|
1
|
Moore LE, Fung ET, McGuire M, Rabkin CC,
Molinaro A, Wang Z, Zhang F, Wang J, Yip C, Meng XY and Pfeiffer
RM: Evaluation of apolipoprotein A1 and posttranslationally
modified forms of transthyretin as biomarkers for ovarian cancer
detection in an independent study population. Cancer Epidemiol
Biomarkers Prev. 15:1641–1646. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ahmed I and Lobo DN: Malignant tumours of
the liver. Surgery. 25:34–41. 2009.
|
|
3
|
Bruix J and Sherman M; American
Association for the Study of Liver Diseases, : Management of
hepatocellular carcinoma: An update. Hepatology. 53:1020–1022.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Llovet JM, Ricci S, Mazzaferro V, Hilgard
P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A,
et al: Sorafenib in advanced hepatocellular carcinoma. N Engl J
Med. 359:378–390. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Haendler B and Hofer E: Characterization
of the human cyclophilin gene and of related processed pseudogenes.
Eur J Biochem. 190:477–482. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Holzman TF, Egan DA, Edalji R, Simmer RL,
Helfrich R, Taylor A and Burres NS: Preliminary characterization of
a cloned neutral isoelectric form of the human peptidyl prolyl
isomerase cyclophilin. J Biol Chem. 266:2474–2479. 1991.PubMed/NCBI
|
|
7
|
Hoffmann H and Schiene-Fischer C:
Functional aspects of extracellular cyclophilins. Biol Chem.
395:721–735. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ramachandran S, Venugopal A, Kutty VR, A
V, G D, Chitrasree V, Mullassari A, Pratapchandran NS, Santosh KR,
Pillai MR and Kartha CC: Plasma level of cyclophilin A is increased
in patients with type 2 diabetes mellitus and suggests presence of
vascular disease. Cardiovasc Diabetol. 13:382014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Wei Y, Jinchuan Y, Yi L, Jun W, Zhongqun W
and Cuiping W: Antiapoptotic and proapoptotic signaling of
cyclophilin A in endothelial cells. Inflammation. 36:567–572. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kazui T, Inoue N, Yamada O and Komatsu S:
Selective cerebral perfusion during operation for aneurysms of the
aortic arch: A reassessment. Ann Thorac Surg. 53:109–114. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nigro P, Pompilio G and Capogrossi MC:
Cyclophilin A: A key player for human disease. Cell Death Dis.
4:e8882013. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Brazin KN, Mallis RJ, Fulton DB and
Andreotti AH: Regulation of the tyrosine kinase Itk by the
peptidyl-prolyl isomerase cyclophilin A. Proc Natl Acad Sci USA.
99:1899–1904. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kasinrerk W, Fiebiger E, Stefanová I,
Baumruker T, Knapp W and Stockinger H: Human leukocyte activation
antigen M6, a member of the Ig superfamily, is the species
homologue of rat OX-47, mouse basigin, and chicken HT7 molecule. J
Immunol. 149:847–854. 1992.PubMed/NCBI
|
|
14
|
Yurchenko V, Constant S and Bukrinsky M:
Dealing with the family: CD147 interactions with cyclophilins.
Immunology. 117:301–309. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Miyauchi T, Masuzawa Y and Muramatsu T:
The basigin group of the immunoglobulin superfamily: Complete
conservation of a segment in and around transmembrane domains of
human and mouse basigin and chicken HT7 antigen. J Biochem.
110:770–774. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kanekura T, Chen X and Kanzaki T: Basigin
(CD147) is expressed on melanoma cells and induces tumor cell
invasion by stimulating production of matrix metalloproteinases by
fibroblasts. Int J Cancer. 99:520–528. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Jin ZG, Lungu AO, Xie L, Wang M, Wong C
and Berk BC: Cyclophilin A is a proinflammatory cytokine that
activates endothelial cells. Arterioscler Thromb Vasc Biol.
24:1186–1191. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Seko Y, Fujimura T, Taka H, Mineki R,
Murayama K and Nagai R: Hypoxia followed by reoxygenation induces
secretion of cyclophilin A from cultured rat cardiac myocytes.
