|
1
|
Liang H, Fan JH and Qiao YL: Epidemiology,
etiology, and prevention of esophageal squamous cell carcinoma in
China. Cancer Biol Med. 14:33–41. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhang Y: Epidemiology of esophageal
cancer. World J Gastroenterol. 19:5598–5606. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Pennathur A, Gibson MK, Jobe BA and
Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2016. CA Cancer J Clin. 66:7–30. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Enzinger PC and Mayer RJ: Esophageal
cancer. N Engl J Med. 349:2241–2252. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Meng J, Zhang J, Xiu Y, Jin Y, Xiang J,
Nie Y, Fu S and Zhao K: Prognostic value of an immunohistochemical
signature in patients with esophageal squamous cell carcinoma
undergoing radical esophagectomy. Mol Oncol. 12:196–207. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Scheepers JJ, van der Peet DL, Veenhof AA,
Heijnen B and Cuesta MA: Systematic approach of postoperative
gastric conduit complications after esophageal resection. Dis
Esophagus. 23:117–121. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Baba Y, Saeki H, Nakashima Y, Oki E,
Shigaki H, Yoshida N, Watanabe M, Maehara Y and Baba H: Review of
chemotherapeutic approaches for operable and inoperable esophageal
squamous cell carcinoma. Dis Esophagus. 30:1–7. 2017.
|
|
9
|
Smyth EC, Lagergren J, Fitzgerald RC,
Lordick F, Shah MA, Lagergren P and Cunningham D: Oesophageal
cancer. Nat Rev Dis Primers. 3:170482017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lin DC, Wang MR and Koeffler HP: Genomic
and epigenomic aberrations in esophageal squamous cell carcinoma
and implications for patients. Gastroenterology. 154:374–389. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hamm CA and Costa FF: Epigenomes as
therapeutic targets. Pharmacol Ther. 151:72–86. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hoshino I, Matsubara H, Hanari N, Mori M,
Nishimori T, Yoneyama Y, Akutsu Y, Sakata H, Matsushita K, Seki N
and Ochiai T: Histone deacetylase inhibitor FK228 activates tumor
suppressor Prdx1 with apoptosis induction in esophageal cancer
cells. Clin Cancer Res. 11:7945–7952. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hoshino I, Matsubara H, Akutsu Y,
Nishimori T, Yoneyama Y, Murakami K, Komatsu A, Sakata H,
Matsushita K and Ochiai T: Gene expression profiling induced by
histone deacetylase inhibitor, FK228, in human esophageal squamous
cancer cells. Oncol Rep. 18:585–592. 2007.PubMed/NCBI
|
|
14
|
Kano M, Seki N, Kikkawa N, Fujimura L,
Hoshino I, Akutsu Y, Chiyomaru T, Enokida H, Nakagawa M and
Matsubara H: miR-145, miR-133a and miR-133b: Tumor-suppressive
miRNAs target FSCN1 in esophageal squamous cell carcinoma. Int J
Cancer. 127:2804–2814. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Isozaki Y, Hoshino I, Nohata N, Kinoshita
T, Akutsu Y, Hanari N, Mori M, Yoneyama Y, Akanuma N, Takeshita N,
et al: Identification of novel molecular targets regulated by tumor
suppressive miR-375 induced by histone acetylation in esophageal
squamous cell carcinoma. Int J Oncol. 41:985–994. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Takeshita N, Mori M, Kano M, Hoshino I,
Akutsu Y, Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, et
al: miR-203 inhibits the migration and invasion of esophageal
squamous cell carcinoma by regulating LASP1. Int J Oncol.
41:1653–1661. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Takeshita N, Hoshino I, Mori M, Akutsu Y,
Hanari N, Yoneyama Y, Ikeda N, Isozaki Y, Maruyama T, Akanuma N, et
al: Serum microRNA expression profile: miR-1246 as a novel
diagnostic and prognostic biomarker for oesophageal squamous cell
carcinoma. Br J Cancer. 108:644–652. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Akanuma N, Hoshino I, Akutsu Y, Murakami
K, Isozaki Y, Maruyama T, Yusup G, Qin W, Toyozumi T, Takahashi M,
et al: MicroRNA-133a regulates the mRNAs of two invadopodia-related
proteins, FSCN1 and MMP14, in esophageal cancer. Br J Cancer.
