Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2019 Volume 18 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2019 Volume 18 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Cancer stem cells in esophageal squamous cell cancer (Review)

  • Authors:
    • Qian Wu
    • Zhe Wu
    • Cuiyu Bao
    • Wenjing Li
    • Hui He
    • Yanling Sun
    • Zimin Chen
    • Hao Zhang
    • Zhifeng Ning
  • View Affiliations / Copyright

    Affiliations: Basic Medical School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Nurse School, Hubei University of Science and Technology, Xianning, Hubei 437100, P.R. China, Basic Medical School, Ji'nan University Medical School, Guangzhou, Guangdong 510632, P.R. China
    Copyright: © Wu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 5022-5032
    |
    Published online on: September 20, 2019
       https://doi.org/10.3892/ol.2019.10900
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer stem cells (CSCs) are hypothesized to govern the origin, progression, drug resistance, recurrence and metastasis of human cancer. CSCs have been identified in nearly all types of human cancer, including esophageal squamous cell cancer (ESCC). Four major methods are typically used to isolate or enrich CSCs, including: i) fluorescence‑activated cell sorting or magnetic‑activated cell sorting using cell‑specific surface markers; ii) stem cell markers, including aldehyde dehydrogenase 1 family member A1; iii) side population cell phenotype markers; and iv) microsphere culture methods. ESCC stem cells have been identified using a number of these methods. An increasing number of stem cell signatures and pathways have been identified, which have assisted in the clarification of molecular mechanisms that regulate the stemness of ESCC stem cells. Certain viruses, such as human papillomavirus and hepatitis B virus, are also considered to be important in the formation of CSCs, and there is a crosstalk between stemness and viruses‑associated genes/pathways, which may suggest a potential therapeutic strategy for the eradication of CSCs. In the present review, findings are summarized along these lines of inquiry.
View Figures

Figure 1

Figure 2

View References

1 

Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China 2015. Ca Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

3 

Huang Y, Qu S, Zhu G, Wang F, Liu R, Shen X, Viola D, Elisei R, Puxeddu E, Fugazzola L, et al: BRAF V600E mutation-assisted risk stratification of solitary intrathyroidal papillary thyroid cancer for precision treatment. J Natl Cancer Inst. 110:362–370. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Leonard KL and Wazer DE: Genomic assays and individualized treatment of ductal carcinoma in situ in the era of value-based cancer care. J Clin Oncol. 34:3953–2955. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Dos Santos M, Brachet PE, Chevreau C and Joly F: Impact of targeted therapies in metastatic renal cell carcinoma on patient-reported outcomes: Methodology of clinical trials and clinical benefit. Cancer Treat Rev. 53:53–60. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Chen DS and Mellman I: Elements of cancer immunity and the cancer-immune set point. Nature. 541:321–330. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Başaran GA, Twelves C, Diéras V, Cortés J and Awada A: Ongoing unmet needs in treating estrogen receptor-positive/HER2-negative metastatic breast cancer. Cancer Treat Rev. 63:144–155. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Bourke L, Kirkbride P, Hooper R, Rosario AJ, Chico TJ and Rosario DJ: Endocrine therapy in prostate cancer: Time for reappraisal of risks, benefits and cost-effectiveness? Br J Cancer. 108:9–13. 2013. View Article : Google Scholar : PubMed/NCBI

9 

Han SH, Kim JW, Kim M, Kim JH, Lee KW, Kim BH, Oh HK, Kim DW, Kang SB, Kim H and Shin E: Prognostic implication of ABC transporters and cancer stem cell markers in patients with stage III colon cancer receiving adjuvant FOLFOX-4 chemotherapy. Oncol Lett. 17:5572–5580. 2019.PubMed/NCBI

10 

Xu PP, Fu D, Li JY, Hu JD, Wang X, Zhou JF, Yu H, Zhao X, Huang YH, Jiang L, et al: Anthracycline dose optimisation in patients with diffuse large B-cell lymphoma: A multicentre, phase 3, randomised, controlled trial. Lancet Haematol. 6:e328–e337. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Rous P: The relations of embryonic tissue and tumor in mixed grafts. J Exp Med. 13:239–247. 1911. View Article : Google Scholar : PubMed/NCBI

12 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

13 

ZD: CarcinogenesisMedicine. Zaridze D.G.: pp. 1–567. 2004

14 

Dick JE and Tsvee L: Biology of normal and acute myeloid leukemia stem cells. Int J Hematol. 82:389–396. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV and Lyuba V: Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10:R102008. View Article : Google Scholar : PubMed/NCBI

