|
1
|
Barondess JA: Scanning the chronic disease
terrain: Prospects and opportunities. Trans Am Clin Climatol Assoc.
125:45–56. 2014.PubMed/NCBI
|
|
2
|
Hanahan D and Weinberg RA: The hallmarks
of cancer. Cell. 100:57–70. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sanchez-Vega F, Mina M, Armenia J, Chatila
WK, Luna A, La KC, Dimitriadoy S, Liu DL, Kantheti HS, Saghafinia
S, et al: Oncogenic signaling pathways in the cancer genome atlas.
Cell. 173:321–337.e10. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Sahasrabuddhe V, Luhn P and Wentzensen N:
Human papillomavirus and cervical cancer: Biomarkers for improved
prevention efforts. Future Microbiol. 6:1083–1098. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Latino-Martel P, Cottet V, Druesne-Pecollo
N, Pierre FH, Touillaud M, Touvier M, Vasson MP, Deschasaux M, Le
Merdy J, Barrandon E and Ancellin R: Alcoholic beverages, obesity,
physical activity and other nutritional factors, and cancer risk: A
review of the evidence. Crit Rev Oncol Hematol. 99:308–323. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
International agency for Research on
Cancer. Global Cancer Observatory. http://gco.iarc.fr
|
|
8
|
Scheurer ME, Tortolero-Luna G and
Adler-Storthz K: Human papillomavirus infection: Biology,
epidemiology, and prevention. Int J Gynecol Cancer. 15:727–746.
2015. View Article : Google Scholar
|
|
9
|
Kyrgiou M, Mitra A and Moscicki AB: Does
the vaginal microbiota play a role in the development of cervical
cancer? Transl Res. 179:168–182. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Secretariat of Health, Mexico, .
Statistics of breast cancer and uterine cervical cancer. https://www.gob.mx/salud/acciones-y-programas/informacion-estadistica2015
|
|
11
|
Domínguez-Catzín V, Reveles-Espinoza AM,
Sánchez-Ramos J, Cruz-Cadena R, Lemus-Hernández D and Garrido E:
HPV16-E2 protein modifies self-renewal and differentiation rate in
progenitor cells of human immortalized keratinocytes. Virol J.
14:652017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chhabra R: Cervical cancer stem cells:
Opportunities and challenges. J Cancer Res Clin Oncol.
141:1889–1897. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Yao T, Lu R, Zhang Y, Zhang Y, Zhao C, Lin
R and Lin Z: Cervical cancer stem cells. Cell Prol. 48:611–625.
2015. View Article : Google Scholar
|
|
14
|
Ncube B, Bey A, Knight J, Bessler P and
Jolly PE: Factors associated with the uptake of cervical cancer
screening among women in portland, Jamaica. N Am J Med Sci.
7:104–113. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jungbauer F, Aderhold C, Birk R, Hoermann
K, Kramer B, Kuhlin B, Thorn C, Umbreit C and Lammert A:
Communicate or Die-A Model for HPV+ and HPV- CSCs and their
interactions with SDF-1α. Anticancer Res. 37:4827–4836.
2017.PubMed/NCBI
|
|
16
|
American Cancer Society: What are the risk
factors for cervical cancer? http://www.cancer.org/cancer/cervicalcancer/moreinformation/cervicalcancerpreventionandearlydetection2014
|
|
17
|
Alfaro KM, Gage JC, Rosenbaum AJ, Ditzian
LR, Maza M, Scarinci IC, Miranda E, Villalta S, Felix JC, Castle PE
and Cremer ML: Factors affecting attendance to cervical cancer
screening among women in the Paracentral Region of El Salvador: A
nested study within the CAPE HPV screening program. BMC Public
Health. 15:10582015. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ngugi CW, Boga H, Muigai AW, Wanzala P and
Mbithi JN: Factors affecting uptake of cervical cancer early
detection measures among women in Thika, Kenya. Health Care Women
Int. 33:595–613. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Audirac-Chalifour A, Torres-Poveda K,
Bahena-Román M, Téllez-Sosa J, Martínez-Barnetche J,
Cortina-Ceballos B, López-Estrada G, Delgado-Romero K,
Burguete-García AI, Cantú D, et al: Cervical microbiome and
cytokine profile at various stages of cervical cancer: A pilot
study. PLoS One. 11:e01532742016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mitra A, Maclntyre DA, Lee YS, Smith A,
Marchesi JR, Lehne B, Bhatia R, Lyons D, Paraskevaidis E, Li JV, et
al: Cervical intraepithelial neoplasia disease progression is
associated with increased vaginal microbiome diversity. Sci Rep.
