|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sørlie T, Perou CM, Tibshirani R, Aas T,
Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey
SS, et al: Gene expression patterns of breast carcinomas
distinguish tumor subclasses with clinical implications. Proc Natl
Acad Sci USA. 98:10869–10874. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cancer Genome Atlas Network, .
Comprehensive molecular portraits of human breast tumours. Nature.
490:61–70. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
De Abreu FB, Wells WA and Tsongalis GJ:
The emerging role of the molecular diagnostics laboratory in breast
cancer personalized medicine. Am J Pathol. 183:1075–1083. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Redig AJ and McAllister SS: Breast cancer
as a systemic disease: A view of metastasis. J Intern Med.
274:113–126. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Yoshiko Y and Aubin JE: Stanniocalcin 1 as
a pleiotropic factor in mammals. Peptides. 25:1663–1669. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chang AC, Janosi J, Hulsbeek M, de Jong D,
Jeffrey KJ, Noble JR and Reddel RR: A novel human cDNA highly
homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol.
112:241–247. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chang AC, Jeffrey KJ, Tokutake Y,
Shimamoto A, Neumann AA, Dunham MA, Cha J, Sugawara M, Furuichi Y
and Reddel RR: Human stanniocalcin (STC): Genomic structure,
chromosomal localization, and the presence of CAG trinucleotide
repeats. Genomics. 47:393–398. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jellinek DA, Chang AC, Larsen MR, Wang X,
Robinson PJ and Reddel RR: Stanniocalcin 1 and 2 are secreted as
phosphoproteins from human fibrosarcoma cells. Biochem J.
350:453–461. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Olsen HS, Cepeda MA, Zhang QQ, Rosen CA,
Vozzolo BL and Wagner GF: Human stanniocalcin: A possible hormonal
regulator of mineral metabolism. Proc Natl Acad Sci USA.
93:1792–1796. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Deol HK, Varghese R, Wagner GF and
Dimattia GE: Dynamic regulation of mouse ovarian stanniocalcin
expression during gestation and lactation. Endocrinology.
141:3412–3421. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chang AC, Jellinek DA and Reddel RR:
Mammalian stanniocalcins and cancer. Endocr Relat Cancer.
10:359–373. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Stasko SE and Wagner GF: Stanniocalcin
gene expression during mouse urogenital development: A possible
role in mesenchymal-epithelial signalling. Dev Dyn. 220:49–59.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang KZ, Westberg JA, Paetau A, von
Boguslawsky K, Lindsberg P, Erlander M, Guo H, Su J, Olsen HS and
Andersson LC: High expression of stanniocalcin in differentiated
brain neurons. Am J Pathol. 153:439–445. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
He LF, Wang TT, Gao QY, Zhao GF, Huang YH,
Yu LK and Hou YY: Stanniocalcin-1 promotes tumor angiogenesis
through up-regulation of VEGF in gastric cancer cells. J Biomed
Sci. 18:392011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yeung BH, Law AY and Wong CK: Evolution
and roles of stanniocalcin. Mol Cell Endocrinol. 349:272–280. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu G, Yang G, Chang B, Mercado-Uribe I,
Huang M, Zheng J, Bast RC, Lin SH and Liu J: Stanniocalcin 1 and
ovarian tumorigenesis. J Natl Cancer Inst. 102:812–827. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Du YZ, Gu XH, Li L and Gao F: The
diagnostic value of circulating stanniocalcin-1 mRNA in non-small
cell lung cancer. J Surg Oncol. 104:836–840. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Han J, Jeon M, Shin I and Kim S: Elevated
STC-1 augments the invasiveness of triple-negative breast cancer
cells through activation of the JNK/c-Jun signaling pathway. Oncol
Rep. 36:1764–1771. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Murai R, Tanaka M, Takahashi Y,
Kuribayashi K, Kobayashi D and Watanabe N: Stanniocalcin-1 promotes
metastasis in a human breast cancer cell line through activation of
PI3K. Clin Exp Metastasis. 31:787–794. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jeon M, Han J, Nam SJ, Lee JE and Kim S:
STC-1 expression is upregulated through an Akt/NF-κB-dependent
pathway in triple-negative breast cancer cells. Oncol Rep.