16 

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI

18 

Odoux C, Fohrer H, Hoppo T, Guzik L, Stolz DB, Lewis DW, Gollin SM, Gamblin TC, Geller DA and Lagasse E: A stochastic model for cancer stem cell origin in metastatic colon cancer. Cancer Research. 68:6932–6941. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G and Medema JP: Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci USA. 105:13427–13432. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Zhang H, Hao C, Wang H, Shang H and Li Z: Carboxypeptidase A4 promotes proliferation and stem cell characteristics of hepatocellular carcinoma. Int J Exp Pathol. 100:133–138. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Li X, Zhang Y, Ding J, Wang M, Li N, Yang H, Wang K, Wang D, Lin PP, Li M, et al: Clinical significance of detecting CSF-derived tumor cells in breast cancer patients with leptomeningeal metastasis. Oncotarget. 9:2705–2714. 2017.PubMed/NCBI

22 

Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y, Ueda J, Wei W, Inoue M and Tanaka H: Epidemiology of esophageal cancer in Japan and China. J Epidemiol. 23:233–242. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Lao-Sirieix P and Fitzgerald RC: Screening for oesophageal cancer. Nat Rev Clin Oncol. 9:278–287. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Pennathur A, Gibson MK, Jobe BA and Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Chen M, Liu P, Chen Y, Chen Z, Shen M, Liu X, Li X, Lin Y, Yang R, Ni W, et al: Primary tumor regression patterns in esophageal squamous cell cancer treated with definitive chemoradiotherapy and implications for surveillance schemes. Cancer Manag Res. 11:3361–3369. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Vira D, Basak SK, Veena MS, Wang MB, Batra RK and Srivatsan ES: Cancer stem cells, microRNAs, and therapeutic strategies including natural products. Cancer Metastasis Rev. 31:733–751. 2012. View Article : Google Scholar : PubMed/NCBI

28 

Fu W, Lei C, Yu Y, Liu S, Li T, Lin F, Fan X, Shen Y, Ding M, Tang Y, et al: EGFR/Notch antagonists enhance the response to inhibitors of the PI3K-Akt pathway by decreasing tumour-initiating cell frequency. Clin Cancer Res. 25:2835–2847. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Jia ZF, Wu YH, Cao DH, Cao XY, Jiang J and Zhou BS: Polymorphisms of cancer stem cell marker gene CD133 are associated with susceptibility and prognosis of gastric cancer. Future Oncol. 13:979–989. 2017. View Article : Google Scholar : PubMed/NCBI

30 

Kalantari E, Asgari M, Nikpanah S, Salarieh N, Lari MH and Madjd Z: Co-expression of putative cancer stem cell markers CD44 and CD133 in prostate carcinomas. Pathol Oncol Res. 23:793–802. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ and Clarke MF: Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI

32 

Yan Y, Zuo X and Wei D: Concise review: Emerging role of CD44 in cancer stem cells: A promising biomarker and therapeutic target. Stem Cells Transl Med. 4:1033–1043. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Liou GY: CD133 as a regulator of cancer metastasis through the cancer stem cells. Int J Biochem Cell Biol. 106:1–7. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Tang KH, Dai YD, Tong M, Chan YP, Kwan PS, Fu L, Qin YR, Tsao SW, Lung HL, Lung ML, et al: A CD90(+) tumor-initiating cell population with an aggressive signature and metastatic capacity in esophageal cancer. Cancer Res. 73:2322–2332. 2013. View Article : Google Scholar : PubMed/NCBI

35 

Moreira MP, da Conceição Braga L and Silva LM: STAT3 as a promising chemoresistance biomarker associated with the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp Cell Res. 363:283–290. 2018. View Article : Google Scholar : PubMed/NCBI

36 

Nguyen PH, Giraud J, Staedel C, Chambonnier L, Dubus P, Chevret E, Bœuf H, Gauthereau X, Rousseau B, Fevre M, et al: All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth. Oncogene. 35:5619–5628. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Erb HHH, Guggenberger F, Santer FR and Culig Z: Interleukin-4 induces a CD44high/CD49bhigh PC3 subpopulation with tumor-initiating characteristics. J Cell Biochem. 119:4103–4112. 2018. View Article : Google Scholar : PubMed/NCBI

38 

Ogawa T, Hirohashi Y, Murai A, Nishidate T, Okita K, Wang L, Ikehara Y, Satoyoshi T, Usui A, Kubo T, et al: ST6GALNAC1 plays important roles in enhancing cancer stem phenotypes of colorectal cancer via the Akt pathway. Oncotarget. 8:112550–112564. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Wang HH, Liao CC, Chow NH, Huang LL, Chuang JI, Wei KC and Shin JW: Whether CD44 is an applicable marker for glioma stem cells. Am J Transl Res. 9:4785–4806. 2017.PubMed/NCBI

40 

Zhao JS, Li WJ, Ge D, Zhang PJ, Li JJ, Lu CL, Ji XD, Guan DX, Gao H, Xu LY, et al: Tumor initiating cells in esophageal squamous cell carcinomas express high levels of CD44. PLoS One. 6:e214192011. View Article : Google Scholar : PubMed/NCBI

