|
1
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. 66:683–691. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhang J, Wang TY and Niu XC: Increased
plasma levels of pentraxin 3 are associated with poor prognosis of
colorectal carcinoma patients. Tohoku J Exp Med. 240:39–46. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Terzić J, Grivennikov S, Karin E and Karin
M: Inflammation and colon cancer. Gastroenterology.
138:2101–2114.e5. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Hafström L, Johansson H and Ahlberg J:
Does diagnostic delay of colorectal cancer result in malpractice
claims? A retrospective analysis of the Swedish board of
malpractice from 1995–2008. Patient Saf Surg. 6:132012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Boland CR and Goel A: Microsatellite
instability in colorectal cancer. Gastroenterology.
138:2073–2087.e3. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lao VV and Grady WM: Epigenetics and
colorectal cancer. Nat Rev Gastroenterol Hepatol. 8:686–700. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Pino MS and Chung DC: The chromosomal
instability pathway in colon cancer. Gastroenterology.
138:2059–2072. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Naccarati A, Polakova V, Pardini B,
Vodickova L, Hemminki K, Kumar R and Vodicka P: Mutations and
polymorphisms in TP53 gene--an overview on the role in colorectal
cancer. Mutagenesis. 27:211–218. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Xie Q, Wu MY, Zhang DX, Yang YM, Wang BS,
Zhang J, Xu J, Zhong WD and Hu JN: Synergistic anticancer effect of
exogenous wild-type p53 gene combined with 5-FU in human colon
cancer resistant to 5-FU in vivo. World J Gastroenterol.
22:7342–7352. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bykov VJN, Eriksson SE, Bianchi J and
Wiman KG: Targeting mutant p53 for efficient cancer therapy. Nat
Rev Cancer. 18:89–102. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Testa U, Pelosi E and Castelli G:
Colorectal cancer: Genetic abnormalities, tumor progression, tumor
heterogeneity, clonal evolution and tumor-initiating cells. Med Sci
(Basel). 6:1–113. 2018.
|
|
14
|
Wang S, Liu Z, Wang L and Zhang X:
NF-kappaB signaling pathway, inflammation and colorectal cancer.
Cell Mol Immunol. 6:327–334. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
PerŠe M: Oxidative Stress in the
Pathogenesis of Colorectal Cancer: Cause or Consequence? BioMed Res
Int. 7257102013.PubMed/NCBI
|
|
17
|
Pizzino G, Irrera N, Cucinotta M, Pallio
G, Mannino F, Arcoraci V, Squadrito F, Altavilla D and Bitto A:
Oxidative Stress: Harms and Benefits for Human Health. Oxid Med
Cell Longev. 2017:84167632017. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cano CE, Gommeaux J, Pietri S, Culcasi M,
Garcia S, Seux M, Barelier S, Vasseur S, Spoto RP, Pébusque MJ, et
al: Tumor protein 53-induced nuclear protein 1 is a major mediator
of p53 antioxidant function. Cancer Res. 69:219–226. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Flöter J, Kaymak I and Schulze A:
Regulation of Metabolic Activity by p53. Metabolites. 7:1–18. 2017.
View Article : Google Scholar
|
|
20
|
Kalo E, Kogan-Sakin I, Solomon H,
Bar-Nathan E, Shay M, Shetzer Y, Dekel E, Goldfinger N, Buganim Y,
Stambolsky P, et al: Mutant p53R273H attenuates the expression of
phase 2 detoxifying enzymes and promotes the survival of cells with
high levels of reactive oxygen species. J Cell Sci. 125:5578–5586.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu J, Zhang C and Feng Z: Tumor
suppressor p53 and its gain-of-function mutants in cancer. Acta
Biochim Biophys Sin (Shanghai). 46:170–179. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ahmed K, Tabuchi Y and Kondo T:
Hyperthermia: An effective strategy to induce apoptosis in cancer
cells. Apoptosis. 20:1411–1419. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Cao K and Tait SWG: Apoptosis and Cancer:
Force Awakens, Phantom Menace, or Both? Int Rev Cell Mol Biol.
337:135–152. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
El-Khattouti A, Selimovic D, Haikel Y and
Hassan M: Crosstalk between apoptosis and autophagy: Molecular
mechanisms and therapeutic strategies in cancer. J Cell Death.
6:37–55. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Chaitanya GV, Steven AJ and Babu PP:
PARP-1 cleavage fragments: Signatures of cell-death proteases in
neurodegeneration. Cell Commun Signal. 8:312010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Shiraishi H, Okamoto H, Yoshimura A and
Yoshida H: ER stress-induced apoptosis and caspase-12 activation
occurs downstream of mitochondrial apoptosis involving Apaf-1. J
Cell Sci. 119:3958–3966. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Harding HP, Novoa I, Zhang Y, Zeng H, Wek
R, Schapira M and Ron D: Regulated translation initiation controls
stress-induced gene expression in mammalian cells. Mol Cell.