110:189–198. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hoshino I, Akutsu Y, Murakami K, Akanuma
N, Isozaki Y, Maruyama T, Toyozumi T, Matsumoto Y, Suito H,
Takahashi M, et al: Histone demethylase LSD1 inhibitors prevent
cell growth by regulating gene expression in esophageal squamous
cell carcinoma cells. Ann Surg Oncol. 23:312–320. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
McGrath J and Trojer P: Targeting histone
lysine methylation in cancer. Pharmacol Ther. 150:1–22. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Allfrey VG and Mirsky AE: Structural
modifications of histones and their possible role in the regulation
of RNA synthesis. Science. 144:5591964. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Shi Y, Lan F, Matson C. Mulligan P,
Whetstine JR, Cole PA, Casero RA and Shi Y: Histone demethylation
mediated by the nuclear amine oxidase homolog LSD1. Cell.
119:941–953. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X
and Song Y: Over-expression of LSD1 promotes proliferation,
migration and invasion in non-small cell lung cancer. PLoS One.
7:e350652012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Kashyap V, Ahmad S, Nilsson EM, Helczynski
L, Kenna S, Persson JL, Gudas LJ and Mongan NP: The lysine specific
demethylase-1 (LSD1/KDM1A) regulates VEGF-A expression in prostate
cancer. Mol Oncol. 7:555–566. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhao ZK, Yu HF, Wang DR, Dong P, Chen L,
Wu WG, Ding WJ and Liu YB: Overexpression of lysine specific
demethylase 1 predicts worse prognosis in primary hepatocellular
carcinoma patients. World J Gastroenterol. 18:6651–6656. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lim S, Janzer A, Becker A, Zimmer A,
Schüle R, Buettner R and Kirfel J: Lysine-specific demethylase 1
(LSD1) is highly expressed in ER-negative breast cancers and a
biomarker predicting aggressive biology. Carcinogenesis.
31:512–520. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Kerenyi MA, Shao Z, Hsu YJ, Guo G, Luc S,
O'Brien K, Fujiwara Y, Peng C, Nguyen M and Orkin SH: Histone
demethylase Lsd1 represses hematopoietic stem and progenitor cell
signatures during blood cell maturation. Elife. 2:e006332013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ueda R, Suzuki T, Mino K, Tsumoto H,
Nakagawa H, Hasegawa M, Sasaki R, Mizukami T and Miyata N:
Identification of cell-active lysine specific demethylase
1-selective inhibitors. J Am Chem Soc. 131:17536–17537. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hamada S, Suzuki T, Mino K, Koseki K,
Oehme F, Flamme I, Ozasa H, Itoh Y, Ogasawara D, Komaarashi H, et
al: Design, synthesis, enzyme-inhibitory activity, and effect on
human cancer cells of a novel series of jumonji domain-containing
protein 2 histone demethylase inhibitors. J Med Chem. 53:5629–5638.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Etani T, Suzuki T, Naiki T, Naiki-Ito A,
Ando R, Iida K, Kawai N, Tozawa K, Miyata N, Kohri K and Takahashi
S: NCL1, a highly selective lysine-specific demethylase 1
inhibitor, suppresses prostate cancer without adverse effect.
Oncotarget. 6:2865–2878. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pitroda SP, Wakim BT, Sood RF, Beveridge
MG, Beckett MA, MacDermed DM, Weichselbaum RR and Khodarev NN:
STAT1-dependent expression of energy metabolic pathways links
tumour growth and radioresistance to the Warburg effect. BMC Med.
7:682009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li H and Durbin R: Fast and accurate short
read alignment with Burrows-Wheeler transform. Bioinformatics.
25:1754–1760. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang Y, Liu T, Meyer CA, Eeckhoute J,
Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W and
Liu XS: Model-based analysis of ChIP-Seq (MACS). Genome Biol.