41 

Matsuya Y: A serum-free culture medium for the minor inoculum of L line cells. Tohoku J Exp Med. 86:1–8. 1965. View Article : Google Scholar : PubMed/NCBI

42 

Haylock DN, To LB, Dowse TL, Juttner CA and Simmons PJ: Ex vivo expansion and maturation of peripheral blood CD34+ cells into the myeloid lineage. Blood. 80:1405–1412. 1992.PubMed/NCBI

43 

Petzer AL, Zandstra PW, Piret JM and Eaves CJ: Differential cytokine effects on primitive (CD34+CD38-) human hematopoietic cells: Novel responses to Flt3-ligand and thrombopoietin. J Exp Med. 183:2551–2558. 1996. View Article : Google Scholar : PubMed/NCBI

44 

Möbest D, Goan SR, Junghahn I, Winkler J, Fichtner I, Hermann M, Becker M, de Lima-Hahn E and Henschler R: Differential kinetics of primitive hematopoietic cells assayed in vitro and in vivo during serum-free suspension culture of CD34+ blood progenitor cells. Stem Cells. 17:152–161. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Jimenez-Pascual A, Hale JS, Kordowski A, Pugh J, Silver DJ, Bayik D, Roversi G, Alban TJ, Rao S, Chen R, et al: ADAMDEC1 maintains a growth factor signaling loop in cancer stem cells. Cancer Discov. (pii): CD-18-1308. 2019.PubMed/NCBI

46 

Abbaszadegan MR, Bagheri V, Razavi MS, Momtazi AA, Sahebkar A and Gholamin M: Isolation, identification and characterization of cancer stem cells: A review. J Cell Physiol. 232:2008–2018. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Xiao G, Li X, Li G, Zhang B, Xu C, Qin S, Du N, Wang J, Tang SC, Zhang J, et al: MiR-129 blocks estrogen induction of NOTCH signaling activity in breast cancer stem-like cells. Oncotarget. 8:103261–103273. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Trisciuoglio D, Tupone MG, Desideri M, Di Martile M, Gabellini C, Buglioni S, Pallocca M, Alessandrini G, D'Aguanno S and Del Bufalo D: BCL-XL overexpression promotes tumor progression-associated properties. Cell Death Dis. 8:32162017. View Article : Google Scholar : PubMed/NCBI

49 

Wang JL, Yu JP, Sun ZQ and Sun SP: Radiobiological characteristics of cancer stem cells from esophageal cancer cell lines. World J Gastroenterol. 20:18296–18305. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC and Johnson RP: Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 3:1337–1345. 1997. View Article : Google Scholar : PubMed/NCBI

51 

Parmar K, Sauk-Schubert C, Burdick D, Handley M and Mauch P: Sca+CD34- murine side population cells are highly enriched for primitive stem cells. Exp Hematol. 31:244–250. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco Md, Dale TC and Smalley MJ: Functional and molecular characterisation of mammary side population cells. Breast Cancer Research. 5:R1–R8. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Gross E, L'Faqihiolive FE, Ysebaert L, Brassac M, Struski S, Kheirallah S, Fournié JJ, Laurent G and Quillet-Mary A: B-chronic lymphocytic leukemia chemoresistance involves innate and acquired leukemic side population cells. Leukemia. 24:1885–1892. 2010. View Article : Google Scholar : PubMed/NCBI

54 

Du J, Liu S, He J, Liu X, Qu Y, Yan W, Fan J, Li R, Xi H, Fu W, et al: MicroRNA-451 regulates stemness of side population cells via PI3K/Akt/mTOR signaling pathway in multiple myeloma. Oncotarget. 6:14993–15007. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Britton KM, Kirby JA, Lennard TW and Meeson AP: Cancer stem cells and side population cells in breast cancer and metastasis. Cancers. 3:2106–2130. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Macpherson H, Keir P, Webb S, Samuel K, Boyle S, Bickmore W, Forrester L and Dorin J: Bone marrow-derived SP cells can contribute to the respiratory tract of mice in vivo. J Cell Sci. 118:2441–2450. 2005. View Article : Google Scholar : PubMed/NCBI