36:1717–1722. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Chang AC, Doherty J, Huschtscha LI,
Redvers R, Restall C, Reddel RR and Anderson RL: STC1 expression is
associated with tumor growth and metastasis in breast cancer. Clin
Exp Metastasis. 32:15–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang Y and Zhai X: The correlation
between the expression level of STC1 and the pathological
parameters of breast cancer metastasis and chemotherapy resistance.
J Clin Pathol Res. 36:1585–1588. 2016.(In Chinese).
|
|
24
|
McCudden CR, Majewski A, Chakrabarti S and
Wagner GF: Co-localization of stanniocalcin-1 ligand and receptor
in human breast carcinomas. Mol Cell Endocrinol. 213:167–172. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zandberga E, Zayakin P, Ābols A, Pūpola D,
Trapencieris P and Linē A: Depletion of carbonic anhydrase IX
abrogates hypoxia-induced overexpression of stanniocalcin-1 in
triple negative breast cancer cells. Cancer Biol Ther. 18:596–605.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wascher RA, Huynh KT, Giuliano AE, Hansen
NM, Singer FR, Elashoff D and Hoon DS: Stanniocalcin-1: A novel
molecular blood and bone marrow marker for human breast cancer.
Clin Cancer Res. 9:1427–1435. 2003.PubMed/NCBI
|
|
27
|
Brantley KD, Kjærsgaard A, Cronin-Fenton
D, Yacoub R, Nielsen AS, Lauridsen KL, Hamilton-Dutoit S and Lash
TL: Stanniocalcin expression as a predictor of late breast cancer
recurrence. Cancer Epidemiol Biomarkers Prev. 27:653–659. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li JT, Li H and Hu GH: The expression of
STC1 is related to lung metastasis in breast cancer. Fudan Univ J
Med Sci. 42:618–622. 2015.(In Chinese).
|
|
29
|
Joensuu K, Heikkilä P and Andersson LC:
Tumor dormancy: Elevated expression of stanniocalcins in late
relapsing breast cancer. Cancer Lett. 265:76–83. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Welcsh PL, Lee MK, Gonzalez-Hernandez RM,
Black DJ, Mahadevappa M, Swisher EM, Warrington JA and King MC:
BRCA1 transcriptionally regulates genes involved in breast
tumorigenesis. Proc Natl Acad Sci USA. 99:7560–7565. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Chang AC and Reddel RR: Identification of
a second stanniocalcin cDNA in mouse and human: Stanniocalcin 2.
Mol Cell Endocrinol. 141:95–99. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
DiMattia GE, Varghese R and Wagner GF:
Molecular cloning and characterization of stanniocalcin-related
protein. Mol Cell Endocrinol. 146:137–140. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ishibashi K, Miyamoto K, Taketani Y,
Morita K, Takeda E, Sasaki S and Imai M: Molecular cloning of a
second human stanniocalcin homologue (STC2). Biochem Biophys Res
Commun. 250:252–258. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
White KE, Biber J, Murer H and Econs MJ:
Chromosomal localization of two human genes involved in phosphate
homeostasis: The type IIb sodium-phosphate cotransporter and
stanniocalcin-2. Somat Cell Mol Genet. 24:357–362. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Moore EE, Kuestner RE, Conklin DC,
Whitmore TE, Downey W, Buddle MM, Adams RL, Bell LA, Thompson DL,
Wolf A, et al: Stanniocalcin 2: Characterization of the protein and
its localization to human pancreatic alpha cells. Horm Metab Res.
31:406–414. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Charpentier AH, Bednarek AK, Daniel RL,
Hawkins KA, Laflin KJ, Gaddis S, MacLeod MC and Aldaz CM: Effects
of estrogen on global gene expression: Identification of novel
targets of estrogen action. Cancer Res. 60:5977–5983.
2000.PubMed/NCBI
|
|
37
|
Bouras T, Southey MC, Chang AC, Reddel RR,
Willhite D, Glynne R, Henderson MA, Armes JE and Venter DJ:
Stanniocalcin 2 is an estrogen-responsive gene coexpressed with the
estrogen receptor in human breast cancer. Cancer Res. 62:1289–1295.
