|
1
|
Feng X, Luo Q, Wang H, Zhang H and Chen F:
MicroRNA-22 suppresses cell proliferation, migration and invasion
in oral squamous cell carcinoma by targeting NLRP3. J Cell Physiol.
233:6705–6713. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
He B, Lin X, Tian F, Yu W and Qiao B:
miR-133a-3p inhibits oral squamous cell carcinoma (OSCC)
proliferation and invasion by suppressing COL1A1. J Cell Biochem.
119:338–346. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mao Y, Fu Z, Zhang Y, Dong L, Zhang Y,
Zhang Q, Li X and Liu J: A seven-lncRNA signature predicts overall
survival in esophageal squamous cell carcinoma. Sci Rep.
8:88232018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kong XP, Yao J, Luo W, Feng FK, Ma JT, Ren
YP, Wang DL and Bu RF: The expression and functional role of a
FOXC1 related mRNA-lncRNA pair in oral squamous cell carcinoma. Mol
Cell Biochem. 394:177–186. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Kim EK, Moon S, Kim DK, Zhang X and Kim J:
CXCL1 induces senescence of cancer-associated fibroblasts via
autocrine loops in oral squamous cell carcinoma. PLoS One.
13:e01888472018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Shishodia G, Verma G, Das BC and Bharti
AC: miRNA as viral transcription tuners in HPV-mediated cervical
carcinogenesis. Front Biosci (Schol Ed). 10:21–47. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yu Z, Wang C, Wang M, Li Z, Casimiro MC,
Liu M, Wu K, Whittle J, Ju X, Hyslop T, et al: A cyclin D1/microRNA
17/20 regulatory feedback loop in control of breast cancer cell
proliferation. J Cell Biol. 182:509–517. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Seok H, Lee H, Jang ES and Chi SW:
Evaluation and control of miRNA-like off-target repression for RNA
interference. Cell Mol Life Sci. 75:797–814. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Xu Y, Han YF, Ye B, Zhang YL, Dong JD, Zhu
SJ and Chen J: miR-27b-3p is involved in doxorubicin resistance of
human anaplastic thyroid cancer cells via targeting peroxisome
proliferator-activated receptor gamma. Basic Clin Pharmacol
Toxicol. 123:670–677. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li X, Wu Y, Liu A and Tang X: MiR-27b is
epigenetically downregulated in tamoxifen resistant breast cancer
cells due to promoter methylation and regulates tamoxifen
sensitivity by targeting HMGB3. Biochem Biophys Res Commun.
477:768–773. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Álvarez-Teijeiro S, Menéndez ST,
Villaronga MA, Pena-Alonso E, Rodrigo JP, Morgan RO, Granda-Díaz R,
Salom C, Fernandez MP and García-Pedrero JM: Annexin A1
downregulation in head and neck squamous cell carcinoma is mediated
via transcriptional control with direct involvement of miR-196a/b.
Sci Rep. 7:67902017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rivera C, Oliveira AK, Costa RAP, De Rossi
T and Paes Leme AF: Prognostic biomarkers in oral squamous cell
carcinoma: A systematic review. Oral Oncol. 72:38–47. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lin CW, Chou YE, Yeh CM, Yang SF, Chuang
CY and Liu YF: A functional variant at the miRNA binding site in
HMGB1 gene is associated with risk of oral squamous cell carcinoma.
Oncotarget. 8:34630–34642. 2017.PubMed/NCBI
|
|
14
|
Zhou J, Huang S, Wang L, Yuan X, Dong Q,
Zhang D and Wang X: Clinical and prognostic significance of HIF-1α
overexpression in oral squamous cell carcinoma: A meta-analysis.
World J Surg Oncol. 15:1042017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Feng L, Houck JR, Lohavanichbutr P and
Chen C: Transcriptome analysis reveals differentially expressed
lncRNAs between oral squamous cell carcinoma and healthy oral
mucosa. Oncotarget. 8:31521–31531. 2017.PubMed/NCBI
|
|
16
|
Hirai M, Kitahara H, Kobayashi Y, Kato K,
Bou-Gharios G, Nakamura H and Kawashiri S: Regulation of PD-L1
expression in a high-grade invasive human oral squamous cell
carcinoma microenvironment. Int J Oncol. 50:41–48. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Nusse R and Clevers H: Wnt/β-catenin
signaling, disease, and emerging therapeutic modalities. Cell.
169:985–999. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
McCracken KW, Aihara E, Martin B, Crawford
CM, Broda T, Treguier J, Zhang X, Shannon JM, Montrose MH and Wells
JM: Wnt/β-catenin promotes gastric fundus specification in mice and
humans. Nature. 541:182–187. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li G, Su Q, Liu H, Wang D, Zhang W, Lu Z,
Chen Y, Huang X, Li W, Zhang C, et al: Frizzled7 promotes
epithelial-to-mesenchymal transition and stemness via activating
canonical Wnt/β-catenin pathway in gastric cancer. Int J Biol Sci.
14:280–293. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cao TT, Xiang D, Liu BL, Huang TX, Tan BB,
Zeng CM, Wang ZY, Ming XY, Zhang LY, Jin G, et al: FZD7 is a novel
prognostic marker and promotes tumor metastasis via WNT and EMT
signaling pathways in esophageal squamous cell carcinoma.
Oncotarget. 8:65957–65968. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen Z, Huang C, Ma T, Jiang L, Tang L,
Shi T, Zhang S, Zhang L, Zhu P, Li J, et al: Reversal effect of
quercetin on multidrug resistance via FZD7/β-catenin pathway in
hepatocellular carcinoma cells. Phytomedicine. 43:37–45. 2018.
View Article : Google Scholar : PubMed/NCBI
|