57 

Shimoda M, Ota M and Okada Y: Isolation of cancer stem cells by side population method. Methods Mol Biol. 1692:49–59. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Patrawala L, Calhoun T, Schneider-Broussard R, Zhou J, Claypool K and Tang DG: Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic. Cancer Res. 65:6207–6019. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Zhang X, Komaki R, Wang L, Fang B and Chang JY: Treatment of radioresistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus. Clin Cancer Res. 14:2813–2823. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Zhang G, Ma L, Xie YK, Miao XB and Jin C: Esophageal cancer tumorspheres involve cancer stem-like populations with elevated aldehyde dehydrogenase enzymatic activity. Mol Med Rep. 6:519–524. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Yue Z, Qi B, Bettina S, Zhao L, Mysliwietz J, Ellwart J, Renner A, Hirner H, Niess H, Camaj P, et al: Stem cell-like side populations in esophageal cancer: A source of chemotherapy resistance and metastases. Stem Cells Dev. 23:180–192. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Chen J, Xia Q, Jiang B, Chang W, Yuan W, Ma Z, Liu Z and Shu X: Prognostic value of cancer stem cell marker ALDH1 expression in colorectal cancer: A systematic review and meta-analysis. PLoS One. 10:e01451642015. View Article : Google Scholar : PubMed/NCBI

63 

Zhou Y, Wang Y, Ju X, Lan J, Zou H, Li S, Qi Y, Jia W, Hu J, Liang W, et al: Clinicopathological significance of ALDH1A1 in lung, colorectal, and breast cancers: A meta-analysis. Biomark Med. 9:777–790. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Ferrell CM, Dorsam ST, Ohta H, Humphries RK, Derynck MK, Haqq C, Largman C and Lawrence HJ: Activation of stem-cell specific genes by HOXA9 and HOXA10 homeodomain proteins in CD34+ human cord blood cells. Stem Cells. 23:644–655. 2010. View Article : Google Scholar

65 

Seigel GM, Campbell LM, Narayan M and Gonzalez-Fernandez F: Cancer stem cell characteristics in retinoblastoma. Mol Vis. 11:729–737. 2005.PubMed/NCBI

66 

Macdonagh L, Gallagher MF, Ffrench B, Gasch C, Breen E, Gray SG, Nicholson S, Leonard N, Ryan R, Young V, et al: Targeting the cancer stem cell marker, aldehyde dehydrogenase 1, to circumvent cisplatin resistance in NSCLC. Oncotarget. 8:72544–72563. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Fu Z, Chen C, Zhou Q, Wang Y, Zhao Y, Zhao X, Li W, Zheng S, Ye H, Wang L, et al: LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9. Cancer Lett. 410:68–81. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Ji Y, Li X, Li Y, Zhong Y, Cao J, Xu R, Wang J, Zhou F, Li X, Yu D, et al: Aldehyde dehydrogenase-1 expression predicts unfavorable outcomes in patients with esophageal squamous cell carcinoma. Anticancer Res. 36:343–349. 2016.PubMed/NCBI

69 

Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B, et al: Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74:4170–4182. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Chen MF, Chen PT, Lu MS and Chen WC: Role of ALDH1 in the prognosis of esophageal cancer and its relationship with tumor microenvironment. Mol Carcinog. 57:78–88. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Akbarzadeh M, Maroufi NF, Tazehkand AP, Akbarzadeh M, Bastani S, Safdari R, Farzane A, Fattahi A, Nejabati HR, Nouri M and Samadi N: Current approaches in identification and isolation of cancer stem cells. J Cell Physiol. Feb 11–2019.doi: 10.1002/jcp.28271 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

72 

Yang Z, Ni W, Cui C, Qi W, Piao L and Xuan Y: Identification of LETM1 as a marker of cancer stem-like cells and predictor of poor prognosis in esophageal squamous cell carcinoma. Hum Pathol. 81:148–156. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Liu Q, Cui X, Yu X, Bian BS, Qian F, Hu XG, Ji CD, Yang L, Ren Y, Cui W, et al: Cripto-1 acts as a functional marker of cancer stem-like cells and predicts prognosis of the patients in esophageal squamous cell carcinoma. Mol Cancer. 16:812017. View Article : Google Scholar : PubMed/NCBI

74 

Cabrera MC, Hollingsworth RE and Hurt EM: Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells. 7:27–36. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Almanaa TN, Geusz ME and Jamasbi RJ: A new method for identifying stem-like cells in esophageal cancer cell lines. J Cancer. 4:536–548. 2013. View Article : Google Scholar : PubMed/NCBI

76 

Ajani JA, Wang X, Song S, Suzuki A, Taketa T, Sudo K, Wadhwa R, Hofstetter WL, Komaki R, Maru DM, et al: ALDH-1 expression levels predict response or resistance to preoperative chemoradiation in resectable esophageal cancer patients. Mol Oncol. 8:142–149. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Chang L, Graham P, Hao J, Ni J, Deng J, Bucci J, Malouf D, Gillatt D and Li Y: Cancer stem cells and signaling pathways in radioresistance. Oncotarget. 7:11002–11017. 2016.PubMed/NCBI