6:1099–1108. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
McCullough KD, Martindale JL, Klotz LO, Aw
TY and Holbrook NJ: Gadd153 sensitizes cells to endoplasmic
reticulum stress by down-regulating Bcl2 and perturbing the
cellular redox state. Mol Cell Biol. 21:1249–1259. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Nakagawa T, Zhu H, Morishima N, Li E, Xu
J, Yankner BA and Yuan J: Caspase-12 mediates
endoplasmic-reticulum-specific apoptosis and cytotoxicity by
amyloid-beta. Nature. 403:98–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rao RV, Castro-Obregon S, Frankowski H,
Schuler M, Stoka V, del Rio G, Bredesen DE and Ellerby HM: Coupling
endoplasmic reticulum stress to the cell death program. An
Apaf-1-independent intrinsic pathway. J Biol Chem. 277:21836–21842.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Abraha AM and Ketema EB: Apoptotic
pathways as a therapeutic target for colorectal cancer treatment.
World J Gastrointest Onco. 8:583–591. 2016. View Article : Google Scholar
|
|
32
|
Stoian M, State N, Stoica V and Radulian
G: Apoptosis in colorectal cancer. J Med Life. 7:160–164.
2014.PubMed/NCBI
|
|
33
|
Zhang B, Fang C, Deng D and Xia L:
Research progress on common adverse events caused by targeted
therapy for colorectal cancer. Oncol Lett. 16:27–33. 2018.(review).
PubMed/NCBI
|
|
34
|
Lee JH, Khor TO, Shu L, Su ZY, Fuentes F
and Kong AN: Dietary phytochemicals and cancer prevention: Nrf2
signaling, epigenetics, and cell death mechanisms in blocking
cancer initiation and progression. Pharmacol Ther. 137:153–171.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zaidi SF, Ahmed K, Saeed SA, Khan U and
Sugiyama T: Can diet modulate helicobacter pylori associated
gastric pathogenesis? An evidence-based analysis. Nutr Cancer.
69:979–989. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Newman DJ and Cragg GM: Natural products
as sources of new drugs over the 30 years from 1981 to 2010. J Nat
Prod. 75:311–335. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nobili S, Lippi D, Witort E, Donnini M,
Bausi L, Mini E and Capaccioli S: Natural compounds for cancer
treatment and prevention. Pharmacol Res. 59:365–378. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Rejhová A, Opattová A, Čumová A, Slíva D
and Vodička P: Natural compounds and combination therapy in
colorectal cancer treatment. Eur J Med Chem. 144:582–594. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
González-Vallinas M, González-Castejón M,
Rodríguez-Casado A and Ramírez de Molina A: Dietary phytochemicals
in cancer prevention and therapy: A complementary approach with
promising perspectives. Nutr Rev. 71:585–599. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Lee KW, Bode AM and Dong Z: Molecular
targets of phytochemicals for cancer prevention. Nat Rev Cancer.
11:211–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fung TT, Hu FB, Wu K, Chiuve SE, Fuchs CS
and Giovannucci E: The mediterranean and dietary approaches to stop
hypertension (DASH) diets and colorectal cancer. Am J Clin Nutr.
92:1429–1435. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nomura AMY, Wilkens LR, Murphy SP, Hankin
JH, Henderson BE, Pike MC and Kolonel LN: Association of vegetable,
fruit, and grain intakes with colorectal cancer: The Multiethnic
Cohort Study. Am J Clin Nutr. 88:730–737. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
van Duijnhoven FJ, Bueno-De-Mesquita HB,
Ferrari P, Jenab M, Boshuizen HC, Ros MM, Casagrande C, Tjønneland
A, Olsen A, Overvad K, et al: Fruit, vegetables, and colorectal
cancer risk: The European Prospective Investigation into Cancer and
Nutrition. Am J Clin Nutr. 89:1441–1452. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gunasekaran S, Venkatachalam K and
Namasivayam N: p-Methoxycinnamic acid, an active phenylpropanoid
induces mitochondrial mediated apoptosis in HCT-116 human colon
adenocarcinoma cell line. Environ Toxicol Pharmacol. 40:966–974.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yaffe PB, Doucette CD, Walsh M and Hoskin
DW: Piperine impairs cell cycle progression and causes reactive
oxygen species-dependent apoptosis in rectal cancer cells. Exp Mol
Pathol. 94:109–114. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Banerjee K and Mandal M: Oxidative stress
triggered by naturally occurring flavone apigenin results in
senescence and chemotherapeutic effect in human colorectal cancer
cells. Redox Biol. 5:153–162. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Watson JL, Hill R, Yaffe PB, Greenshields
A, Walsh M, Lee PW, Giacomantonio CA and Hoskin DW: Curcumin causes
superoxide anion production and p53-independent apoptosis in human
colon cancer cells. Cancer Lett. 297:1–8. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Singh N, Shrivastav A and Sharma RK:
Curcumin induces caspase and calpain-dependent apoptosis in HT29
human colon cancer cells. Mol Med Rep. 2:627–631. 2009.PubMed/NCBI
|
|
49
|
Liu B, Yuan B, Zhang L, Mu W and Wang C:
ROS/p38/p53/Puma signaling pathway is involved in emodin-induced
apoptosis of human colorectal cancer cells. Int J Clin Exp Med.
