of VDAC1 functioning in apoptosis
induction and regulation by hexokinase. Biochim Biophys Acta.
1787:421–430. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Duval RE, Harmand PO, Jayat-Vignoles C,
Cook-Moreau J, Pinon A, Delage C and Simon A: Differential
involvement of mitochondria during ursolic acid-induced apoptotic
process in HaCaT and M4Beu cells. Oncol Rep. 19:145–149.
2008.PubMed/NCBI
|
|
56
|
Shanmugam MK, Dai X, Kumar AP, Tan BK,
Sethi G and Bishayee A: Ursolic acid in cancer prevention and
treatment: Molecular targets, pharmacokinetics and clinical
studies. Biochem Pharmacol. 85:1579–1587. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Tang X, Gao J, Chen J, Fang F, Wang Y, Dou
H, Xu Q and Qian Z: Inhibition by [corrected] ursolic acid of
[corrected] calcium-induced mitochondrial permeability transition
and release of two proapoptotic proteins. Biochem Biophys Res
Commun. 337:320–324. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Shyu MH, Kao TC and Yen GC: Oleanolic acid
and ursolic acid induce apoptosis in HuH7 human hepatocellular
carcinoma cells through a mitochondrial-dependent pathway and
downregulation of XIAP. J Agric Food Chem. 58:6110–6118. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Saraswati S, Agrawal SS and Alhaider AA:
Ursolic acid inhibits tumor angiogenesis and induces apoptosis
through mitochondrial-dependent pathway in Ehrlich ascites
carcinoma tumor. Chem Biol Interact. 206:153–165. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang J, Jiang Z, Xiang L, Li Y, Ou M, Yang
X, Shao J, Lu Y, Lin L, Chen J, et al: Synergism of ursolic acid
derivative US597 with 2-deoxy-D-glucose to preferentially induce
tumor cell death by dual-targeting of apoptosis and glycolysis. Sci
Rep. 4:50062014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dong H, Yang X, Xie J, Xiang L, Li Y, Ou
M, Chi T, Liu Z, Yu S, Gao Y, et al: UP12, a novel ursolic acid
derivative with potential for targeting multiple signaling pathways
in hepatocellular carcinoma. Biochem Pharmacol. 93:151–162. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Wang Y, Branicky R, Noe A and Hekimi S:
Superoxide dismutases: Dual roles in controlling ROS damage and
regulating ROS signaling. J Cell Biol. 217:1915–1928. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zorov DB, Juhaszova M and Sollott SJ:
Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS
release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sies H: Oxidative stress: A concept in
redox biology and medicine. Redox Biol. 4:180–183. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Moloney JN and Cotter TG: ROS signalling
in the biology of cancer. Semin Cell Dev Biol. 80:50–64. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Sabharwal SS and Schumacker PT:
Mitochondrial ROS in cancer: Initiators, amplifiers or an Achilles'
heel? Nat Rev Cancer. 14:709–721. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shadel GS and Horvath TL: Mitochondrial
ROS signaling in organismal homeostasis. Cell. 163:560–569. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tu HY, Huang AM, Wei BL, Gan KH, Hour TC,
Yang SC, Pu YS and Lin CN: Ursolic acid derivatives induce cell
cycle arrest and apoptosis in NTUB1 cells associated with reactive
oxygen species. Bioorg Med Chem. 17:7265–7274. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kim KH, Seo HS, Choi HS, Choi I, Shin YC
and Ko SG: Induction of apoptotic cell death by ursolic acid
through mitochondrial death pathway and extrinsic death receptor
pathway in MDA-MB-231 cells. Arch Pharm Res. 34:1363–1372. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Ventura A, Kirsch DG, McLaughlin ME,
Tuveson DA, Grimm J, Lintault L, Newman J, Reczek EE, Weissleder R
and Jacks T: Restoration of p53 function leads to tumour regression
in vivo. Nature. 445:661–665. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hollstein M, Sidransky D, Vogelstein B and
Harris CC: p53 mutations in human cancers. Science. 253:49–53.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Matoba S, Kang JG, Patino WD, Wragg A,
Boehm M, Gavrilova O, Hurley PJ, Bunz F and Hwang PM: p53 regulates
mitochondrial respiration. Science. 312:1650–1653. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kruse JP and Gu W: p53 aerobics: The major
tumor suppressor fuels your workout. Cell Metab. 4:1–3. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Heffernan-Stroud LA, Helke KL, Jenkins RW,
De Costa AM, Hannun YA and Obeid LM: Defining a role for
sphingosine kinase 1 in p53-dependent tumors. Oncogene.
31:1166–1175. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Nam H and Kim MM: Ursolic acid induces
apoptosis of SW480 cells via p53 activation. Food Chem Toxicol.
62:579–583. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhang X, Song X, Yin S, Zhao C, Fan L and
Hu H: p21 induction plays a dual role in anti-cancer activity of
ursolic acid. Exp Biol Med (Maywood). 241:501–508. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Manu KA and Kuttan G: Ursolic acid induces
apoptosis by activating p53 and caspase-3 gene expressions and
suppressing NF-kappaB mediated activation of bcl-2 in B16F-10
melanoma cells. Int Immunopharmacol. 8:974–981. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Yu YX, Gu ZL, Yin JL, Chou WH, Kwok CY,
Qin ZH and Liang ZQ: Ursolic acid induces human hepatoma cell line
SMMC-7721 apoptosis via p53-dependent pathway. Chin Med J (Engl).
123:1915–1923. 2010.PubMed/NCBI
|