78 

Lynam-Lennon N, Heavey S, Sommerville G, Bibby BA, Ffrench B, Quinn J, Gasch C, O'Leary JJ, Gallagher MF, Reynolds JV and Maher SG: MicroRNA-17 is downregulated in esophageal adenocarcinoma cancer stem-like cells and promotes a radioresistant phenotype. Oncotarget. 8:11400–11413. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Chen KH, Guo Y, Li L, Qu S, Zhao W, Lu QT, Mo QY, Yu BB, Zhou L, Lin GX, et al: Cancer stem cell-like characteristics and telomerase activity of the nasopharyngeal carcinoma radioresistant cell line CNE-2R. Cancer Med. 7:4755–4764. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Chen Y, Jiang T, Mao A and Xu J: Esophageal cancer stem cells express PLGF to increase cancer invasion through MMP9 activation. Tumour Biol. 35:12749–12755. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Tsai ST, Wang PJ, Liou NJ, Lin PS, Chen CH and Chang WC: ICAM1 is a potential cancer stem cell marker of esophageal squamous cell carcinoma. PLoS One. 10:e01428342015. View Article : Google Scholar : PubMed/NCBI

82 

Sauzay C, Voutetakis K, Chatziioannou A, Chevet E and Avril T: CD90/Thy-1, a cancer-associated cell surface signaling molecule. Front Cell Dev Biol. 7:662019. View Article : Google Scholar : PubMed/NCBI

83 

Ji N, Yu JW, Ni XC, Wu JG, Wang SL and Jiang BJ: Bone marrow-derived mesenchymal stem cells increase drug resistance in CD133-expressing gastric cancer cells by regulating the PI3K/AKT pathway. Tumor Biol. 37:14637–14651. 2016. View Article : Google Scholar

84 

Fan H and Lu S: Fusion of human bone hemopoietic stem cell with esophageal carcinoma cells didn't generate esophageal cancer stem cell. Neoplasma. 61:540–545. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Mo JS, Park HW and Guan KL: The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep. 15:642–656. 2014. View Article : Google Scholar : PubMed/NCBI

86 

Sharon N, Vanderhooft J, Straubhaar J, Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK and Melton DA: Wnt signaling separates the progenitor and endocrine compartments during pancreas development. Cell Rep. 27:2281–2291.e5. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H, Zhang S, Li N, Song J, Fang Y, et al: WNT/NOTCH pathway is essential for the maintenance and expansion of human MGE progenitors. Stem Cell Reports. 12:934–949. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Huynh DL, Koh H, Chandimali N, Zhang JJ, Kim N, Kang TY, Ghosh M, Gera M, Park YH, Kwon T and Jeong DK: BRM270 inhibits the proliferation of CD44 positive pancreatic ductal adenocarcinoma cells via downregulation of sonic hedgehog signaling. Evid Based Complement Alternat Med. 2019:86204692019. View Article : Google Scholar : PubMed/NCBI

89 

Che SM, Zhang XZ, Liu XL, Chen X and Hou L: The radiosensitization effect of NS398 on esophageal cancer stem cell-like radioresistant cells. Dis Esophagus. 24:265–273. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Yue D, Zhang Z, Li J, Chen X, Ping Y, Liu S, Shi X, Li L, Wang L, Huang L, et al: Transforming growth factor-beta1 promotes the migration and invasion of sphere-forming stem-like cell subpopulations in esophageal cancer. Exp Cell Res. 336:141–149. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Ding W, Mouzaki M, You H, Laird JC, Mato J, Lu SC and Rountree CB: CD133+ liver cancer stem cells from methionine adenosyl transferase 1A-deficient mice demonstrate resistance to transforming growth factor (TGF)-beta-induced apoptosis. Hepatology. 49:1277–1286. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, Watanabe M, Beppu T, Tamada M, Nagano O, et al: CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 72:3414–3423. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Mitra M, Kandalam M, Harilal A, Verma RS, Krishnan UM, Swaminathan S and Krishnakumar S: EpCAM is a putative stem marker in retinoblastoma and an effective target for T-cell-mediated immunotherapy. Mol Vis. 18:290–308. 2012.PubMed/NCBI

94 

Zhang M, Tan S, Yu D, Zhao Z, Zhang B, Zhang P, Lv C, Zhou Q and Cao Z: Triptonide inhibits lung cancer cell tumorigenicity by selectively attenuating the Shh-Gli1 signaling pathway. Toxicol Appl Pharmacol. 365:1–8. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Arai MA, Ochi F, Makita Y, Chiba T, Higashi K, Suganami A, Tamura Y, Toida T, Iwama A, Sadhu SK, et al: GLI1 inhibitors identified by target protein oriented natural products isolation (TPO-NAPI) with hedgehog inhibition. ACS Chem Biol. 13:2551–2559. 2018. View Article : Google Scholar : PubMed/NCBI