8:15413–15422. 2015.PubMed/NCBI
|
|
50
|
Raja SB, Rajendiran V, Kasinathan NK, P A,
Venkatabalasubramanian S, Murali MR, Devaraj H and Devaraj SN:
Differential cytotoxic activity of Quercetin on colonic cancer
cells depends on ROS generation through COX-2 expression. Food Chem
Toxicol 106 (Pt A). 92–106. 2017. View Article : Google Scholar
|
|
51
|
Kwon O, Soung NK, Thimmegowda NR, Jeong
SJ, Jang JH, Moon DO, Chung JK, Lee KS, Kwon YT, Erikson RL, et al:
Patulin induces colorectal cancer cells apoptosis through EGR-1
dependent ATF3 up-regulation. Cell Signal. 24:943–950. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Miki H, Uehara N, Kimura A, Sasaki T, Yuri
T, Yoshizawa K and Tsubura A: Resveratrol induces apoptosis via
ROS-triggered autophagy in human colon cancer cells. Int J Oncol.
40:1020–1028. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Han MH, Kim GY, Yoo YH and Choi YH:
Sanguinarine induces apoptosis in human colorectal cancer HCT-116
cells through ROS-mediated Egr-1 activation and mitochondrial
dysfunction. Toxicol Lett. 220:157–166. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Li M, Song LH, Yue GG, Lee JKM, Zhao LM,
Li L, Zhou X, Tsui SK, Ng SS, Fung KP, et al: Bigelovin triggered
apoptosis in colorectal cancer in vitro and in vivo via
upregulating death receptor 5 and reactive oxidative species. Sci
Rep. 7:42176–42188. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shang HS, Liu JY, Lu HF, Chiang HS, Lin
CH, Chen A, Lin YF, Chung JG, Ng SS, et al: Casticin induced
apoptotic cell death and altered associated gene expression in
human colon cancer colo 205 cells. Environ Toxicol. 32:2041–2052.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sithara T, Arun KB, Syama HP, Reshmitha TR
and Nisha P: Morin inhibits proliferation of sw480 colorectal
cancer cells by inducing apoptosis mediated by reactive oxygen
species formation and uncoupling of Warburg effect. Front
Pharmacol. 8:6402017. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Khamphio M, Barusrux S and Weerapreeyakul
N: Sesamol induces mitochondrial apoptosis pathway in HCT116 human
colon cancer cells via pro-oxidant effect. Life Sci. 158:46–56.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Subramanian AP, Jaganathan SK, Mandal M,
Supriyanto E and Muhamad II: Gallic acid induced apoptotic events
in HCT-15 colon cancer cells. World J Gastroenterol. 22:3952–3961.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Lim JH, Lee YM, Park SR, Kim DH and Lim
BO: Anticancer activity of hispidin via reactive oxygen
species-mediated apoptosis in colon cancer cells. Anticancer Res.
34:4087–4093. 2014.PubMed/NCBI
|
|
60
|
Waziri PM, Abdullah R, Yeap SK, Omar AR,
Kassim NK, Malami I, How CW, Etti IC and Abu ML: Clausenidin
induces caspase-dependent apoptosis in colon cancer. BMC Complement
Altern Med. 16:2562016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Huang Z, Xu Y and Peng W: Colchicine
induces apoptosis in HT-29 human colon cancer cells via the AKT and
c-Jun N-terminal kinase signaling pathways. Mol Med Rep.
12:5939–5944. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Santos LS, Silva VR, Menezes LRA, Soares
MBP, Costa EV and Bezerra DP: Xylopine induces oxidative stress and
causes G2/M phase arrest, triggering caspase-mediated apoptosis by
p53-independent pathway in HCT116 cells. Oxid Med Cell Longev.