5:168652015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mitra A, Maclntyre DA, Marchesi JR, Lee
YS, Benett PR and Kyrgiou M: The vaginal microbiota, human
papillomavirus infection and cervical intraepithelial neoplasia:
What do we know and where are we going next? Microbiome. 4:582016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yang X, Da M, Zhang W, Qi Q, Zhang C and
Han S: Role of Lactobacillus in cervical cancer. Cancer Manag Res.
10:1219–1229. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Huang R and Rofstad E: Cancer stem cells
(CSCs), cervical CSCs and targeted therapies. Oncotarget.
8:35351–35367. 2017.PubMed/NCBI
|
|
24
|
Rao QX, Yao TT, Zhang BZ, Lin RC, Chen ZL,
Zhou H, Wang LJ, Lu HW, Chen Q, Di N and Lin Z: Expression and
functional role of ALDH1 in cervical carcinoma cells. Asian Pac J
Cancer Prev. 13:1325–1331. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
López J, Ruíz G, Organista-Nava J,
Gariglio P and García-Carrancá A: Human papillomavirus infections
and cancer stem cells of tumors from the uterine cervix. Open Virol
J. 6:232–240. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lin J, Liu X and Ding D: Evidence for
epithelial-mesenchymal transition in cancer stem-like cells derived
from carcinoma cell lines of the cervix uteri. Int J Clin Exp
Pathol. 8:847–855. 2015.PubMed/NCBI
|
|
27
|
Yang MH, Imrali A and Heeschen C:
Circulating cancer stem cells: The importance to select. Chin J
Cancer Res. 27:437–449. 2015.PubMed/NCBI
|
|
28
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang JW and Roden RB: L2, the minor capsid
protein of papillomavirus. Virology. 445:175–186. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kuo SR, Liu JS, Broker TR and Chow LT:
Cell-free replication of the human papillomavirus DNA with
homologous viral E1 and E2 proteins and human cell extracts. J Biol
Chem. 269:24058–24065. 1994.PubMed/NCBI
|
|
31
|
Sanders CM, Kovalevskiy OV, Sizov D,
Lebedev AA, Isupov MN and Anston AA: Papillomavirus E1 helicase
assembly maintains an asymmetric state in the absence of DNA and
nucleotide cofactors. Nucleic Acids Res. 35:6451–6457. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Egawa N, Nakahara T, Ohno S,
Narisawa-Saito M, Yugawa T, Fujita M, Yamato K, Natori Y and Kiyono
T: The E1 protein of human papillomavirus type 16 is dispensable
for maintenance replication of the viral genome. J Virol.
86:3276–3283. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bergvall M, Melendy T and Archambault J:
The E1 proteins. Virology. 445:35–56. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chin MT, Hirochika R, Hirochika H, Broker
TR and Chow LT: Regulation of human papillomavirus type 11 enhancer
and E6 promoter by activating and repressing proteins from the E2
open reading frame: Functional and biochemical studies. J Virol.
62:2994–3002. 1988.PubMed/NCBI
|
|
35
|
Hou SY, Wu SY, Zhou T, Thomas MC and
Chiang CM: Alleviation of human papillomavirus E2-mediated
transcriptional repression via formation of a TATA binding protein
(or TFIID)-TFIIB-RNA polymerase II-TFIIF preinitiation complex. Mol
Cell Biol. 20:113–125. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
McBride AA: The Papillomavirus E2
proteins. Virology. 445:57–79. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Davy C and Doorbar J: G2/M cell cycle
arrest in the life cycle of viruses. Virology. 368:219–226. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Borgogna C, Zavattaro E, de Andrea M,
Griffin HM, Dell'Oste V, Azzimonti B, Landini MM, Peh WL, Pfister
H, Doorbar J, et al: Characterization of beta papillomavirus E4
expression in tumours from Epidermodysplasia Verruciformis patients
and in experimental models. Virology. 423:195–204. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Griffin H, Wu Z, Marnane R, Dewar V,
Molijin A, Quint W, Van Hoof C, Struyf F, Colau B, Jenkins D and
Doorbar J: E4 antibodies facilitate detection and type-assignment
of active HPV infection in cervical disease. PLoS One.
