|
1
|
Torre LA, Siegel RL, Ward EM and Jemal A:
Global cancer incidence and mortality rates and trends-an update.
Cancer Epidemiol Biomarkers Prev. 25:16–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kim SM, Choi HS and Byun JS: Overall
5-year survival rate and prognostic factors in patients with stage
IB and IIA cervical cancer treated by radical hysterectomy and
pelvic lymph node dissection. Int J Gynecol Cancer. 10:305–312.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kasamatsu T, Onda T, Sawada M, Kato T,
Ikeda S, Sasajima Y and Tsuda H: Radical hysterectomy for FIGO
stage I–IIB adenocarcinoma of the uterine cervix. Br J Cancer.
100:1400–1405. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Survival rates for cervical cancer by
stage, . https://www.cancer.org/cancer/cervical-cancer/detection-diagnosis-staging/survival.html
|
|
5
|
Bulk S, Visser O, Rozendaal L, Verheijen
RH and Meijer CJ: Incidence and survival rate of women with
cervical cancer in the Greater Amsterdam area. Br J Cancer.
89:834–839. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ibáñez R, Alejo M, Combalia N, Tarroch X,
Autonell J, Codina L, Culubret M, Bosch FX and de Sanjosé S:
Underscreened women remain overrepresented in the pool of cervical
cancer cases in spain: A need to rethink the screening
interventions. Biomed Res Int. 2015:6053752015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Safaeian M, Solomon D and Castle PE:
Cervical cancer prevention-cervical screening: Science in
evolution. Obstet Gynecol Clin North Am. 34739–760. (ix)2007.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Karimi-Zarchi M, Peighmbari F, Karimi N,
Rohi M and Chiti Z: A Comparison of 3 Ways of Conventional Pap
Smear, Liquid-Based Cytology and Colposcopy vs Cervical Biopsy for
Early Diagnosis of Premalignant Lesions or Cervical Cancer in Women
with Abnormal Conventional Pap Test. Int J Biomed Sci. 9:205–210.
2013.PubMed/NCBI
|
|
9
|
Franco EL: Chapter 13: Primary screening
of cervical cancer with human papillomavirus tests. J Natl Cancer
Inst Monogr. 89–96. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kulasingam SL, Havrilesky LJ, Ghebre R and
Myers ER: Screening for cervical cancer: A modeling study for the
US preventive services task force. J Low Genit Tract Dis.
17:193–202. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Marlow LA, Waller J and Wardle J: Barriers
to cervical cancer screening among ethnic minority women: A
qualitative study. J Fam Plann Reprod Health Care. 41:248–254.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
McLaughlin-Drubin ME and Munger K: Viruses
associated with human cancer. Biochim Biophys Acta. 1782:127–150.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Parkin DM: The global health burden of
infection-associated cancers in the year 2002. Int J Cancer.
118:3030–3044. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Combes JD, Pawlita M, Waterboer T,
Hammouda D, Rajkumar T, Vanhems P, Snijders P, Herrero R,
Franceschi S and Clifford G: Antibodies against high-risk human
papillomavirus proteins as markers for invasive cervical cancer.
Int J Cancer. 135:2453–2461. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Coghill AE and Hildesheim A: Epstein-Barr
virus antibodies and the risk of associated malignancies: Review of
the literature. Am J Epidemiol. 180:687–695. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mahieux R and Gessain A: Adult T-cell
leukemia/lymphoma and HTLV-1. Curr Hematol Malig Rep. 2:257–264.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Walboomers JM, Jacobs MV, Manos MM, Bosch
FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ and Muñoz N:
Human papillomavirus is a necessary cause of invasive cervical
cancer worldwide. J Pathol. 189:12–19. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Luevano M, Bernard HU, Barrera-Saldaña HA,
Trevino V, Garcia-Carranca A, Villa LL, Monk BJ, Tan X, Davies DH,
Felgner PL and Kalantari M: High-throughput profiling of the
humoral immune responses against thirteen human papillomavirus
types by proteome microarrays. Virology. 405:31–40. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Joura EA, Ault KA, Bosch FX, Brown D,
Cuzick J, Ferris D, Garland SM, Giuliano AR, Hernandez-Avila M, Huh
W, et al: Attribution of 12 high-risk human papillomavirus
genotypes to infection and cervical disease. Cancer Epidemiol
Biomarkers Prev. 23:1997–2008. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Burd EM: Human papillomavirus and cervical
cancer. Clin Microbiol Rev. 16:1–17. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lutz HU: Homeostatic roles of naturally
occurring antibodies: An overview. J Autoimmun. 29:287–294. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schwartz-Albiez R, Monteiro RC, Rodriguez
M, Binder CJ and Shoenfeld Y: Natural antibodies, intravenous
immunoglobulin and their role in autoimmunity, cancer and
inflammation. Clin Exp Immunol. 158 (Suppl 1):S43–S50. 2009.