2017:71268722017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sun G, Zheng Z, Lee MH, Xu Y, Kang S, Dong
Z, Wang M, Gu Z, Li H and Chen W: Chemoprevention of Colorectal
Cancer by Artocarpin, a Dietary Phytochemical from Artocarpus
heterophyllus. J Agric Food Chem. 65:3474–3480. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kaur M, Velmurugan B, Tyagi A, Deep G,
Katiyar S, Agarwal C and Agarwal R: Silibinin suppresses growth and
induces apoptotic death of human colorectal carcinoma LoVo cells in
culture and tumor xenograft. Mol Cancer Ther. 8:2366–2374. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yaffe PB, Power Coombs MR, Doucette CD,
Walsh M and Hoskin DW: Piperine, an alkaloid from black pepper,
inhibits growth of human colon cancer cells via G1 arrest and
apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog.
54:1070–1085. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang D, Zhang X, Zhang W and Rengarajan T:
Vicenin-2 inhibits Wnt/β-catenin signaling and induces apoptosis in
HT-29 human colon cancer cell line. Drug Des Devel Ther.
12:1303–1310. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dasiram JD, Ganesan R, Kannan J,
Kotteeswaran V and Sivalingam N: Curcumin inhibits growth potential
by G1 cell cycle arrest and induces apoptosis in p53-mutated COLO
320DM human colon adenocarcinoma cells. Biomed Pharmacother.
86:373–380. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Agarwal A, Kasinathan A, Ganesan R,
Balasubramanian A, Bhaskaran J, Suresh S, Srinivasan R, Aravind KB
and Sivalingam N: Curcumin induces apoptosis and cell cycle arrest
via the activation of reactive oxygen species-independent
mitochondrial apoptotic pathway in Smad4 and p53 mutated colon
adenocarcinoma HT29 cells. Nutr Res. 51:67–81. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu B, Zhou Z, Zhou W, Liu J, Zhang Q, Xia
J, Liu J, Chen N, Li M and Zhu R: Resveratrol inhibits
proliferation in human colorectal carcinoma cells by inducing
G1/S-phase cell cycle arrest and apoptosis through
caspase/cyclin-CDK pathways. Mol Med Rep. 10:1697–1702. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Eldhose B, Gunawan M, Rahman M, Latha MS
and Notario V: Plumbagin reduces human colon cancer cell survival
by inducing cell cycle arrest and mitochondria-mediated apoptosis.
Int J Oncol. 45:1913–1920. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kim HJ, Park JH and Kim JK:
Cucurbitacin-I, a natural cell-permeable triterpenoid isolated from
Cucurbitaceae, exerts potent anticancer effect in colon cancer.
Chem Biol Interact. 219:1–8. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Amin A, Bajbouj K, Koch A, Gandesiri M and
Schneider-Stock R: Defective autophagosome formation in p53-null
colorectal cancer reinforces crocin-induced apoptosis. Int J Mol
Sci. 16:1544–1561. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Li CY, Huang WF, Wang QL, Wang F, Cai E,
Hu B, Du JC, Wang J, Chen R, Cai XJ, et al: Crocetin induces
cytotoxicity in colon cancer cells via p53-independent mechanisms.
Asian Pac J Cancer Prev. 13:3757–3761. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
74. Lee YJ, Kang YR, Lee SY, Jin Y, Han DC
and Kwon BM: Ginkgetin induces G2-phase arrest in HCT116 colon
cancer cells through the modulation of b-Myb and miRNA34a
expression. Int J Oncol. 51:1331–1342. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Radhakrishnan EK, Bava SV, Narayanan SS,
Nath LR, Thulasidasan AKT, Soniya EV and Anto RJ: [6]-Gingerol
induces caspase-dependent apoptosis and prevents PMA-induced
proliferation in colon cancer cells by inhibiting MAPK/AP-1
signaling. PLoS One. 9:e1044012014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang L, Liu Y, Wang M, Qian Y, Dong X, Gu
H, Wang H, Guo S and Hisamitsu T: Quercetin-induced apoptosis of
HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc
signaling axis. Mol Med Rep. 14:4559–4566. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Cho HJ and Park JHY: Kaempferol induces
cell cycle arrest in HT-29 human colon cancer cells. J Cancer Prev.
18:257–263. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
López de Las Hazas MC, Piñol C, Macià A
and Motilva MJ: Hydroxytyrosol and the colonic metabolites derived
from virgin olive oil intake induce cell cycle arrest and apoptosis
in colon cancer cells. J Agric Food Chem. 65:6467–6476. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Lee SH and Clark R: Anti-Tumorigenic
Effects of Capsaicin in Colon Cancer. J Food Chem Nanotechnol.