7:e499742012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Doorbar J: The E4 protein; structure,
function and patterns of expression. Virology. 445:80–98. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang Y, Lehman JM and Petti LM: Apoptosis
of mortal human fibroblasts transformed by the bovine
papillomavirus E5 oncoprotein. Mol Cancer Res. 1:122–136.
2002.PubMed/NCBI
|
|
42
|
Venuti A, Paolini F, Nasir L, Corteggio A,
Roperto S, Campo MS and Borzacchiello G: Papillomavirus E5: The
smallest oncoprotein with many functions. Mol Cancer. 10:1402011.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Di Maio D and Petti LM: The E5 proteins.
Virology. 445:99–114. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Butz K, Ristriani T, Hengstermann A, Denk
C, Scheffner M and Hoppe-Seyler F: siRNA targeting of the viral E6
oncogene efficiently kills human papillomavirus-positive cancer
cells. Oncogene. 22:5938–5945. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ansari T, Brimer N and Vande Pol SB:
Peptide interactions stabilize and restructure human papillomavirus
type 16 E6 to interact with p53. J Virol. 86:11386–11391. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Zanier K, ould M'hamed ould Sidi A,
Boulade-Ladame C, Rybin V, Chapelle A, Atkinson A, Kieffer B and
Travé G: Solution structure analysis of the HPV16 E6 oncoprotein
reveals a self-association mechanism required for E6-mediated
degradation of p53. Structure. 20:604–617. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Vande Pol SB and Klingelhutz AJ:
Papillomavirus E6 oncoproteins. Virology. 445:115–137. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
McLaughlin-Drubin ME, Bromberg-White JL
and Meyers C: The role of the human papillomavirus type 18 E7
oncoprotein during the complete viral life cycle. Virology.
338:61–68. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
McLaughlin-Drubin ME, Huh KW and Münger K:
Human papillomavirus type 16 E7 oncoprotein associates with E2F6. J
Virol. 82:8695–8705. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
McLaughlin-Drubin ME and Münger K: The
human papillomavirus E7 oncoprotein. Virology. 384:335–344. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
McLaughlin-Drubin ME, Crum CP and Münger
K: Human papillomavirus E7 oncoprotein induces KDM6A and KDM6B
histone demethylase expression and causes epigenetic reprogramming.
Proc Natl Acad Sci USA. 108:2130–2135. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
McLaughlin-Drubin ME, Meyers J and Munger
K: Cancer associated human papillomaviruses. Curr Opin Virol.
2:459–466. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Schäfer F, Florin L and Sapp M: DNA
binding of L1 is required for human papillomavirus morphogenesis in
vivo. Virology. 295:172–181. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Doorbar J: The papillomavirus life cycle.
J Clin Virol. 32 (Suppl 1):S7–S15. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Day PM, Lowy DR and Schiller JT: Heparan
sulfate-independent cell binding and infection with
furin-precleaved papillomavirus capsids. J Virol. 82:12565–12568.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Buck CB, Day PM and Trus BL: The
papillomavirus major capsid protein L1. Virology. 445:169–174.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kirnbauer R, Chandrachud LM, O'Neil BW,
Wagner ER, Grindlay GJ, Armstrong A, McGarvie GM, Schiller JT, Lowy
DR and Campo MS: Virus-like particles of bovine papillomavirus type
4 in prophylactic and therapeutic immunization. Virology.
219:37–44. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Rubio I, Seitz H, Canali E, Sehr P, Bolchi
A, Tommasino M, Ottonello S and Müller M: The N-terminal region of
the human papillomavirus L2 protein contains overlapping binding
sites for neutralizing, cross-neutralizing and non-neutralizing
antibodies. Virology. 409:348–359. 2001. View Article : Google Scholar
|
|
59
|
Doorbar J, Quint W, Banks L, Bravo IG,
Stoler M, Broker TR and Stanley MA: The biology and life-cycle of
human papillomaviruses. Vaccine. 30 (Suppl 5):F55–F70. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Kutschera U: Founding fathers: The cell
was defined 150 years ago. Nature. 480:4572011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Nava MM, Raimondi MT and Pietrabissa R:
Controlling self-renewal and differentiation of stem cells via
mechanical cues. J Biomed Biotechnol 2012. 7974102012.
|
|
62
|
Ge Y and Fuchs E: Stretching the limits:
from homeostasis to stem cell plasticity in wound healing and
cancer. Nat Rev Genet. 19:311–325. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Maruyama T: Stem/progenitor cells and the
regeneration potentials in the human uterus. Reprod Med Biol.