2002.PubMed/NCBI
|
|
38
|
Raulic S, Ramos-Valdes Y and Dimattia GE:
Stanniocalcin 2 expression is regulated by hormone signalling and
negatively affects breast cancer cell viability in vitro. J
Endocrinol. 197:517–529. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Iwao K, Matoba R, Ueno N, Ando A, Miyoshi
Y, Matsubara K, Noguchi S and Kato K: Molecular classification of
primary breast tumors possessing distinct prognostic properties.
Hum Mol Genet. 11:199–206. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yamamura J, Miyoshi Y, Tamaki Y, Taguchi
T, Iwao K, Monden M, Kato K and Noguchi S: mRNA expression level of
estrogen-inducible gene, alpha 1-antichymotrypsin, is a predictor
of early tumor recurrence in patients with invasive breast cancers.
Cancer Sci. 95:887–892. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Esseghir S, Kennedy A, Seedhar P, Nerurkar
A, Poulsom R, Reis-Filho JS and Isacke CM: Identification of NTN4,
TRA1, and STC2 as prognostic markers in breast cancer in a screen
for signal sequence encoding proteins. Clin Cancer Res.
13:3164–3173. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Coulson-Gilmer C, Humphries MP, Sundara
Rajan S, Droop A, Jackson S, Condon A, Cserni G, Jordan LB, Jones
LJ, Kanthan R, et al: Stanniocalcin 2 expression is associated with
a favourable outcome in male breast cancer. J Pathol Clin Res.
4:241–249. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Takabatake Y, Oxvig C, Nagi C, Adelson K,
Jaffer S, Schmidt H, Keely PJ, Eliceiri KW, Mandeli J and Germain
D: Lactation opposes pappalysin-1-driven pregnancy-associated
breast cancer. EMBO Mol Med. 8:388–406. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Argente J, Chowen JA, Pérez-Jurado LA,
Frystyk J and Oxvig C: One level up: Abnormal proteolytic
regulation of IGF activity plays a role in human pathophysiology.
EMBO Mol Med. 9:1338–1345. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mansfield AS, Visscher DW, Hart SN, Wang
C, Goetz MP, Oxvig C and Conover CA: Pregnancy-associated plasma
protein-A expression in human breast cancer. Growth Horm IGF Res.
24:264–267. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ryan AJ, Napoletano S, Fitzpatrick PA,
Currid CA, O'Sullivan NC and Harmey JH: Expression of a
protease-resistant insulin-like growth factor-binding protein-4
inhibits tumour growth in a murine model of breast cancer. Br J
Cancer. 101:278–286. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Oxvig C: The role of PAPP-A in the IGF
system: Location, location, location. J Cell Commun Signal.
9:177–187. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Millikan RC, Newman B, Tse CK, Moorman PG,
Conway K, Dressler LG, Smith LV, Labbok MH, Geradts J, Bensen JT,
et al: Epidemiology of basal-like breast cancer. Breast Cancer Res
Treat. 109:123–139. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Curtis C, Shah SP, Chin SF, Turashvili G,
Rueda OM, Dunning MJ, Speed D, Lynch AG, Samarajiwa S, Yuan Y, et
al: The genomic and transcriptomic architecture of 2,000 breast
tumours reveals novel subgroups. Nature. 486:364–352. 2012.
View Article : Google Scholar
|
|
50
|
Lehmann BD, Bauer JA, Chen X, Sanders ME,
Chakravarthy AB, Shyr Y and Pietenpol JA: Identification of human
triple-negative breast cancer subtypes and preclinical models for
selection of targeted therapies. J Clin Invest. 121:2750–2767.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Foulkes WD, Smith IE and Reis-Filho JS:
Triple-negative breast cancer. N Engl J Med. 363:1938–1948. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Stevens KN, Vachon CM and Couch FJ:
Genetic susceptibility to triple-negative breast cancer. Cancer
Res. 73:2025–2030. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cleator S, Heller W and Coombes RC:
Triple-negative breast cancer: Therapeutic options. Lancet Oncol.
8:235–244. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Huang S, Chi Y, Qin Y, Wang Z, Xiu B, Su
Y, Guo R, Guo L, Sun H, Zeng C, et al: CAPG enhances breast cancer
metastasis by competing with PRMT5 to modulate STC-1 transcription.
