|
1
|
Novellasdemunt L, Antas P and Li VS:
Targeting Wnt signaling in colorectal cancer. A review in the
theme: Cell signaling: Proteins, pathways and mechanisms. Am J
Physiol Cell Physiol. 309:C511–C521. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Barker N and Clevers H: Mining the Wnt
pathway for cancer therapeutics. Nat Rev Drug Discov. 5:997–1014.
2006. View
Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tetsu O and McCormick F: Beta-Catenin
regulates expression of cyclin D1 in colon carcinoma cells. Nature.
398:422–426. 1999. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shtutman M, Zhurinsky J, Simcha I,
Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A: The cyclin D1
gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad
Sci USA. 96:5522–5527. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
He TC, Chan TA, Vogelstein B and Kinzler
KW: PPARδ is an APC-regulated target of nonsteroidal
anti-inflammatory drugs. Cell. 99:335–345. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Crawford HC, Fingleton BM, Rudolph-Owen
LA, Goss KJ, Rubinfeld B, Polakis P and Matrisian LM: The
metalloproteinase matrilysin is a target of beta-catenin
transactivation in intestinal tumors. Oncogene. 18:2883–2891. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Brabletz T, Jung A, Dag S, Hlubek F and
Kirchner T: Beta-Catenin regulates the expression of the Matrix
Metalloproteinase-7 in human colorectal cancer. Am J Pathol.
155:1033–1038. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hlubek F, Spaderna S, Jung A, Kirchner T
and Brabletz T: Beta-Catenin activates a coordinated expression of
the proinvasive factors laminin-5 gamma2 chain and MT1-MMP in
colorectal carcinomas. Int J Cancer. 108:321–326. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Clevers H and Nusse R: Wnt/β-catenin
signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Herbst A, Jurinovic V, Krebs S, Thieme SE,
Blum H, Göke B and Kolligs FT: Comprehensive analysis of β-catenin
target genes in colorectal carcinoma cell lines with deregulated
Wnt/β-catenin signaling. BMC Genomics. 15:742014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mokry M, Hatzis P, Schuijers J, Lansu N,
Ruzius FP, Clevers H and Cuppen E: Integrated genome-wide analysis
of transcription factor occupancy, RNA polymerase II binding and
steady-state RNA levels identify differentially regulated
functional gene classes. Nucleic Acids Res. 40:148–158. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ewing RM, Song J, Gokulrangan G, Bai S,
Bowler EH, Bolton R, Skipp P, Wang Y and Wang Z: Multiproteomic and
transcriptomic analysis of oncogenic β-Catenin molecular networks.
J Proteome Res. 17:2216–2225. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Liu Y, Beyer A and Aebersold R: On the
dependency of cellular protein levels on mRNA abundance. Cell.
165:535–550. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Baryshnikova A, Costanzo M, Myers CL,
Andrews B and Boone C: Genetic interaction networks: Toward an
understanding of heritability. Annu Rev Genomics Hum Genet.
14:111–133. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Costanzo M, VanderSluis B, Koch EN,
Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD,
et al: A global genetic interaction network maps a wiring diagram
of cellular function. Science. 353:aaf14202016. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Boettcher M, Tian R, Blau JA, Markegard E,
Wagner RT, Wu D, Mo X, Biton A, Zaitlen N, Fu H, et al: Dual gene
activation and knockout screen reveals directional dependencies in
genetic networks. Nat Biotechnol. 36:170–178. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shen JP, Zhao D, Sasik R, Luebeck J,
Birmingham A, Bojorquez-Gomez A, Licon K, Klepper K, Pekin D,
Beckett AN, et al: Combinatorial CRISPR-Cas9 screens for de novo
mapping of genetic interactions. Nat Methods. 14:573–576. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tsherniak A, Vazquez F, Montgomery PG,
Weir BA, Kryukov G, Cowley GS, Gill S, Harrington WF, Pantel S,
Krill-Burger JM, et al: Defining a cancer dependency map. Cell.
170:564–576.e16. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Meyers RM, Bryan JG, McFarland JM, Weir
BA, Sizemore AE, Xu H, Dharia NV, Montgomery PG, Cowley GS, Pantel
S, et al: Computational correction of copy number effect improves
specificity of CRISPRCas9 essentiality screens in cancer cells. Nat
Genet. 49:1779–1784. 2017. View
Article : Google Scholar : PubMed/NCBI
|
|
20
|
Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV,
Sonkin D, et al: The cancer cell line encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature.