9:9–16. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zapata AG, Alfaro D and García-Ceca J:
Biology of stem cells: The role of microenvironments. Adv Exp Med
Biol. 741:135–151. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang B, Lu Y, Zhang A, Zhou A, Zhang L,
Zhang L, Gao L, Zang Y, Tang X and Sun L: Doxycycline induces
apoptosis and inhibits proliferation and invasion of human cervical
carcinoma stem cells. PLoS One. 10:e01291382015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Aponte PM and Caicedo A: Stemness in
cancer: Stem cells, cancer stem cells, and their microenvironment.
Stem Cells Int 2017. 56194722017.
|
|
67
|
Clevers H: The cancer stem cell: Premises,
promises and challenges. Nat Med. 17:313–319. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kobayashi NC and Noronha SM: Cancer stem
cells: A new approach to tumor development. Rev Assoc Med Bras
(1992). 61:86–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Ortiz-Sánchez E, Santiago-López L,
Cruz-Domínguez VB, Toledo-Guzmán ME, Hernández-Cueto D,
Muñiz-Hernández S, Garrido E, Cantú De León D and García-Carra A:
Characterization of cervical cancer stem celllike cells:
Phenotyping, stemness, and human papillomavirus co-receptor
expression. Oncotarget. 7:31943–31954. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ,
Tsai TH, Chou SH, Chien CS, Ku HH and Lo JF: Positive correlations
of Oct-4 and Nanog in oral cancer stem-like cells and high-grade
oral squamous cell carcinoma. Clin Cancer Res. 14:4085–4095. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen YC, Chen YW, Hsu HS, Tseng LM, Huang
PI, Lu KH, Chen DT, Tai LK, Yung MC, Chang SC, et al: Aldehyde
dehydrogenase 1 is a putative marker for cancer stem cells in head
and neck squamous cancer. Biochem Biophys Res Commun. 385:307–313.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhang Q, Shi S, Yen Y, Brown J, Ta JQ and
Le AD: A subpopulation of CD133(+) cancer stem-like cells
characterized in human oral squamous cell carcinoma confer
resistance to chemotherapy. Cancer Lett. 289:151–160. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Murillo-Sauca O, Chung MK, Shin JH,
Karamboulas C, Kwok S, Jung Y, Oakley R, Tysome JR, Farnebo LO,
Kaplan MJ, et al: CD271 is a functional and targetable marker of
tumor-initiating cells in head and neck squamous cell carcinoma.
Oncotarget. 5:6854–6866. 2014.PubMed/NCBI
|
|
74
|
López J, Poitevin A, Mendoza-Martínez V,
Pérez-Plasencia C and García-Carrancá A: Cancer-initiating cells
derived from established cervical cell lines exhibit stem-cell
markers and increased radioresistance. BMC Cancer. 12:482012.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wu C and Alman BA: Side population cells
in human cancers. Cancer Lett. 268:1–9. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Richard V, Nair MG, Santhosh Kumar TR and
Pillai MR: Side population cells as prototype of chemoresistant,
tumor-initiating cells. Biomed Res Int. 2013:517237. 2013.
View Article : Google Scholar
|
|
77
|
Wang HY, Sun JM, Lu HF, Shi DR, Ou ZL, Ren
YL and Fu SQ: Micrometastases detected by cytokeratin 19 expression
in sentinel lymph nodes of patients with early-stage cervical
cancer. Int J Gynecol Cancer. 16:643–648. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Ikeda K, Tate G, Suzuki T and Mitsuya T:
Coordinate expression of cytokeratin 8 and cytokeratin 17
immunohistochemical staining in cervical intraepithelial neoplasia
and cervical squamous cell carcinoma: An immunohistochemical
analysis and review of the literature. Gynecol Oncol. 108:598–602.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang Y, Wang M, Zeng Q, Lv Y and Bao B:
Isolation and biological characteristics of human cervical cancer
side population cells. Int J Clin Exp Pathol. 10:869–876. 2017.