Theranostics. 8:2549–2564. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Osborne CK: Steroid hormone receptors in
breast cancer management. Breast Cancer Res Treat. 51:227–238.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Osborne CK, Yochmowitz MG, Knight WA III
and McGuire WL: The value of estrogen and progesterone receptors in
the treatment of breast cancer. Cancer. 46 (Suppl 12):S2884–S2888.
1980. View Article : Google Scholar
|
|
57
|
Amin MB, Edge S, Greene F, Byrd DR,
Brookland RK, Washington MK, Gershenwald JE, Compton CC, Hess KR,
Sullivan DC, et al: AJCC Cancer Staging Manua[M]8th. New York, NY:
Springer; 2017
|
|
58
|
Hall JM, Lee MK, Newman B, Morrow JE,
Anderson LA, Huey B and King MC: Linkage of early-onset familial
breast cancer to chromosome 17q21. Science. 250:1684–1689. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Miki Y, Swensen J, Shattuck-Eidens D,
Futreal PA, Harshman K, Tavtigian S, Liu Q, Cochran C, Bennett LM,
Ding W, et al: A strong candidate for the breast and ovarian cancer
susceptibility gene BRCA1. Science. 266:66–71. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Polyak K, Xia Y, Zweier JL, Kinzler KW and
Vogelstein B: A model for p53-induced apoptosis. Nature.
389:300–305. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
61
|
Guo F, Li Y, Wang J, Li Y, Li Y and Li G:
Stanniocalcin1 (STC1) inhibits cell proliferation and invasion of
cervical cancer cells. PLoS One. 8:e539892013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Daniel AR and Lange CA: Protein kinases
mediate ligand-independent derepression of sumoylated progesterone
receptors in breast cancer cells. Proc Natl Acad Sci USA.
106:14287–14292. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu R, Wei S, Chen J and Xu S: Mesenchymal
stem cells in lung cancer tumor microenvironment: Their biological
properties, influence on tumor growth and therapeutic implications.
Cancer Lett. 353:145–152. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Shirakawa M, Fujiwara Y, Sugita Y, Moon
JH, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Mori M and Doki
Y: Assessment of stanniocalcin-1 as a prognostic marker in human
esophageal squamous cell carcinoma. Oncol Rep. 27:940–946. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ito Y, Zemans R, Correll K, Yang IV, Ahmad
A, Gao B and Mason RJ: Stanniocalcin-1 is induced by hypoxia
inducible factor in rat alveolar epithelial cells. Biochem Biophys
Res Commun. 452:1091–1097. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Durukan Tolvanen A, Westberg JA,
Serlachius M, Chang AC, Reddel RR, Andersson LC and Tatlisumak T:
Stanniocalcin 1 is important for poststroke functionality, but
dispensable for ischemic tolerance. Neuroscience. 229:49–54. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Lal A, Peters H, St Croix B, Haroon ZA,
Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ and
Riggins GJ: Transcriptional response to hypoxia in human tumors. J
Natl Cancer Inst. 93:1337–1343. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang KZ, Lindsberg PJ, Tatlisumak T,
Kaste M, Olsen HS and Andersson LC: Stanniocalcin: A molecular
guard of neurons during cerebral ischemia. Proc Natl Acad Sci USA.
97:3637–3642. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Law AY, Ching LY, Lai KP and Wong CK:
Identification and characterization of the hypoxia-responsive
element in human stanniocalcin-1 gene. Mol Cell Endocrinol.
314:118–127. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Maxwell PH, Dachs GU, Gleadle JM, Nicholls
LG, Harris AL, Stratford IJ, Hankinson O, Pugh CW and Ratcliffe PJ:
Hypoxia-inducible factor-1 modulates gene expression in solid
tumors and influences both angiogenesis and tumor growth. Proc Natl
Acad Sci USA. 94:8104–8109. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhong H, De Marzo AM, Laughner E, Lim M,
Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons
JW: Overexpression of hypoxia-inducible factor 1alpha in common
human cancers and their metastases. Cancer Res. 59:5830–5835.
1999.PubMed/NCBI
|
|
72
|
Harris AL: Hypoxia-a key regulatory factor
in tumour growth. Nat Rev Cancer. 2:38–47. 2002. View Article : Google Scholar : PubMed/NCBI
|