View Article : Google Scholar
|
|
23
|
Peng Y, Kowalewski R, Kim S and Elkon KB:
The role of IgM antibodies in the recognition and clearance of
apoptotic cells. Mol Immunol. 42:781–787. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Desmetz C, Mange A, Maudelonde T and
Solassol J: Autoantibody signatures: Progress and perspectives for
early cancer detection. J Cell Mol Med. 15:2013–2024. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Knight V, Merkel PA and O'Sullivan MD:
Anticytokine autoantibodies: Association with infection and immune
dysregulation. Antibodies. 5:2016.doi: 10.3390/antib5010003.
View Article : Google Scholar
|
|
26
|
Wu J and Li L: Autoantibodies in
Alzheimer's disease: Potential biomarkers, pathogenic roles, and
therapeutic implications. J Biomed Res. 30:361–372. 2016.PubMed/NCBI
|
|
27
|
Arbuckle MR, McClain MT, Rubertone MV,
Scofield RH, Dennis GJ, James JA and Harley JB: Development of
autoantibodies before the clinical onset of systemic lupus
erythematosus. N Engl J Med. 349:1526–1533. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lacombe J, Mange A and Solassol J: Use of
Autoantibodies to Detect the Onset of Breast Cancer. J Immunol Res.
2014:5749812014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Liu Y, Liao Y, Xiang L, Jiang K, Li S,
Huangfu M and Sun S: A panel of autoantibodies as potential early
diagnostic serum biomarkers in patients with breast cancer. Int J
Clin Oncol. 22:291–296. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Huangfu M, Xu S, Li S, Sun B, Lee KH, Liu
L and Sun S: A panel of autoantibodies as potential early
diagnostic serum biomarkers in patients with cervical cancer.
Tumour Biol. 37:8709–8714. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tan EM and Zhang J: Autoantibodies to
tumor-associated antigens: Reporters from the immune system.
Immunol Rev. 222:328–340. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhang JY, Casiano CA, Peng XX, Koziol JA,
Chan EK and Tan EM: Enhancement of antibody detection in cancer
using panel of recombinant tumor-associated antigens. Cancer
Epidemiol Biomarkers Prev. 12:136–143. 2003.PubMed/NCBI
|
|
33
|
Tabuchi Y, Shimoda M, Kagara N, Naoi Y,
Tanei T, Shimomura A, Shimazu K, Kim SJ and Noguchi S: Protective
effect of naturally occurring anti-HER2 autoantibodies on breast
cancer. Breast Cancer Res Treat. 157:55–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shih NY, Lai HL, Chang GC, Lin HC, Wu YC,
Liu JM, Liu KJ and Tseng SW: Anti-alpha-enolase autoantibodies are
down-regulated in advanced cancer patients. Jpn J Clin Oncol.
40:663–669. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Van Hoesen K, Meynier S, Ribaux P,
Petignat P, Delie F and Cohen M: Circulating GRP78 antibodies from
ovarian cancer patients: A promising tool for cancer cell targeting
drug delivery system? Oncotarget. 8:107176–107187. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pinho SS and Reis CA: Glycosylation in
cancer: Mechanisms and clinical implications. Nat Rev Cancer.
15:540–555. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Krueger KE and Srivastava S:
Posttranslational protein modifications: Current implications for
cancer detection, prevention, and therapeutics. Mol Cell
Proteomics. 5:1799–1810. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
He Y, Zhou Z, Hofstetter WL, Zhou Y, Hu W,
Guo C, Wang L, Guo W, Pataer A, Correa AM, et al: Aberrant
expression of proteins involved in signal transduction and DNA
repair pathways in lung cancer and their association with clinical
parameters. PLoS One. 7:e310872012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Geradts J and Ingram CD: Abnormal
expression of cell cycle regulatory proteins in ductal and lobular
carcinomas of the breast. Mod Pathol. 13:945–953. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zaenker P, Gray ES and Ziman MR:
Autoantibody Production in Cancer-The Humoral Immune Response
toward Autologous Antigens in Cancer Patients. Autoimmun Rev.