96 

Yang Z, Cui Y, Ni W, Kim S and Xuan Y: Gli1, a potential regulator of esophageal cancer stem cell, is identified as an independent adverse prognostic factor in esophageal squamous cell carcinoma. J Cancer Res Clin Oncol. 143:243–254. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Fujiwara D, Kato K, Nohara S, Iwanuma Y and Kajiyama Y: The usefulness of three-dimensional cell culture in induction of cancer stem cells from esophageal squamous cell carcinoma cell lines. Biochem Biophys Res Commun. 434:773–778. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Kanamoto A, Ninomiya I, Harada S, Tsukada T, Okamoto K, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi H, et al: Valproic acid inhibits irradiation-induced epithelial-mesenchymal transition and stem cell-like characteristics in esophageal squamous cell carcinoma. Int J Oncol. 49:1859–1869. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Zhang JX, Chen ZH, Xu Y, Chen JW, Weng HW, Yun M, Zheng ZS, Chen C, Wu BL, Li EM, et al: Downregulation of MicroRNA-644a promotes esophageal squamous cell carcinoma aggressiveness and stem-cell-like phenotype via dysregulation of PITX2. Clin Cancer Res. 23:298–310. 2017. View Article : Google Scholar : PubMed/NCBI

100 

De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G and Robey PG: Advances in stem cell research and therapeutic development. Nat Cell Biol. 21:801–811. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI

102 

de Sousa EM, Vermeulen L, Richel D and Medema JP: Targeting Wnt signaling in colon cancer stem cells. Clin Cancer Res. 17:647–653. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Merchant AA and William M: Targeting Hedgehog-a cancer stem cell pathway. Clin Cancer Res. 16:3130–3140. 2010. View Article : Google Scholar : PubMed/NCBI

104 

Galoczova M, Coates P and Vojtesek B: STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett. 23:122018. View Article : Google Scholar : PubMed/NCBI

105 

Fu J and Wang H: Precision diagnosis and treatment of liver cancer in China. Cancer Lett. 412:283–288. 2017. View Article : Google Scholar : PubMed/NCBI

106 

Irwin CR, Hitt MM and Evans DH: Targeting nucleotide biosynthesis: A strategy for improving the oncolytic potential of DNA viruses. Front Oncol. 7:2292017. View Article : Google Scholar : PubMed/NCBI

107 

Pandey S and Robertson ES: Oncogenic Epstein-Barr virus recruits Nm23-H1 to regulate chromatin modifiers. Lab Invest. 98:258–268. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Lin TA, Garden AS, Elhalawani H, Elgohari B, Jethanandani A, Ng SP, Mohamed AS, Frank SJ, Glisson BS, Debnam JM, et al: Radiographic retropharyngeal lymph node involvement in human papillomavirus-associated oropharyngeal carcinoma: Patterns of involvement and impact on patient outcomes. Cancer. 125:1536–1546. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Wang D, Plukker JTM and Coppes RP: Cancer stem cells with increased metastatic potential as a therapeutic target for esophageal cancer. Semin Cancer Biol. 44:60–66. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Hirai M, Kelsey LS, Vaillancourt M, Maneval DC, Watanabe T and Talmadge JE: Purging of human breast cancer cells from stem cell products with an adenovirus containing p53. Cancer Gene Ther. 7:197–206. 2000. View Article : Google Scholar : PubMed/NCBI

111 

Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A, Desmond RA, Pesonen S and Hemminki A: Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells. Mol Ther. 15:2088–2093. 2007. View Article : Google Scholar : PubMed/NCBI

112 

Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, Gurney A, Lewicki J and Clarke MF: Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells. 26:364–371. 2010. View Article : Google Scholar

113 

Mui UN, Haley CT and Tyring SK: Viral oncology: Molecular biology and pathogenesis. J Clin Med. 6(pii): 1112017. View Article : Google Scholar

114 

Ali SM, Ross JS and Wang K: Reply to Genomic profiles of nasopharyngeal carcinoma: The importance of histological subtyping and Epstein-Barr virus in situ assays. Cancer. 124:435–436. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Satoru K, Naohiro W, Masamichi M, Zen Y, Endo K, Murono S, Sugimoto H, Yamaoka S, Pagano JS and Yoshizaki T: Epstein-Barr virus latent membrane protein 1 induces cancer stem/progenitor-like cells in nasopharyngeal epithelial cell lines. J Virol. 85:11255–11264. 2011. View Article : Google Scholar : PubMed/NCBI

116 

Chris C, Figueroa JA, Leonardo M, Colombo M, Summers G, Figueroa A, Aulakh A, Konala V, Verma R, Riaz J, et al: The role of human papilloma virus (HPV) infection in non-anogenital cancer and the promise of immunotherapy: A review. Int Rev Immunol. 33:383–401. 2014. View Article : Google Scholar : PubMed/NCBI

117 

Swanson MS, Kokot N and Sinha UK: The role of HPV in head and neck cancer stem cell formation and tumorigenesis. Cancers (Basel). 8(pii): E242016. View Article : Google Scholar : PubMed/NCBI