483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Barrett T, Wilhite SE, Ledoux P,
Evangelista C, Kim IF, Tomashevsky M, Marshall KA, Phillippy KH,
Sherman PM, Holko M, et al: NCBI GEO: Archive for functional
genomics data sets-update. Nucleic Acids Res. 41(Database Issue):
D991–D995. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tsafrir D, Bacolod M, Selvanayagam Z,
Tsafrir I, Shia J, Zeng Z, Liu H, Krier C, Stengel RF, Barany F, et
al: Relationship of gene expression and chromosomal abnormalities
in colorectal cancer. Cancer Res. 66:2129–2137. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Jorissen RN, Gibbs P, Christie M, Prakash
S, Lipton L, Desai J, Kerr D, Aaltonen LA, Arango D, Kruhøffer M,
et al: Metastasis-Associated gene expression changes predict poor
outcomes in patients with dukes Stage B and C colorectal cancer.
Clin Cancer Res. 15:7642–7651. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Smith JJ, Deane NG, Wu F, Merchant NB,
Zhang B, Jiang A, Lu P, Johnson JC, Schmidt C, Bailey CE, et al:
Experimentally derived metastasis gene expression profile predicts
recurrence and death in patients with colon cancer.
Gastroenterology. 138:958–968. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Freeman TJ, Smith JJ, Chen X, Washington
MK, Roland JT, Means AL, Eschrich SA, Yeatman TJ, Deane NG and
Beauchamp RD: Smad4-mediated signaling inhibits intestinal
neoplasia by inhibiting expression of β-catenin. Gastroenterology.
142:562–571.e2. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Sveen A, Agesen TH, Nesbakken A, Rognum
TO, Lothe RA and Skotheim RI: Transcriptome instability in
colorectal cancer identified by exon microarray analyses:
Associations with splicing factor expression levels and patient
survival. Genome Med. 3:322011. View
Article : Google Scholar : PubMed/NCBI
|
|
27
|
Agesen TH, Sveen A, Merok MA, Lind GE,
Nesbakken A, Skotheim RI and Lothe RA: ColoGuideEx: A robust gene
classifier specific for stage II colorectal cancer prognosis. Gut.
61:1560–1567. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Thorsteinsson M, Kirkeby LT, Hansen R,
Lund LR, Sørensen LT, Gerds TA, Jess P and Olsen J: Gene expression
profiles in stages II and III colon cancers: Application of a
128-gene signature. Int J Colorectal Dis. 27:1579–1586. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Laibe S, Lagarde A, Ferrari A, Monges G,
Birnbaum D and Olschwang S; COL2 Project, : A seven-gene signature
aggregates a subgroup of stage II colon cancers with stage III.
OMICS. 16:560–565. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Marisa L, de Reyniès A, Duval A, Selves J,
Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D,
Ayadi M, et al: Gene expression classification of colon cancer into
molecular subtypes: Characterization, validation, and prognostic
value. PLoS Med. 10:e10014532013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Gentles AJ, Newman AM, Liu CL, Bratman SV,
Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al: The
prognostic landscape of genes and infiltrating immune cells across
human cancers. Nat Med. 21:938–945. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
RCoreTeam: R, . A language and environment
for statistical computing. 2018.
|
|
33
|
Carvalho BS and Irizarry RA: A framework
for oligonucleotide microarray preprocessing. Bioinformatics.
26:2363–2367. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Dai M, Wang P, Boyd AD, Kostov G, Athey B,
Jones EG, Bunney WE, Myers RM, Speed TP, Akil H, et al: Evolving
gene/transcript definitions significantly alter the interpretation
of GeneChip data. Nucleic Acids Res. 33:e1752005. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kim SK, Kim SY, Kim JH, Roh SA, Cho DH,
Kim YS and Kim JC: A nineteen gene-based risk score classifier
predicts prognosis of colorectal cancer patients. Mol Oncol.
8:1653–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu D, Skomorovska Y, Song J, Bowler E,
Harris R, Ravasz M, Bai S, Ayati M, Tamai K, Koyuturk M, et al:
ELF3 is an antagonist of oncogenic-signalling-induced expression of
EMT-TF ZEB1. Cancer Biol Ther. 20:90–100. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Patro R, Duggal G, Love MI, Irizarry RA
and Kingsford C: Salmon provides fast and bias-aware quantification
of transcript expression. Nat Methods. 14:417–419. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Colaprico A, Silva TC, Olsen C, Garofano
L, Cava C, Garolini D, Sabedot TS, Malta TM, Pagnotta SM,
Castiglioni I, et al: TCGAbiolinks: An R/Bioconductor package for
integrative analysis of TCGA data. Nucleic Acids Res. 44:e712016.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Benjamini Y and Hochberg Y: Controlling
the false discovery rate: A practical and powerful approach to
multiple testing. J R Stat Soc Series B (Methodological).