|
|
80
|
Takaishi S, Okumura T, Tu S, Wang S,
Shibata W, Vingneshwaran R, Gordon SA, Shimada Y and Wang TC:
Identification of gastric cancer stem cells using the cell surface
marker CD44. Stem Cells. 27:1006–1020. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Su YJ, Lai HM, Chang YW, Chen GY and Lee
JL: Direct reprogramming of stem cell properties in colon cancer
cells by CD44. EMBO J. 30:3186–3199. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hiraga T, Ito S and Nakamura H: Cancer
stem-like cell marker CD44 promotes bone metastases by enhancing
tumorigenicity, cell motility, and hyaluronan production. Cancer
Res. 73:4112–4122. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tyagi A, Vishnoi K, Mahata S, Verma G,
Srivastava Y, Masaldan S, Roy BG, Bharti AC and Das BC: Cervical
cancer stem cells selectively overexpress HPV oncoprotein E6 that
controls stemness and self-renewal through upregulation of HES1.
Clin Cancer Res. 22:4170–4184. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hou T, Zhang W, Tong C, Kazobinka G, Huang
X, Huang Y and Zhang Y: Putative stem cell markers in cervical
squamous cell carcinoma are correlated with poor clinical outcome.
BMC Cancer. 15:7852015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ye F, Zhou C, Cheng Q, Shen J and Chen H:
Stem-cell-abundant proteins nanog, nucleostemin and musashi1 are
highly expressed in malignant cervical epithelial cells. BMC
Cancer. 8:1082008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
The 1988 Bethesda System for reporting
cervical/vaginal cytological diagnoses. National Cancer Institute
Workshop. JAMA. 262:931–934. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li J and Zhou BP: Activation of β-catenin
and Akt pathways by Twist are critical for the maintenance of EMT
associated cancer stem cell-like characters. BMC Cancer. 11:492011.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Sato A, Ishiwata T, Matsuda Y, Yamammoto
T, Asakura H, Takeshita T and Naito Z: Expression and role of
nestin in human cervical intraepithelial neoplasia and cervical
cancer. Int J Oncol. 41:441–448. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu SY and Zheng PS: High aldehyde
dehydrogenase activity identifies cancer stem cells in human
cervical cancer. Oncotarget. 4:2462–2475. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu XF, Yang WT, Xu R, Liu JT and Zheng
PS: Cervical cancer cells with positive Sox2 expression exhibit the
properties of cancer stem cells. PLoS One. 9:e870922014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Mei W, Lin X, Kapoor A, GU Y, Zhao K and
Tang D: the contributions of prostate cancer stem cells in prostate
cancer initiation and metastasis. Cancers (Basel). 11(pii):
E4342019. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lizarraga F, Espinosa M, Ceballos-Cancino
G, Vazquez-Santillan K, Bahena-Ocampo I, Schwarz-Cruz Y Celis A,
Vega-Gordillo M, Garcia Lopez P, Maldonado V and Melendez-Zajgla J:
Tissue inhibitor of metalloproteinases-4 (TIMP-4) regulates
stemness in cervical cancer cells. Mol Carcinog. 55:1952–1961.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Feng D, Yan K, Zhou Y, Liang H, Liang J,
Zhao W, Dong Z and Ling B: Piwil2 is reactivated by HPV
oncoproteins and initiates cell reprogramming via epigenetic
regulation during cervical cancer tumorigenesis. Oncotarget.
7:64575–64588. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Cao HZ, Liu XF, Yang WT, Chen Q and Zheng
PS: LGR5 promotes cancer stem cell traits and chemoresistance in
cervical cancer. Cell Death Dis. 8:e30392017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Jiang J and Hui CC: Hedgehog signaling in
development and cancer. Dev Cell. 15:801–812. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Batsaikhan BE, Yoshikawa K, Kurita N,
Iwata T, Takasu C, Kashihara H and Shimada M: Cyclopamine decreased
the expression of Sonic Hedgehog and its downstream genes in colon
cancer stem cells. Anticancer Res. 34:6339–6344. 2014.PubMed/NCBI
|
|
97
|
Cochrane CR, Szczepny A, Watkins DN and
Cain JE: Hedgehog signaling in the maintenance of cancer stem
cells. Cancers (Basel). 7:1554–1585. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Rofstad EK, Sundfør K, Lyng H and Tropé
CG: Hypoxia-induced treatment failure in advanced squamous cell
carcinoma of the uterine cervix is primarily due to hypoxia-induced
radiation resistance rather than hypoxia-induced metastasis. Br J
Cancer. 83:354–359. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hitoshi S, Alexson T, Tropepe V, Donoviel
D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A and van der Kooy
D: Notch pathway molecules are essential for the maintenance, but
not the generation, of mammalian neural stem cells. Genes Dev.