118 

Ortiz-Sánchez E, Santiago-López L, Cruz-Domínguez VB, Toledo-Guzmán ME, Hernández-Cueto D, Muñiz-Hernández S, Garrido E, Cantú De León D and García-Carrancá A: Characterization of cervical cancer stem cell-like cells: Phenotyping, stemness, and human papilloma virus co-receptor expression. Oncotarget. 7:31943–31954. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Lanfredini S, Olivero C, Borgogna C, Calati F, Powell K, Davies KJ, De Andrea M, Harries S, Tang HKC, Pfister H, et al: HPV8 field cancerization in a transgenic mouse model is due to Lrig1+ keratinocyte stem cell expansion. J Invest Dermatol. 137:2208–2216. 2017. View Article : Google Scholar : PubMed/NCBI

120 

Zhang M, Kumar B, Piao L, Xie X, Schmitt A, Arradaza N, Cippola M, Old M, Agrawal A, Ozer E, et al: Elevated intrinsic cancer stem cell population in human papillomavirus-associated head and neck squamous cell carcinoma. Cancer. 120:992–1001. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Zhang M, Zhuang G, Sun X, Shen Y, Wang W, Li Q and Di W: TP53 mutation-mediated genomic instability induces the evolution of chemoresistance and recurrence in epithelial ovarian cancer. Diagn Pathol. 12:162017. View Article : Google Scholar : PubMed/NCBI

122 

Chiche A, Moumen M, Romagnoli M, Petit V, Lasla H, Jézéquel P, de la Grange P, Jonkers J, Deugnier MA, Glukhova MA and Faraldo MM: p53 deficiency induces cancer stem cell pool expansion in a mouse model of triple-negative breast tumors. Oncogene. 36:2355–2365. 2016. View Article : Google Scholar : PubMed/NCBI

123 

Shetzer Y, Molchadsky A and Rotter V: Oncogenic mutant p53 gain of function nourishes the vicious cycle of tumor development and cancer stem-cell formation. Cold Spring Harb Perspect Med. 6(pii): a0262032016. View Article : Google Scholar : PubMed/NCBI

124 

Tan MJ, White EA, Sowa ME, Harper JW, Aster JC and Howley PM: Cutaneous β-human papillomavirus E6 proteins bind Mastermind-like coactivators and repress Notch signaling. Proc Natl Acad Sci USA. 109:E1473–E1480. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Shamir ER, Devine WP, Pekmezci M, Umetsu SE, Krings G, Federman S, Cho SJ, Saunders TA, Jen KY, Bergsland E, et al: Identification of high-risk human papillomavirus and Rb/E2F pathway genomic alterations in mutually exclusive subsets of colorectal neuroendocrine carcinoma. Mod Pathol. 32:290–305. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Dyson N, Howley PM, Münger K and Harlow E: The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 243:934–937. 1989. View Article : Google Scholar : PubMed/NCBI

127 

Shanmugarajah R, Bin W, Snow ET, Sharma P, Pavey D, Merrett N, Ball MJ, Brain T, Fernando R and Robertson IK: Transcriptionally active human papillomavirus is strongly associated with Barrett's dysplasia and esophageal adenocarcinoma. Am J Gastroenterol. 108:1082–1093. 2013. View Article : Google Scholar : PubMed/NCBI

128 

Anders M, Rösch T, Küster K, Becker I, Höfler H, Stein HJ, Meining A, Wiedenmann B and Sarbia M: Expression and function of the coxsackie and adenovirus receptor in Barrett's esophagus and associated neoplasia. Cancer Gene Ther. 16:508–515. 2009. View Article : Google Scholar : PubMed/NCBI

129 

Chang F, Syrjänen S, Wang L and Syrjänen K: Infectious agents in the etiology of esophageal cancer. Gastroenterology. 103:1336–1348. 1992. View Article : Google Scholar : PubMed/NCBI

130 

Chang F, Syrjänen S, Shen Q, Ji HX and Syrjänen K: Human papillomavirus (HPV) DNA in esophageal precancer lesions and squamous cell carcinomas from China. Int J Cancer. 45:21–25. 1990. View Article : Google Scholar : PubMed/NCBI

131 

He Z, Xu Z, Hang D, Guo F, Abliz A, Weiss NS, Xi L, Liu F, Ning T, Pan Y, et al: Anti-HPV-E7 seropositivity and risk of esophageal squamous cell carcinoma in a high-risk population in China. Carcinogenesis. 35:816–821. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Wang L, Li J, Hou J, Li M, Cui X, Li S, Yu X, Zhang Z, Liang W, Jiang J, et al: p53 expression but not p16(INK4A) correlates with human papillomavirus-associated esophageal squamous cell carcinoma in Kazakh population. Infect Agent Cancer. 11:192016. View Article : Google Scholar : PubMed/NCBI