9:R1372008. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ji X, Li W, Song J, Wei L and Liu XS:
CEAS: Cis-regulatory element annotation system. Nucleic Acids Res
34 (Web Server Issue). W551–W554. 2006. View Article : Google Scholar
|
|
35
|
Shin H, Liu T, Manrai AK and Liu XS: CEAS:
Cis-regulatory element annotation system. Bioinformatics.
25:2605–2606. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Quinlan AR and Hall IM: BEDTools: A
flexible suite of utilities for comparing genomic features.
Bioinformatics. 26:841–842. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Anders S and Huber W: Differential
expression analysis for sequence count data. Genome Biol.
11:R1062010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zheng YC, Yu B, Jiang GZ, Feng XJ, He PX,
Chu XY, Zhao W and Liu HM: Irreversible lsd1 inhibitors:
Application of tranylcypromine and its derivatives in cancer
treatment. Curr Top Med Chem. 16:2179–2188. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Theisen ER, Gajiwala S, Bearss J, Sorna V,
Sharma S and Janat-Amsbury M: Reversible inhibition of lysine
specific demethylase 1 is a novel anti-tumor strategy for poorly
differentiated endometrial carcinoma. BMC Cancer. 14:7522014.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maes T, Mascaró C, Tirapu I, Estiarte A,
Ciceri F, Lunardi S, Guibourt N, Perdones A, Lufino MMP,
Somervaille TCP, et al: ORY-1001, a potent and selective covalent
KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell.
33:495–511.e12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Maes T, Carceller E, Salas J, Ortega A and
Buesa C: Advances in the development of histone lysine demethylase
inhibitors. Curr Opin Pharmacol. 23:52–60. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Maiques-Diaz A and Somervaille TC: LSD1:
Biologic roles and therapeutic targeting. Epigenomics. 8:1103–1116.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kidger AM, Rushworth LK, Stellzig J,
Davidson J, Bryant CJ, Bayley C, Caddye E, Rogers T, Keyse SM and
Caunt CJ: Dual-specificity phosphatase 5 controls the localized
inhibition, propagation, and transforming potential of ERK
signaling. Proc Natl Acad Sci USA. 114:E317–E326. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yan X, Liu L, Li H, Huang L, Yin M, Pan C,
Qin H and Jin Z: Dual specificity phosphatase 5 is a novel
prognostic indicator for patients with advanced colorectal cancer.
Am J Cancer Res. 6:2323–2333. 2016.PubMed/NCBI
|
|
45
|
Hwang JH, Joo JC, Kim DJ, Jo E, Yoo HS,
Lee KB, Park SJ and Jang IS: Cordycepin promotes apoptosis by
modulating the ERK-JNK signaling pathway via DUSP5 in renal cancer
cells. Am J Cancer Res. 6:1758–1771. 2016.PubMed/NCBI
|
|
46
|
Asanoma K, Liu G, Yamane T, Miyanari Y,
Takao T, Yagi H, Ohgami T, Ichinoe A, Sonoda K, Wake N and Kato K:
Regulation of the mechanism of TWIST1 transcription by BHLHE40 and
BHLHE41 in cancer cells. Mol Cell Biol. 35:4096–4109. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Furukawa H, Makino T, Yamasaki M, Tanaka
K, Miyazaki Y, Takahashi T, Kurokawa Y, Nakajima K, Takiguchi S,
Mori M and Doki Y: PRIMA-1 induces p53-mediated apoptosis by
upregulating Noxa in esophageal squamous cell carcinoma with TP53
missense mutation. Cancer Sci. 109:412–421. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Saha MN, Jiang H, Yang Y, Reece D and
Chang H: PRIMA-1Met/APR-246 displays high antitumor activity in
multiple myeloma by induction of p73 and Noxa. Mol Cancer Ther.