2:162–167. 2016. View Article : Google Scholar
|
|
80
|
Jin J, Lin G, Huang H, Xu D, Yu H, Ma X,
Zhu L, Ma D and Jiang H: Capsaicin mediates cell cycle arrest and
apoptosis in human colon cancer cells via stabilizing and
activating p53. Int J Biol Sci. 10:285–295. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Chidambara Murthy KN, Jayaprakasha GK and
Patil BS: The natural alkaloid berberine targets multiple pathways
to induce cell death in cultured human colon cancer cells. Eur J
Pharmacol. 688:14–21. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Xu LN, Lu BN, Hu MM, Xu YW, Han X, Qi Y
and Peng JY: Mechanisms involved in the cytotoxic effects of
berberine on human colon cancer HCT-8 cells. Biocell. 36:113–120.
2012.PubMed/NCBI
|
|
83
|
Cai Y, Xia Q, Luo R, Huang P, Sun Y, Shi Y
and Jiang W: Berberine inhibits the growth of human colorectal
adenocarcinoma in vitro and in vivo. J Nat Med. 68:53–62. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liu J, Li Q, Liu Z, Lin L, Zhang X, Cao M
and Jiang J: Harmine induces cell cycle arrest and mitochondrial
pathway-mediated cellular apoptosis in SW620 cells via inhibition
of the Akt and ERK signaling pathways. Oncol Rep. 35:3363–3370.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Tailor D and Singh RP: Dietary and
non-dietary phytochemicals in cancer control. Nutrition, Diet and
Cancer. Shankar S and Shrivastava RK: Springer. (New York).
585–622. 2012. View Article : Google Scholar
|
|
86
|
Milani A, Basirnejad M, Shahbazi S and
Bolhassani A: Carotenoids: Biochemistry, pharmacology and
treatment. Br J Pharmacol. 174:1290–1324. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gutheil WG, Reed G, Ray A, Anant S and
Dhar A: Crocetin: An agent derived from saffron for prevention and
therapy for cancer. Curr Pharm Biotechnol. 13:173–179. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Ray P, Guha D, Chakraborty J, Banerjee S,
Adhikary A, Chakraborty S, Das T and Sa G: Crocetin exploits
p53-induced death domain (PIDD) and FAS-associated death domain
(FADD) proteins to induce apoptosis in colorectal cancer. Sci Rep.
6:32979–32989. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Chakraborty D, Bishayee K, Ghosh S, Biswas
R, Mandal SK and Khuda-Bukhsh AR: [6]-Gingerol induces caspase 3
dependent apoptosis and autophagy in cancer cells: drug-DNA
interaction and expression of certain signal genes in HeLa cells.
Eur J Pharmacol. 694:20–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Ju SA, Park SM, Lee YS, Bae JH, Yu R, An
WG, Suh JH and Kim BS: Administration of 6-gingerol greatly
enhances the number of tumor-infiltrating lymphocytes in murine
tumors. Int J Cancer. 130:2618–2628. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Panche AN, Diwan AD and Chandra SR:
Flavonoids: An overview. J Nutr Sci. 5:e472016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kim HJ, Kim SK, Kim BS, Lee SH, Park YS,
Park BK, Kim SJ, Kim J, Choi C, Kim JS, et al: Apoptotic effect of
quercetin on HT-29 colon cancer cells via the AMPK signaling
pathway. J Agric Food Chem. 58:8643–8650. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Refolo MG, DAlessandro R, Malerba N,
Laezza C, Bifulco M, Messa C, Caruso MG, Notarnicola M and Tutino
V: Anti-proliferative and pro apoptotic effects of flavonoid
quercetin are mediated by CB1 receptor in human colon cancer cell
lines. J Cell Physiol. 230:2973–2980. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhang XA, Zhang S, Yin Q and Zhang J:
Quercetin induces human colon cancer cells apoptosis by inhibiting
the nuclear factor-kappa B Pathway. Pharmacogn Mag. 11:404–409.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu Y, Lang T, Jin B, Chen F, Zhang Y,
Beuerman RW, Zhou L and Zhang Z: Luteolin inhibits colorectal
cancer cell epithelial-to-mesenchymal transition by suppressing
CREB1 expression revealed by comparative proteomics study. J
Proteomics. 161:1–10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kang KA, Piao MJ, Ryu YS, Hyun YJ, Park
JE, Shilnikova K, Zhen AX, Kang HK, Koh YS, Jeong YJ, et al:
Luteolin induces apoptotic cell death via antioxidant activity in
human colon cancer cells. Int J Oncol. 51:1169–1178. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Yang N, Zhao Y, Wang Z, Liu Y and Zhang Y:
Scutellarin suppresses growth and causes apoptosis of human
colorectal cancer cells by regulating the p53 pathway. Mol Med Rep.