57:289–300. 1995. View Article : Google Scholar
|
|
41
|
Sergushichev A: An algorithm for fast
preranked gene set enrichment analysis using cumulative statistic
calculation. Jun 20–2016.doi: https://doi.org/10.1101/060012.
View Article : Google Scholar
|
|
42
|
Subramanian A, Tamayo P, Mootha VK,
Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub
TR, Lander ES and Mesirov JP: Gene set enrichment analysis: A
knowledge-based approach for interpreting genome-wide expression
profiles. Proc Natl Acad Sci USA. 102:15545–15550. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Pan J, Meyers RM, Michel BC, Mashtalir N,
Sizemore AE, Wells JN, Cassel SH, Vazquez F, Weir BA, Hahn WC, et
al: Interrogation of mammalian protein complex structure, function,
and membership using genome-scale fitness screens. Cell Syst.
6:555–568.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dihlmann S, Kloor M, Fallsehr C and von
Knebel Doeberitz M: Regulation of AKT1 expression by
beta-catenin/Tcf/Lef signaling in colorectal cancer cells.
Carcinogenesis. 26:1503–1512. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lopez CD, Martinovsky G and Naumovski L:
Inhibition of cell death by ribosomal protein L35a. Cancer Lett.
180:195–202. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Henry JL, Coggin DL and King CR:
High-level expression of the ribosomal protein L19 in human breast
tumors that overexpress erbB-2. Cancer Res. 53:1403–1408.
1993.PubMed/NCBI
|
|
47
|
Wang Q, Yang C, Zhou J, Wang X, Wu M and
Liu Z: Cloning and characterization of full-length human ribosomal
protein L15 cDNA which was overexpressed in esophageal cancer.
Gene. 263:205–209. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim JH, You KR, Kim IH, Cho BH, Kim CY and
Kim DG: Over-expression of the ribosomal protein L36a gene is
associated with cellular proliferation in hepatocellular carcinoma.
Hepatology. 39:129–138. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cheng Q, Lau WM, Chew SH, Ho TH, Tay SK
and Hui KM: Identification of molecular markers for the early
detection of human squamous cell carcinoma of the uterine cervix.
Br J Cancer. 86:274–281. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kitahara O, Furukawa Y, Tanaka T, Kihara
C, Ono K, Yanagawa R, Nita ME, Takagi T, Nakamura Y and Tsunoda T:
Alterations of gene expression during colorectal carcinogenesis
revealed by cDNA microarrays after laser-capture microdissection of
tumor tissues and normal epithelia. Cancer Res. 61:3544–3549.
2001.PubMed/NCBI
|
|
51
|
Bertucci F, Salas S, Eysteries S, Nasser
V, Finetti P, Ginestier C, Charafe-Jauffret E, Loriod B, Bachelart
L, Montfort J, et al: Gene expression profiling of colon cancer by
DNA microarrays and correlation with histoclinical parameters.
Oncogene. 23:1377–1391. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
van de Wetering M, Sancho E, Verweij C, de
Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D,
Haramis AP, et al: The beta-catenin/TCF-4 complex imposes a crypt
progenitor phenotype on colorectal cancer cells. Cell. 111:241–250.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ciznadija D, Tothill R, Waterman ML, Zhao
L, Huynh D, Yu RM, Ernst M, Ishii S, Mantamadiotis T, Gonda TJ, et
al: Intestinal adenoma formation and MYC activation are regulated
by cooperation between MYB and Wnt signaling. Cell Death Differ.
16:1530–1538. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Gao R, Cao C, Zhang M, Lopez MC, Yan Y,
Chen Z, Mitani Y, Zhang L, Zajac-Kaye M, Liu B, et al: A unifying
gene signature for adenoid cystic cancer identifies parallel
MYB-dependent and MYB-independent therapeutic targets. Oncotarget.