16:846–858. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Gordon WR, Vardar-Ulu D, Histen G,
Sanchez-Irizarry C, Aster JC and Blacklow SC: Structural basis for
autoinhibition of Notch. Nat Struct Mol Biol. 14:295–300. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Takebe N, Miele L, Harris PJ, Jeong W,
Bando H, Kahn M, Yang SX and Ivy SP: Targeting Notch, Hedgehog, and
Wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin
Oncol. 12:445–464. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Venkatesh V, Nataraj R, Thangaraj G,
Karthikeyan M, Gnanasekaran A, Kaginelli SB, Kuppanna G, Kapalla CG
and Basalingappa KS: Targeting Notch signalling pathway of cancer
stem cells. Stem Cell Invest. 5:52018. View Article : Google Scholar
|
|
103
|
Zhu AJ and Watt FM: Beta-catenin
signalling modulates proliferative potential of human epidermal
keratinocytes independently of intercellular adhesion. Development.
126:2285–2298. 1999.PubMed/NCBI
|
|
104
|
Andrade AC, Nilsson O, Barnes KM and Baron
J: Wnt gene expression in the post-natal growth plate: Regulation
with chondrocyte differentiation. Bone. 40:1361–1369. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Blanpain C, Horsley V and Fuchs E:
Epithelial stem cells: Turning over new leaves. Cell. 128:445–458.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
van der Flier LG and Clevers H: Stem
cells, self-renewal, and differentiation in the intestinal
epithelium. Annu Rev Physiol. 71:241–260. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Ji J, Wei X and Wang Y: Embryonic stem
cell markers Sox-2 and OCT4 expression and their correlation with
WNT signal pathway in cervical squamous cell carcinoma. Int J Clin
Exp Pathol. 7:2470–2476. 2014.PubMed/NCBI
|
|
108
|
Barker N, Ridgway RA, van Es JH, van de
Wetering M, Begthel H, van de Born M, Danenberg E, Clarke AR,
Sanson OJ and Clevers H: Crypt stem cells as the cells-of-origin of
intestinal cancer. Nature. 457:608–611. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Gonzalez-Torres C, Gaytan-Cervantes J,
Vazquez-Santillan K, Mandujano-Tinoco EA, Ceballos-Cancino G,
Garcia-Venzor A, Zampedri C, Sanchez-Maldonado P, Mojica-Espinosa
R, Jimenez-Hernandez LE and Maldonado V: NF-κB participates in the
stem cell phenotype of ovarian cancer cells. Arch Med Res.
48:343–351. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Affara NI and Coussens LM: IKKalpha at the
crossroads of inflammation and metastasis. Cell. 129:25–26. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lüningschrör P, Kaltschmidt B and
Kaltschmidt C: Knockdown of IKK1/2 promotes differentiation of
mouse embryonic stem cells into neuroectoderm at the expense of
mesoderm. Stem Cell Rev Rep. 8:1098–1108. 2012. View Article : Google Scholar
|
|
112
|
Porta C, Paglino C and Mosca A: Targeting
PI3K/Akt/mTOR signaling in cancer. Front Oncol. 4:642014.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Shayesteh L, Lu Y, Kuo WL, Baldocchi R,
Godfrey T, Collins C, Pinkel D, Powell B, Mills GB and Gray JW:
PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet.
21:99–102. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
114
|
Ma YY, Wei SJ, Lin YC, Lung JC, Chang TC,
Whang-Peng J, Liu JM, Yang DM, Yang WK and Shen CY: PIK3CA as an
oncogene in cervical cancer. Oncogene. 19:2739–2744. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Xia P and Xu X: PI3K/Akt/mTOR signaling
pathway in cancer stem cells: From basic research to clinical
application. Am J Cancer Res. 5:1602–1609. 2015.PubMed/NCBI
|