15:477–483. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Pappa KI, Lygirou V, Kontostathi G,
Zoidakis J, Makridakis M, Vougas K, Daskalakis G, Polyzos A and
Anagnou NP: Proteomic analysis of normal and cancer cervical cell
lines reveals deregulation of cytoskeleton-associated proteins.
Cancer Genomics Proteomics. 14:253–266. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Kontostathi G, Zoidakis J, Makridakis M,
Lygirou V, Mermelekas G, Papadopoulos T, Vougas K, Vlamis-Gardikas
A, Drakakis P, Loutradis D, et al: Cervical cancer cell line
secretome highlights the roles of transforming growth
factor-Beta-induced protein ig-h3, peroxiredoxin-2, and NRF2 on
cervical carcinogenesis. Biomed Res Int. 2017:41807032017.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Demarco M, Lorey TS, Fetterman B, Cheung
LC, Guido RS, Wentzensen N, Kinney WK, Poitras NE, Befano B, Castle
PE, et al: Risks of CIN 2+, CIN 3+, and cancer by cytology and
human papillomavirus status: The foundation of risk-based cervical
screening guidelines. J Low Genit Tract Dis. 21:261–267. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Holowaty P, Miller AB, Rohan T and To T:
Natural history of dysplasia of the uterine cervix. J Natl Cancer
Inst. 91:252–258. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ostör AG: Natural history of cervical
intraepithelial neoplasia: A critical review. Int J Gynecol Pathol.
12:186–192. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
McCredie MR, Sharples KJ, Paul C, Baranyai
J, Medley G, Jones RW and Skegg DC: Natural history of cervical
neoplasia and risk of invasive cancer in women with cervical
intraepithelial neoplasia 3: A retrospective cohort study. Lancet
Oncol. 9:425–434. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Macdonald IK, Parsy-Kowalska CB and
Chapman CJ: Autoantibodies: Opportunities for early cancer
detection. Trends Cancer. 3:198–213. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zaenker P and Ziman MR: Serologic
autoantibodies as diagnostic cancer biomarkers-a review. Cancer
Epidemiol Biomarkers Prev. 22:2161–2181. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Pedersen JW and Wandall HH: Autoantibodies
as Biomarkers in Cancer. Lab Medicine. 42:623–628. 2011. View Article : Google Scholar
|
|
50
|
de Oliveira GA, Rangel LP, Costa DC and
Silva JL: Misfolding, aggregation, and disordered segments in c-Abl
and p53 in human cancer. Front Oncol. 5:972015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shoenfeld Y and Toubi E: Protective
autoantibodies: Role in homeostasis, clinical importance, and
therapeutic potential. Arthritis Rheum. 52:2599–2606. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Siloşi I, Siloşi CA, Boldeanu MV, Cojocaru
M, Biciuşcă V, Avrămescu CS, Cojocaru IM, Bogdan M and FolcuŢi RM:
The role of autoantibodies in health and disease. Rom J Morphol
Embryol. 57 (Suppl):633–638. 2016.PubMed/NCBI
|
|
53
|
Cohen M and Petignat P: Purified
autoantibodies against glucose-regulated protein 78 (GRP78) promote
apoptosis and decrease invasiveness of ovarian cancer cells. Cancer
Lett. 309:104–109. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Díaz-Zaragoza M, Hernández-Ávila R,
Viedma-Rodríguez R, Arenas-Aranda D and Ostoa-Saloma P: Natural and
adaptive IgM antibodies in the recognition of tumor-associated
antigens of breast cancer (Review). Oncol Rep. 34:1106–1114. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Nagele EP, Han M, Acharya NK, DeMarshall
C, Kosciuk MC and Nagele RG: Natural IgG autoantibodies are
abundant and ubiquitous in human sera, and their number is
influenced by age, gender, and disease. PLoS One. 8:e607262013.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Krasnov GS, Dmitriev AA, Snezhkina AV and
Kudryavtseva AV: Deregulation of glycolysis in cancer:
Glyceraldehyde-3-phosphate dehydrogenase as a therapeutic target.