12:2331–2341. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zandi R, Selivanova G, Christensen CL,
Gerds TA, Willumsen BM and Poulsen HS: PRIMA-1Met/APR-246 induces
apoptosis and tumor growth delay in small cell lung cancer
expressing mutant p53. Clin Cancer Res. 17:2830–2841. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Liang Y, Besch-Williford C and Hyder SM:
PRIMA-1 inhibits growth of breast cancer cells by re-activating
mutant p53 protein. Int J Oncol. 35:1015–1023. 2009.PubMed/NCBI
|
|
51
|
Li XL, Zhou J, Chan ZL, Chooi JY, Chen ZR
and Chng WJ: PRIMA-1met (APR-246) inhibits growth of colorectal
cancer cells with different p53 status through distinct mechanisms.
Oncotarget. 6:36689–36699. 2015.PubMed/NCBI
|
|
52
|
Lu T, Zou Y, Xu G, Potter JA, Taylor GL,
Duan Q, Yang Q, Xiong H, Qiu H, Ye D, et al: PRIMA-1Met suppresses
colorectal cancer independent of p53 by targeting MEK. Oncotarget.
7:83017–83030. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lehmann S, Bykov VJ, Ali D, Andrén O,
Cherif H, Tidefelt U, Uggla B, Yachnin J, Juliusson G, Moshfegh A,
et al: Targeting p53 in vivo: A first-in-human study with
p53-targeting compound APR-246 in refractory hematologic
malignancies and prostate cancer. J Clin Oncol. 30:3633–3639. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Miyazaki T, Kato H, Nakajima M, Faried A,
Takita J, Sohda M, Fukai Y, Yamaguchi S, Masuda N, Manda R, et al:
An immunohistochemical study of TIMP-3 expression in oesophageal
squamous cell carcinoma. Br J Cancer. 91:1556–1560. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Apte SS, Olsen BR and Murphy G: The gene
structure of tissue inhibitor of metalloproteinases (TIMP)-3 and
its inhibitory activities define the distinct TIMP gene family. J
Biol Chem. 270:14313–14318. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Visse R and Nagase H: Matrix
metalloproteinases and tissue inhibitors of metalloproteinases:
Structure, function, and biochemistry. Circ Res. 92:827–839. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ahonen M, Baker AH and Kahari VM:
Adenovirus-mediated gene delivery of tissue inhibitor of
metalloproteinases-3 inhibits invasion and induces apoptosis in
melanoma cells. Cancer Res. 58:2310–2315. 1998.PubMed/NCBI
|
|
58
|
Smith MR, Kung H, Durum SK, Colburn NH and
Sun Y: TIMP-3 induces cell death by stabilizing TNF-alpha receptors
on the surface of human colon carcinoma cells. Cytokine. 9:770–780.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Baker AH, George SJ, Zaltsman AB, Murphy G
and Newby AC: Inhibition of invasion and induction of apoptotic
cell death of cancer cell lines by overexpression of TIMP-3. Br J
Cancer. 79:1347–1355. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bond M, Murphy G, Bennett MR, Amour A,
Knauper V, Newby AC and Baker AH: Localization of the death domain
of tissue inhibitor of metalloproteinase-3 to the N terminus.
Metalloproteinase inhibition is associated with proapoptotic
activity. J Biol Chem. 275:41358–41363. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Ahonen M, Poukkula M, Baker AH, Kashiwagi
M, Nagase H, Eriksson JE and Kähäri VM: Tissue inhibitor of
metalloproteinases-3 induces apoptosis in melanoma cells by
stabilization of death receptors. Oncogene. 22:2121–2134. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Coutinho-Camillo CM, Lourenço SV, Nonogaki
S, Vartanian JG, Nagai MA, Kowalski LP and Soares FA: Expression of
PAR-4 and PHLDA1 is prognostic for overall and disease-free
survival in oral squamous cell carcinomas. Virchows Arch.
463:31–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Neef R, Kuske MA, Pröls E and Johnson JP:
Identification of the human PHLDA1/TDAG51 gene: down-regulation in
metastatic melanoma contributes to apoptosis resistance and growth
deregulation. Cancer Res. 62:5920–5929. 2002.PubMed/NCBI
|
|
64
|
Nagai MA, Fregnani JH, Netto MM, Brentani
MM and Soares FA: Down-regulation of PHLDA1 gene expression is
associated with breast cancer progression. Breast Cancer Res Treat.