5:12528–12542. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rettig EM, Tan M, Ling S, Yonescu R,
Bishop JA, Fakhry C and Ha PK: MYB rearrangement and
clinicopathologic characteristics in head and neck adenoid cystic
carcinoma. Laryngoscope. 125:E292–E299. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
North JP, McCalmont TH, Fehr A, van Zante
A, Stenman G and LeBoit PE: Detection of MYB alterations and other
immunohistochemical markers in primary cutaneous adenoid cystic
carcinoma. Am J Surg Pathol. 39:1347–1356. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bishop JA, Yonescu R, Epstein JI and
Westra WH: A subset of prostatic basal cell carcinomas harbor the
MYB rearrangement of adenoid cystic carcinoma. Hum Pathol.
46:1204–1208. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Argyris PP, Wetzel SL, Greipp P, Wehrs RN,
Knutson DL, Kloft-Nelson SM, García JJ and Koutlas IG: Clinical
utility of myb rearrangement detection and p63/p40
immunophenotyping in the diagnosis of adenoid cystic carcinoma of
minor salivary glands: A pilot study. Oral Surg Oral Med Oral
Pathol Oral Radiol. 121:282–289. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Drier Y, Cotton MJ, Williamson KE,
Gillespie SM, Ryan RJ, Kluk MJ, Carey CD, Rodig SJ, Sholl LM,
Afrogheh AH, et al: An oncogenic MYB feedback loop drives alternate
cell fates in adenoid cystic carcinoma. Nat Genet. 48:265–272.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen TY, Keeney MG, Chintakuntlawar AV,
Knutson DL, Kloft-Nelson S, Greipp PT, Garrity JA, Salomao DR and
Garcia JJ: Adenoid cystic carcinoma of the lacrimal gland is
frequently characterized by MYB rearrangement. Eye (Lond).
31:720–725. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
van der Horst MP, Marusic Z, Hornick JL,
Luzar B and Brenn T: Morphologically low-grade spiradenocarcinoma:
A clinicopathologic study of 19 cases with emphasis on outcome and
MYB expression. Mod Pathol. 28:944–953. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Rajan N, Andersson MK, Sinclair N, Fehr A,
Hodgson K, Lord CJ, Kazakov DV, Vanecek T, Ashworth A and Stenman
G: Overexpression of MYB drives proliferation of CYLD-defective
cylindroma cells. J Pathol. 239:197–205. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhang L, Maul RS, Rao J, Apple S, Seligson
D, Sartippour M, Rubio R and Brooks MN: Expression pattern of the
novel gene EG-1 in cancer. Clin Cancer Res. 10:3504–3508. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lee EK, Cho H and Kim CW: Proteomic
analysis of cancer stem cells in human prostate cancer cells.
Biochem Biophys Res Commun. 412:279–285. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wei N, Cheng Y, Wang Z, Liu Y, Luo C, Liu
L, Chen L, Xie Z, Lu Y and Feng Y: SRSF10 plays a role in myoblast
differentiation and glucose production via regulation of
alternative splicing. Cell Rep. 13:1647–1657. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhou X, Li X, Cheng Y, Wu W, Xie Z, Xi Q,
Han J, Wu G, Fang J and Feng Y: BCLAF1 and its splicing regulator
SRSF10 regulate the tumorigenic potential of colon cancer cells.
Nat Commun. 5:45812014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li H, Cheng Y, Wu W, Liu Y, Wei N, Feng X,
Xie Z and Feng Y: SRSF10 regulates alternative splicing and is
required for adipocyte differentiation. Mol Cell Biol.
34:2198–2207. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Soond SM, Smith PG, Wahl L, Swingler TE,
Clark IM, Hemmings AM and Chantry A: Novel WWP2 ubiquitin ligase
isoforms as potential prognostic markers and molecular targets in
cancer. Biochim Biophys Acta 1832. 2127–2135. 2013.
|
|
69
|
Soond SM and Chantry A: Selective
targeting of activating and inhibitory Smads by distinct WWP2
ubiquitin ligase isoforms differentially modulates TGFβ signalling
and EMT. Oncogene. 30:2451–2462. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Haan JC, Labots M, Rausch C, Koopman M,
Tol J, Mekenkamp LJ, van de Wiel MA, Israeli D, van Essen HF, van
Grieken NC, et al: Genomic landscape of metastatic colorectal
cancer. Nat Commun. 5:54572014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Srivastava SK, Bhardwaj A, Arora S, Singh
S, Azim S, Tyagi N, Carter JE, Wang B and Singh AP: MYB is a novel
regulator of pancreatic tumour growth and metastasis. Br J Cancer.
113:1694–1703. 2015. View Article : Google Scholar : PubMed/NCBI
|