15:929–935. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lee JH, Choi YJ, Park SH and Nam MJ:
Potential role of nucleoside diphosphate kinase in
myricetin-induced selective apoptosis in colon cancer HCT-15 cells.
Food Chem Toxicol 116 (Pt B). 315–322. 2018. View Article : Google Scholar
|
|
99
|
Seydi E, Rasekh HR, Salimi A, Mohsenifar Z
and Pourahmad J: Myricetin selectively induces apoptosis on
cancerous hepatocytes by directly targeting their mitochondria.
Basic Clin Pharmacol Toxicol. 119:249–258. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Phillips PA, Sangwan V, Borja-Cacho D,
Dudeja V, Vickers SM and Saluja AK: Myricetin induces pancreatic
cancer cell death via the induction of apoptosis and inhibition of
the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Cancer
Lett. 308:181–188. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Xu M, Wang S, Song YU, Yao J, Huang K and
Zhu X: Apigenin suppresses colorectal cancer cell proliferation,
migration and invasion via inhibition of the Wnt/β-catenin
signaling pathway. Oncol Lett. 11:3075–3080. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Zhou Z, Tang M, Liu Y, Zhang Z, Lu R and
Lu J: Apigenin inhibits cell proliferation, migration, and invasion
by targeting Akt in the A549 human lung cancer cell line.
Anticancer Drugs. 28:446–456. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Liu X, Li L, Lv L, Chen D, Shen L and Xie
Z: Apigenin inhibits the proliferation and invasion of osteosarcoma
cells by suppressing the Wnt/β-catenin signaling pathway. Oncol
Rep. 34:1035–1041. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Maeda Y, Takahashi H, Nakai N, Yanagita T,
Ando N, Okubo T, Saito K, Shiga K, Hirokawa T, Hara M, et al:
Apigenin induces apoptosis by suppressing Bcl-xl and Mcl-1
simultaneously via signal transducer and activator of transcription
3 signaling in colon cancer. Int J Oncol. 52:1661–1673. 2018.
|
|
105
|
Bobe G, Sansbury LB, Albert PS, Cross AJ,
Kahle L, Ashby J, Slattery ML, Caan B, Paskett E, Iber F, et al:
Dietary flavonoids and colorectal adenoma recurrence in the Polyp
Prevention Trial. Cancer Epidemiol Biomarkers Prev. 17:1344–1353.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Lee HS, Cho HJ, Yu R, Lee KW, Chun HS and
Park JHY: Mechanisms underlying apoptosis-inducing effects of
Kaempferol in HT-29 human colon cancer cells. Int J Mol Sci.
15:2722–2737. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Tong W, Wang Q, Sun D and Suo J: Curcumin
suppresses colon cancer cell invasion via AMPK-induced inhibition
of NF-κB, uPA activator and MMP9. Oncol Lett. 12:4139–4146. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yang X, Li Z, Wu Q, Chen S, Yi C and Gong
C: TRAIL and curcumin codelivery nanoparticles enhance
TRAIL-induced apoptosis through upregulation of death receptors.
Drug Deliv. 24:1526–1536. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Shakibaei M, Kraehe P, Popper B, Shayan P,
Goel A and Buhrmann C: Curcumin potentiates antitumor activity of
5-fluorouracil in a 3D alginate tumor microenvironment of
colorectal cancer. BMC Cancer. 15:2502015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Shakibaei M, Mobasheri A, Lueders C, Busch
F, Shayan P and Goel A: Curcumin enhances the effect of
chemotherapy against colorectal cancer cells by inhibition of NF-κB
and Src protein kinase signaling pathways. PLoS One. 8:e572182013.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Liu Z, Ren B, Wang Y, Zou C, Qiao Q, Diao
Z, Mi Y, Zhu D and Liu X: Sesamol induces human hepatocellular
carcinoma cells apoptosis by impairing mitochondrial function and
suppressing autophagy. Sci Rep. 7:457282017. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Bhardwaj R, Sanyal SN, Vaiphei K, Kakkar
V, Deol PK, Kaur IP and Kaur T: Sesamol induces apoptosis by
altering expression of bcl-2 and bax proteins and modifies skin
tumor development in Balb/c mice. Anticancer Agents Med Chem.