Biochem Biophys Res Commun. 317:162–168. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Yurchenko V, Zybarth G, O'Connor M, Dai
WW, Franchin G, Hao T, Guo H, Hung HC, Toole B, Gallay P, et al:
Active site residues of cyclophilin A are crucial for its signaling
activity via CD147. J Biol Chem. 277:22959–22965. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kim SH, Lessner SM, Sakurai Y and Galis
ZS: Cyclophilin A as a novel biphasic mediator of endothelial
activation and dysfunction. Am J Pathol. 164:1567–1574. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang H, Li M, Chai H, Yan S, Lin P,
Lumsden AB, Yao Q and Chen C: Effects of cyclophilin A on cell
proliferation and gene expressions in human vascular smooth muscle
cells and endothelial cells. J Surg Res. 123:312–319. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Obchoei S, Sawanyawisuth K, Wongkham C,
Kasinrerk W, Yao Q, Chen C and Wongkham S: Secreted cyclophilin A
mediates G1/S phase transition of cholangiocarcinoma cells via
CD147/ERK1/2 pathway. Tumour Biol. 36:849–859. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bauer K, Kretzschmar AK, Cvijic H, Blumert
C, Löffler D, Brocke-Heidrich K, Schiene-Fischer C, Fischer G, Sinz
A, Clevenger CV and Horn F: Cyclophilins contribute to Stat3
signaling and survival of multiple myeloma cells. Oncogene.
28:2784–2795. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lee J and Kim SS: Current implications of
cyclophilins in human cancers. J Exp Clin Cancer Res. 29:972010.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ye Y, Huang A, Huang C, Liu J, Wang B, Lin
K, Chen Q, Zeng Y, Chen H, Tao X, et al: Comparative mitochondrial
proteomic analysis of hepatocellular carcinoma from patients.
Proteomics Clin Appl. 7:403–415. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schwanhäusser B, Busse D, Li N, Dittmar G,
Schuchhardt J, Wolf J, Chen W and Selbach M: Global quantification
of mammalian gene expression control. Nature. 473:337–342. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Schwanhäusser B, Busse D, Li N, Dittmar G,
Schuchhardt J, Wolf J, Chen W and Selbach M: Corrigendum: Global
quantification of mammalian gene expression control. Nature.
495:126–127. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li JJ and Biggin MD: Gene expression.
Statistics requantitates the central dogma. Science. 347:1066–1067.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Morimoto S and Yahara K: Identification of
stress responsive genes by studying specific relationships between
mRNA and protein abundance. Heliyon. 4:e005582018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Liu Y, Beyer A and Aebersold R: On the
dependency of cellular protein levels on mRNA abundance. Cell.
165:535–550. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Rhodes DR, Yu J, Shanker K, Deshpande N,
Varambally R, Ghosh D, Barrette T, Pandey A and Chinnaiyan AM:
ONCOMINE: A cancer microarray database and integrated data-mining
platform. Neoplasia. 6:1–6. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Pan JH, Zhou H, Cooper L, Huang JL, Zhu
SB, Zhao XX, Ding H, Pan YL and Rong L: LAYN is a prognostic
biomarker and correlated with immune infiltrates in gastric and
colon cancers. Front Immunol. 10:62019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mizuno H, Kitada K, Nakai K and Sarai A:
PrognoScan: A new database for meta-analysis of the prognostic
value of genes. BMC Med Genomics. 2:182009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Chandrashekar DS, Bashel B, Balasubramanya
SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi BVSK and
Varambally S: UALCAN: A portal for facilitating tumor subgroup gene
expression and survival analyses. Neoplasia. 19:649–658. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Menyhárt O, Nagy Á and Győrffy B:
Determining consistent prognostic biomarkers of overall survival
and vascular invasion in hepatocellular carcinoma. R Soc Open Sci.