106:49–56. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Oberst MD, Beberman SJ, Zhao L, Yin JJ,
Ward Y and Kelly K: TDAG51 is an ERK signaling target that opposes
ERK-mediated HME16C mammary epithelial cell transformation. BMC
Cancer. 8:1892008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Park CG, Lee SY, Kandala G, Lee SY and
Choi Y: A novel gene product that couples TCR signaling to
Fas(CD95) expression in activation-induced cell death. Immunity.
4:583–591. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gomes I, Xiong W, Miki T and Rosner MR: A
proline- and glutamine-rich protein promotes apoptosis in neuronal
cells. J Neurochem. 73:612–622. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hossain GS, van Thienen JV, Werstuck GH,
Zhou J, Sood SK, Dickhout JG, de Koning AB, Tang D, Wu D, Falk E,
et al: TDAG51 is induced by homocysteine, promotes
detachment-mediated programmed cell death, and contributes to the
cevelopment of atherosclerosis in hyperhomocysteinemia. J Biol
Chem. 278:30317–30327. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ju JA and Gilkes DM: RhoB: Team oncogene
or team tumor suppressor? Genes (Basel). 9(pii): E672018.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Parri M and Chiarugi P: Rac and Rho
GTPases in cancer cell motility control. Cell Commun Signal.
8:232010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vega FM and Ridley AJ: Rho GTPases in
cancer cell biology. FEBS Lett. 582:2093–2101. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Porter AP, Papaioannou A and Malliri A:
Deregulation of Rho GTPases in cancer. Small GTPases. 7:123–138.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bhavsar PJ, Infante E, Khwaja A and Ridley
AJ: Analysis of Rho GTPase expression in T-ALL identifies RhoU as a
target for Notch involved in T-ALL cell migration. Oncogene.
32:198–208. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Poveda J, Sanz AB, Fernandez-Fernandez B,
Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Ortiz A and
Sanchez-Niño MD: MXRA5 is a TGF-β1-regulated human protein with
anti-inflammatory and anti-fibrotic properties. J Cell Mol Med.
21:154–164. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
He Y, Chen X, Liu H, Xiao H, Kwapong WR
and Mei J: Matrix-remodeling associated 5 as a novel tissue
biomarker predicts poor prognosis in non-small cell lung cancers.
Cancer Biomark. 15:645–651. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang GH, Yao L, Xu HW, Tang WT, Fu JH, Hu
XF, Cui L and Xu XM: Identification of MXRA5 as a novel biomarker
in colorectal cancer. Oncol Lett. 5:544–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Buckanovich RJ, Sasaroli D,
O'Brien-Jenkins A, Botbyl J, Hammond R, Katsaros D, Sandaltzopoulos
R, Liotta LA, Gimotty PA and Coukos G: Tumor vascular proteins as
biomarkers in ovarian cancer. J Clin Oncol. 25:852–861. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Xiong D, Li G, Li K, Xu Q, Pan Z, Ding F,
Vedell P, Liu P, Cui P, Hua X, et al: Exome sequencing identifies
MXRA5 as a novel cancer gene frequently mutated in non-small cell
lung carcinoma from Chinese patients. Carcinogenesis. 33:1797–1805.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Huang T, Sun L, Yuan X and Qiu H:
Thrombospondin-1 is a multifaceted player in tumor progression.
Oncotarget. 8:84546–84558. 2017.PubMed/NCBI
|
|
80
|
Zhou ZQ, Cao WH, Xie JJ, Lin J, Shen ZY,
Zhang QY, Shen JH, Xu LY and Li EM: Expression and prognostic
significance of THBS1, Cyr61 and CTGF in esophageal squamous cell
carcinoma. BMC Cancer. 9:2912009. View Article : Google Scholar : PubMed/NCBI
|