17:726–733. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Daglia M, Di Lorenzo A, Nabavi SF, Talas
ZS and Nabavi SM: Polyphenols: well beyond the antioxidant
capacity: gallic acid and related compounds as neuroprotective
agents: you are what you eat! Curr Pharm Biotechnol. 15:362–372.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yang C, Xie X, Tang H, Dong X, Zhang X and
Huang F: Transcriptome analysis reveals GA induced apoptosis in
HCT116 human colon cancer cells through calcium and p53 signal
pathways. RSC Advances. 8:12449–12458. 2018. View Article : Google Scholar
|
|
115
|
Rubió L, Macià A, Valls RM, Pedret A,
Romero MP, Solà R and Motilva MJ: A new hydroxytyrosol metabolite
identified in human plasma: Hydroxytyrosol acetate sulphate. Food
Chem. 134:1132–1136. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
de Las Hazas MCL, Motilva MJ, Piñol C and
Macià A: Application of dried blood spot cards to determine olive
oil phenols (hydroxytyrosol metabolites) in human blood. Talanta.
159:189–193. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Mosele JI, Martín-Peláez S, Macià A,
Farràs M, Valls RM, Catalán Ú and Motilva MJ: Faecal microbial
metabolism of olive oil phenolic compounds: In vitro and in vivo
approaches. Mol Nutr Food Res. 58:1809–1819. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Sun L, Luo C and Liu J: Hydroxytyrosol
induces apoptosis in human colon cancer cells through ROS
generation. Food Funct. 5:1909–1914. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Bertelli AA, Ferrara F, Diana G, Fulgenzi
A, Corsi M, Ponti W, Ferrero ME and Bertelli A: Resveratrol, a
natural stilbene in grapes and wine, enhances intraphagocytosis in
human promonocytes: A co-factor in antiinflammatory and anticancer
chemopreventive activity. Int J Tissue React. 21:93–104.
1999.PubMed/NCBI
|
|
120
|
Buhrmann C, Shayan P, Popper B, Goel A and
Shakibaei M: Sirt1 is required for resveratrolmediated
chemopreventive effects in colorectal cancer cells. Nutrients.
8:1452016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Chen H, Jin ZL and Xu H: MEK/ERK signaling
pathway in apoptosis of SW620 cell line and inhibition effect of
resveratrol. Asian Pac J Trop Med. 9:49–53. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Yuan SX, Wang DX, Wu QX, Ren CM, Li Y,
Chen QZ, Zeng YH, Shao Y, Yang JQ, Bai Y, et al: BMP9/p38 MAPK is
essential for the antiproliferative effect of resveratrol on human
colon cancer. Oncol Rep. 35:939–947. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Saud SM, Li W, Morris NL, Matter MS,
Colburn NH, Kim YS and Young MR: Resveratrol prevents tumorigenesis
in mouse model of Kras activated sporadic colorectal cancer by
suppressing oncogenic Kras expression. Carcinogenesis.
35:2778–2786. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
De Maria S, Scognamiglio I, Lombardi A,
Amodio N, Caraglia M, Cartenì M, Ravagnan G and Stiuso P:
Polydatin, a natural precursor of resveratrol, induces cell cycle
arrest and differentiation of human colorectal Caco-2 cell. J
Transl Med. 11:2642013. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kumazaki M, Noguchi S, Yasui Y, Iwasaki J,
Shinohara H, Yamada N and Akao Y: Anti-cancer effects of naturally
occurring compounds through modulation of signal transduction and
miRNA expression in human colon cancer cells. J Nutr Biochem.
24:1849–1858. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Reddivari L, Charepalli V, Radhakrishnan
S, Vadde R, Elias RJ, Lambert JD and Vanamala JKP: Grape compounds
suppress colon cancer stem cells in vitro and in a rodent model of
colon carcinogenesis. BMC Complement Altern Med. 16:2782016.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Sivakumar G: Colchicine semisynthetics:
Chemotherapeutics for cancer? Curr Med Chem. 20:892–898. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Risinger AL, Giles FJ and Mooberry SL:
Microtubule dynamics as a target in oncology. Cancer Treat Rev.