5:1810062018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Li T, Fan J, Wang B, Traugh N, Chen Q, Liu
JS, Li B and Liu XS: TIMER: A web server for comprehensive analysis
of tumor-infiltrating immune cells. Cancer Res. 77:e108–e110. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Li B, Severson E, Pignon JC, Zhao H, Li T,
Novak J, Jiang P, Shen H, Aster JC, Rodig S, et al: Comprehensive
analyses of tumor immunity: Implications for cancer immunotherapy.
Genome Biol. 17:1742016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Graef T, Moesta AK, Norman PJ, Abi-Rached
L, Vago L, Older Aguilar AM, Gleimer M, Hammond JA, Guethlein LA,
Bushnell DA, et al: KIR2DS4 is a product of gene conversion with
KIR3DL2 that introduced specificity for HLA-A*11 while diminishing
avidity for HLA-C. J Exp Med. 206:2557–2572. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vivian JP, Duncan RC, Berry R, O'Connor
GM, Reid HH, Beddoe T, Gras S, Saunders PM, Olshina MA, Widjaja JM,
et al: Killer cell immunoglobulin-like receptor 3DL1-mediated
recognition of human leukocyte antigen B. Nature. 479:401–405.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Goodridge JP, Burian A, Lee N and Geraghty
DE: HLA-F and MHC class I open conformers are ligands for NK cell
Ig-like receptors. J Immunol. 191:3553–3562. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cantoni C, Bottino C, Vitale M, Pessino A,
Augugliaro R, Malaspina A, Parolini S, Moretta L, Moretta A and
Biassoni R: NKp44, a triggering receptor involved in tumor cell
lysis by activated human natural killer cells, is a novel member of
the immunoglobulin superfamily. J Exp Med. 189:787–796. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Eissmann P, Beauchamp L, Wooters J, Tilton
JC, Long EO and Watzl C: Molecular basis for positive and negative
signaling by the natural killer cell receptor 2B4 (CD244). Blood.
105:4722–4729. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Hori S, Nomura T and Sakaguchi S: Control
of regulatory T cell development by the transcription factor Foxp3.
Science. 299:1057–1061. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fontenot JD, Gavin MA and Rudensky AY:
Foxp3 programs the development and function of CD4+CD25+ regulatory
T cells. Nat Immunol. 4:330–336. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
45
|
Fontenot JD, Rasmussen JP, Williams LM,
Dooley JL, Farr AG and Rudensky AY: Regulatory T cell lineage
specification by the forkhead transcription factor foxp3. Immunity.
22:329–341. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wherry EJ: T cell exhaustion. Nat Immunol.
12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Fagerberg L, Hallström BM, Oksvold P,
Kampf C, Djureinovic D, Odeberg J, Habuka M, Tahmasebpoor S,
Danielsson A, Edlund K, et al: Analysis of the human
tissue-specific expression by genome-wide integration of
transcriptomics and antibody-based proteomics. Mol Cell Proteomics.
13:397–406. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Chevalier F, Depagne J, Hem S, Chevillard
S, Bensimon J, Bertrand P and Lebeau J: Accumulation of cyclophilin
A isoforms in conditioned medium of irradiated breast cancer cells.
Proteomics. 12:1756–1766. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ralhan R, Masui O, Desouza LV, Matta A,
Macha M and Siu KW: Identification of proteins secreted by head and
neck cancer cell lines using LC-MS/MS: Strategy for discovery of
candidate serological biomarkers. Proteomics. 11:2363–2376. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tian X, Zhao C, Zhu H, She W, Zhang J, Liu
J, Li L, Zheng S, Wen YM and Xie Y: Hepatitis B virus (HBV) surface
antigen interacts with and promotes cyclophilin a secretion:
Possible link to pathogenesis of HBV infection. J Virol.
84:3373–3381. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Igakura T, Kadomatsu K, Taguchi O,
Muramatsu H, Kaname T, Miyauchi T, Yamamura K, Arimura K and
Muramatsu T: Roles of basigin, a member of the immunoglobulin
superfamily, in behavior as to an irritating odor, lymphocyte
response, and blood-brain barrier. Biochem Biophys Res Commun.