133 

Ludmir EB, Stephens SJ, Palta M, Willett CG and Czito BG: Human papillomavirus tumor infection in esophageal squamous cell carcinoma. J Gastrointest Oncol. 6:287–295. 2015.PubMed/NCBI

134 

Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S, Li X, Zhang X, Gong T, Guo J, et al: HPV16 E6-E7 induces cancer stem-like cells phenotypes in esophageal squamous cell carcinoma through the activation of PI3K/Akt signaling pathway in vitro and in vivo. Oncotarget. 7:57050–57065. 2016. View Article : Google Scholar : PubMed/NCBI

135 

Syrjänen KJ: HPV infections and oesophageal cancer. J Clin Pathol. 55:721–728. 2002. View Article : Google Scholar : PubMed/NCBI

136 

Halec G, Schmitt M, Egger S, Abnet CC, Babb C, Dawsey SM, Flechtenmacher C, Gheit T, Hale M, Holzinger D, et al: Mucosal alpha-papillomaviruses are not associated with esophageal squamous cell carcinomas: Lack of mechanistic evidence from South Africa, China and Iran and from a world-wide meta-analysis. Int J Cancer. 139:85–98. 2016. View Article : Google Scholar : PubMed/NCBI

137 

Yang L, Ji Y, Chen L, Li M, Wu F, Hu J, Jiang J, Cui X, Chen Y, Pang L, et al: Genetic variability in LMP2 and LMP7 is associated with the risk of esophageal squamous cell carcinoma in the Kazakh population but is not associated with HPV infection. PLoS One. 12:e01863192017. View Article : Google Scholar : PubMed/NCBI

138 

da Costa AM, Fregnani JHTG, Pastrez PRA, Mariano VS, Silva EM, Neto CS, Guimarães DP, Villa LL, Sichero L, Syrjanen KJ and Longatto-Filho A: HPV infection and p53 and p16 expression in esophageal cancer: are they prognostic factors? Infect Agent Cancer. 12:542017. View Article : Google Scholar : PubMed/NCBI

139 

Kayamba V, Bateman AC, Asombang AW, Shibemba A, Zyambo K, Banda T, Soko R and Kelly P: S HIV infection and domestic smoke exposure, but not human papilloma virus, are risk factors for oesophageal squamous cell carcinoma in Zambia: A case-control study. Cancer Med. 4:588–595. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wu Q, Wu Z, Bao C, Li W, He H, Sun Y, Chen Z, Zhang H and Ning Z: Cancer stem cells in esophageal squamous cell cancer (Review). Oncol Lett 18: 5022-5032, 2019.
APA
Wu, Q., Wu, Z., Bao, C., Li, W., He, H., Sun, Y. ... Ning, Z. (2019). Cancer stem cells in esophageal squamous cell cancer (Review). Oncology Letters, 18, 5022-5032. https://doi.org/10.3892/ol.2019.10900
MLA
Wu, Q., Wu, Z., Bao, C., Li, W., He, H., Sun, Y., Chen, Z., Zhang, H., Ning, Z."Cancer stem cells in esophageal squamous cell cancer (Review)". Oncology Letters 18.5 (2019): 5022-5032.
Chicago
Wu, Q., Wu, Z., Bao, C., Li, W., He, H., Sun, Y., Chen, Z., Zhang, H., Ning, Z."Cancer stem cells in esophageal squamous cell cancer (Review)". Oncology Letters 18, no. 5 (2019): 5022-5032. https://doi.org/10.3892/ol.2019.10900
Copy and paste a formatted citation
x
Spandidos Publications style
Wu Q, Wu Z, Bao C, Li W, He H, Sun Y, Chen Z, Zhang H and Ning Z: Cancer stem cells in esophageal squamous cell cancer (Review). Oncol Lett 18: 5022-5032, 2019.
APA
Wu, Q., Wu, Z., Bao, C., Li, W., He, H., Sun, Y. ... Ning, Z. (2019). Cancer stem cells in esophageal squamous cell cancer (Review). Oncology Letters, 18, 5022-5032. https://doi.org/10.3892/ol.2019.10900
MLA
Wu, Q., Wu, Z., Bao, C., Li, W., He, H., Sun, Y., Chen, Z., Zhang, H., Ning, Z."Cancer stem cells in esophageal squamous cell cancer (Review)". Oncology Letters 18.5 (2019): 5022-5032.
Chicago
Wu, Q., Wu, Z., Bao, C., Li, W., He, H., Sun, Y., Chen, Z., Zhang, H., Ning, Z."Cancer stem cells in esophageal squamous cell cancer (Review)". Oncology Letters 18, no. 5 (2019): 5022-5032. https://doi.org/10.3892/ol.2019.10900
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team