35:255–261. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Lee SH, Richardson RL, Dashwood RH and
Baek SJ: Capsaicin represses transcriptional activity of β-catenin
in human colorectal cancer cells. J Nutr Biochem. 23:646–655. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Guamán Ortiz LM, Tillhon M, Parks M, Dutto
I, Prosperi E, Savio M, Arcamone AG, Buzzetti F, Lombardi P and
Scovassi AI: Multiple effects of berberine derivatives on colon
cancer cells. BioMed Res Int. 2014:9245852014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Wang Y, Liu Q, Liu Z, Li B, Sun Z, Zhou H,
Zhang X, Gong Y and Shao C: Berberine, a genotoxic alkaloid,
induces ATM-Chk1 mediated G2 arrest in prostate cancer cells. Mutat
Res. 734:20–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Li J, Gu L, Zhang H, Liu T, Tian D, Zhou M
and Zhou S: Berberine represses DAXX gene transcription and induces
cancer cell apoptosis. Lab Invest. 93:354–364. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Yan K, Zhang C, Feng J, Hou L, Yan L, Zhou
Z, Liu Z, Liu C, Fan Y, Zheng B, et al: Induction of G1 cell cycle
arrest and apoptosis by berberine in bladder cancer cells. Eur J
Pharmacol. 661:1–7. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Tillhon M, Guamán Ortiz LM, Lombardi P and
Scovassi AI: Berberine: New perspectives for old remedies. Biochem
Pharmacol. 84:1260–1267. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wang L, Liu L, Shi Y, Cao H, Chaturvedi R,
Calcutt MW, Hu T, Ren X, Wilson KT, Polk DB, et al: Berberine
induces caspase-independent cell death in colon tumor cells through
activation of apoptosis-inducing factor. PLoS One. 7:e364182012.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Xu LN, Lu BN, Hu MM, Xu YW, Han X, Qi Y
and Peng JY: Mechanisms involved in the cytotoxic effects of
berberine on human colon cancer HCT-8 cells. Biocell. 36:113–20.
2012.PubMed/NCBI
|
|
137
|
Patel K, Gadewar M, Tripathi R, Prasad SK
and Patel DK: A review on medicinal importance, pharmacological
activity and bioanalytical aspects of beta-carboline alkaloid
‘Harmine’. Asian Pac J Trop Biomed. 2:660–664. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Nguyen AV, Martinez M, Stamos MJ, Moyer
MP, Planutis K, Hope C and Holcombe RF: Results of a phase I pilot
clinical trial examining the effect of plant-derived resveratrol
and grape powder on Wnt pathway target gene expression in colonic
mucosa and colon cancer. Cancer Manag Res. 1:25–37. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Anastas JN and Moon RT: WNT signalling
pathways as therapeutic targets in cancer. Nat Rev Cancer.
13:11–26. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Patel KR, Brown VA, Jones DJ, Britton RG,
Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA,
et al: Clinical pharmacology of resveratrol and its metabolites in
colorectal cancer patients. Cancer Res. 70:7392–7399. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Ferguson LR and Philpott M: Cancer
prevention by dietary bioactive components that target the immune
response. Curr Cancer Drug Targets. 7:459–464. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Camuesco D, Comalada M, Rodríguez-Cabezas
ME, Nieto A, Lorente MD, Concha A, Zarzuelo A and Gálvez J: The
intestinal anti-inflammatory effect of quercitrin is associated
with an inhibition in iNOS expression. Br J Pharmacol. 143:908–918.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Kwon KH, Murakami A, Tanaka T and Ohigashi
H: Dietary rutin, but not its aglycone quercetin, ameliorates
dextran sulfate sodium-induced experimental colitis in mice:
Attenuation of pro-inflammatory gene expression. Biochem Pharmacol.
69:395–406. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Camuesco D, Comalada M, Concha A, Nieto A,
Sierra S, Xaus J, Zarzuelo A and Gálvez J: Intestinal
anti-inflammatory activity of combined quercitrin and dietary olive
oil supplemented with fish oil, rich in EPA and DHA (n-3)
polyunsaturated fatty acids, in rats with DSS-induced colitis. Clin
Nutr. 25:466–476. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Kim S, Keku TO, Martin C, Galanko J,
Woosley JT, Schroeder JC, Satia JA, Halabi S and Sandler RS:
Circulating levels of inflammatory cytokines and risk of colorectal
adenomas. Cancer Res. 68:323–328. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Bobe G, Albert PS, Sansbury LB, Lanza E,
Schatzkin A, Colburn NH and Cross AJ: Interleukin-6 as a potential
indicator for prevention of high-risk adenoma recurrence by dietary
flavonols in the polyp prevention trial. Cancer Prev Res (Phila).
3:764–775. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Carroll RE, Benya RV, Turgeon DK, Vareed
S, Neuman M, Rodriguez L, Kakarala M, Carpenter PM, McLaren C,
Meyskens FL Jr, et al: Phase IIa clinical trial of curcumin for the
prevention of colorectal neoplasia. Cancer Prev Res (Phila).
4:354–364. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
He ZY, Shi CB, Wen H, Li FL, Wang BL and
Wang J: Upregulation of p53 expression in patients with colorectal
cancer by administration of curcumin. Cancer Invest. 29:208–213.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Chakraborty S and Rahman T: The
difficulties in cancer treatment. Ecancermedicalscience.
6:ed162012.PubMed/NCBI
|