224:33–36. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Staffler G, Szekeres A, Schütz GJ, Säemann
MD, Prager E, Zeyda M, Drbal K, Zlabinger GJ, Stulnig TM and
Stockinger H: Selective inhibition of T cell activation via CD147
through novel modulation of lipid rafts. J Immunol. 171:1707–1714.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lu M, Wu J, Hao ZW, Shang YK, Xu J, Nan G,
Li X, Chen ZN and Bian H: Basolateral CD147 induces hepatocyte
polarity loss by E-cadherin ubiquitination and degradation in
hepatocellular carcinoma progress. Hepatology. 68:317–332. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
de la Iglesia N, Konopka G, Puram SV, Chan
JA, Bachoo RM, You MJ, Levy DE, Depinho RA and Bonni A:
Identification of a PTEN-regulated STAT3 brain tumor suppressor
pathway. Genes Dev. 22:449–462. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhao S, Wu L, Kuang Y, Su J, Luo Z, Wang
Y, Li J, Zhang J, Chen W, Li F, et al: Downregulation of CD147
induces malignant melanoma cell apoptosis via the regulation of
IGFBP2 expression. Int J Oncol. 53:2397–2408. 2018.PubMed/NCBI
|
|
56
|
Lee J, Kim JC, Lee SE, Quinley C, Kim H,
Herdman S, Corr M and Raz E: Signal transducer and activator of
transcription 3 (STAT3) protein suppresses adenoma-to-carcinoma
transition in Apcmin/+ mice via regulation of Snail-1 (SNAI)
protein stability. J Biol Chem. 287:18182–18189. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Musteanu M, Blaas L, Mair M, Schlederer M,
Bilban M, Tauber S, Esterbauer H, Mueller M, Casanova E, Kenner L,
et al: Stat3 is a negative regulator of intestinal tumor
progression in Apc(Min) mice. Gastroenterology.
138:1003–1011.e1-e5. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gomez-Rodriguez J, Kraus ZJ and
Schwartzberg PL: Tec family kinases Itk and Rlk/Txk in T
lymphocytes: Cross-regulation of cytokine production and T-cell
fates. FEBS J. 278:1980–1989. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chongsathidkiet P, Jackson C, Koyama S,
Loebel F, Cui X, Farber SH, Woroniecka K, Elsamadicy AA, Dechant
CA, Kemeny HR, et al: Sequestration of T cells in bone marrow in
the setting of glioblastoma and other intracranial tumors. Nat Med.
24:1459–1468. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Damsker JM, Bukrinsky MI and Constant SL:
Preferential chemotaxis of activated human CD4+ T cells by
extracellular cyclophilin A. J Leukoc Biol. 82:613–618. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sherry B, Yarlett N, Strupp A and Cerami
A: Identification of cyclophilin as a proinflammatory secretory
product of lipopolysaccharide-activated macrophages. Proc Natl Acad
Sci USA. 89:3511–3515. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xu Q, Leiva MC, Fischkoff SA,
Handschumacher RE and Lyttle CR: Leukocyte chemotactic activity of
cyclophilin. J Biol Chem. 267:11968–11971. 1992.PubMed/NCBI
|
|
63
|
Forsthuber A, Lipp K, Andersen L,
Ebersberger S, Graña-Castro ', Ellmeier W, Petzelbauer P,
Lichtenberger BM and Loewe R: CXCL5 as regulator of neutrophil
function in cutaneous melanoma. J Invest Dermatol. 139:186–194.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Drewes CC, Alves AC, Hebeda CB, Copetti I,
Sandri S, Uchiyama MK, Araki K, Guterres SS, Pohlmann AR and Farsky
SH: Role of poly(ε-caprolactone) lipid-core nanocapsules on
melanoma-neutrophil crosstalk. Int J Nanomedicine. 12:7153–7163.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hölzel M and Tüting T:
Inflammation-induced plasticity in melanoma therapy and metastasis.
Trends Immunol. 37:364–374. 2016. View Article : Google Scholar : PubMed/NCBI
|