Expert Opin Ther Targets. 17:681–693. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hansen CN, Ketabi Z, Rosenstierne MW,
Palle C, Boesen HC and Norrild B: Expression of CPEB, GAPDH and
U6snRNA in cervical and ovarian tissue during cancer development.
APMIS. 117:53–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kim JW, Kim SJ, Han SM, Paik SY, Hur SY,
Kim YW, Lee JM and Namkoong SE: Increased
glyceraldehyde-3-phosphate dehydrogenase gene expression in human
cervical cancers. Gynecol Oncol. 71:266–269. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zheng J: Energy metabolism of cancer:
Glycolysis versus oxidative phosphorylation (Review). Oncol Lett.
4:1151–1157. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Altenberg B and Greulich KO: Genes of
glycolysis are ubiquitously overexpressed in 24 cancer classes.
Genomics. 84:1014–1020. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Liu K, Tang Z, Huang A, Chen P, Liu P,
Yang J, Lu W, Liao J, Sun Y, Wen S, et al:
Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and
metastasis through upregulation of SNAIL expression. Int J Oncol.
50:252–262. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hao L, Zhou X, Liu S, Sun M, Song Y, Du S,
Sun B, Guo C, Gong L, Hu J, et al: Elevated GAPDH expression is
associated with the proliferation and invasion of lung and
esophageal squamous cell carcinomas. Proteomics. 15:3087–3100.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nicholls C, Pinto AR, Li H, Li L, Wang LH,
Simpson R and Liu JP: Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) induces cancer cell senescence by interacting with
telomerase RNA component. Proc Natl Acad Sci USA. 109:13308–13313.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jung DW, Kim WH, Seo S, Oh E, Yim SH, Ha
HH, Chang YT and Williams DR: Chemical targeting of GAPDH
moonlighting function in cancer cells reveals its role in tubulin
regulation. Chem Biol. 21:1533–1545. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Lea MA, Qureshi MS, Buxhoeveden M, Gengel
N, Kleinschmit J and Desbordes C: Regulation of the proliferation
of colon cancer cells by compounds that affect glycolysis,
including 3-bromopyruvate, 2-deoxyglucose and biguanides.
Anticancer Res. 33:401–407. 2013.PubMed/NCBI
|
|
66
|
Kim JW, Kim TE, Kim YK, Kim YW, Kim SJ,
Lee JM, Kim IK and Namkoong SE: Antisense oligodeoxynucleotide of
glyceraldehyde-3-phosphate dehydrogenase gene inhibits cell
proliferation and induces apoptosis in human cervical carcinoma
cell lines. Antisense Nucleic Acid Drug Dev. 9:507–513. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chapman CJ, Healey GF, Murray A, Boyle P,
Robertson C, Peek LJ, Allen J, Thorpe AJ, Hamilton-Fairley G,
Parsy-Kowalska CB, et al: EarlyCDT®-Lung test: Improved
clinical utility through additional autoantibody assays. Tumour
Biol. 33:1319–1326. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jin Y, Kim SC and Kim HJ, Ju W, Kim YH and
Kim HJ: Use of autoantibodies against tumor-associated antigens as
serum biomarkers for primary screening of cervical cancer.
Oncotarget. 8:105425–105439. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Révillion F, Pawlowski V, Hornez L and
Peyrat JP: Glyceraldehyde-3-phosphate dehydrogenase gene expression
in human breast cancer. Eur J Cancer. 36:1038–1042. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tokunaga K, Nakamura Y, Sakata K, Fujimori
K, Ohkubo M, Sawada K and Sakiyama S: Enhanced expression of a
glyceraldehyde-3-phosphate dehydrogenase gene in human lung
cancers. Cancer Res. 47:5616–5619. 1987.PubMed/NCBI
|
|
71
|
Hjerpe E, Egyhazi Brage S, Carlson J,
Frostvik Stolt M, Schedvins K, Johansson H, Shoshan M and
Avall-Lundqvist E: Metabolic markers GAPDH, PKM2, ATP5B and
BEC-index in advanced serous ovarian cancer. BMC Clin Pathol.
13:302013. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Abdel-Haleem AM, Lewis NE, Jamshidi N,
Mineta K, Gao X and Gojobori T: The emerging facets of
non-cancerous warburg effect. Front Endocrinol (Lausanne).
8:2792017. View Article : Google Scholar : PubMed/NCBI
|