|
1
|
Chen W, Zheng R, Baade PD, Zhang S, Zeng
H, Bray F, Jemal A, Yu XQ and He J: Cancer statistics in China
2015. Ca Cancer J Clin. 66:115–132. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Huang Y, Qu S, Zhu G, Wang F, Liu R, Shen
X, Viola D, Elisei R, Puxeddu E, Fugazzola L, et al: BRAF V600E
mutation-assisted risk stratification of solitary intrathyroidal
papillary thyroid cancer for precision treatment. J Natl Cancer
Inst. 110:362–370. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Leonard KL and Wazer DE: Genomic assays
and individualized treatment of ductal carcinoma in situ in
the era of value-based cancer care. J Clin Oncol. 34:3953–2955.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dos Santos M, Brachet PE, Chevreau C and
Joly F: Impact of targeted therapies in metastatic renal cell
carcinoma on patient-reported outcomes: Methodology of clinical
trials and clinical benefit. Cancer Treat Rev. 53:53–60. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Başaran GA, Twelves C, Diéras V, Cortés J
and Awada A: Ongoing unmet needs in treating estrogen
receptor-positive/HER2-negative metastatic breast cancer. Cancer
Treat Rev. 63:144–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bourke L, Kirkbride P, Hooper R, Rosario
AJ, Chico TJ and Rosario DJ: Endocrine therapy in prostate cancer:
Time for reappraisal of risks, benefits and cost-effectiveness? Br
J Cancer. 108:9–13. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Han SH, Kim JW, Kim M, Kim JH, Lee KW, Kim
BH, Oh HK, Kim DW, Kang SB, Kim H and Shin E: Prognostic
implication of ABC transporters and cancer stem cell markers in
patients with stage III colon cancer receiving adjuvant FOLFOX-4
chemotherapy. Oncol Lett. 17:5572–5580. 2019.PubMed/NCBI
|
|
10
|
Xu PP, Fu D, Li JY, Hu JD, Wang X, Zhou
JF, Yu H, Zhao X, Huang YH, Jiang L, et al: Anthracycline dose
optimisation in patients with diffuse large B-cell lymphoma: A
multicentre, phase 3, randomised, controlled trial. Lancet
Haematol. 6:e328–e337. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Rous P: The relations of embryonic tissue
and tumor in mixed grafts. J Exp Med. 13:239–247. 1911. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bonnet D and Dick JE: Human acute myeloid
leukemia is organized as a hierarchy that originates from a
primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
ZD: CarcinogenesisMedicine. Zaridze D.G.:
pp. 1–567. 2004
|
|
14
|
Dick JE and Tsvee L: Biology of normal and
acute myeloid leukemia stem cells. Int J Hematol. 82:389–396. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wright MH, Calcagno AM, Salcido CD,
Carlson MD, Ambudkar SV and Lyuba V: Brca1 breast tumors contain
distinct CD44+/CD24- and CD133+ cells with cancer stem cell
characteristics. Breast Cancer Res. 10:R102008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Singh SK, Hawkins C, Clarke ID, Squire JA,
Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB:
Identification of human brain tumour initiating cells. Nature.
432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Collins AT, Berry PA, Hyde C, Stower MJ
and Maitland NJ: Prospective identification of tumorigenic prostate
cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Odoux C, Fohrer H, Hoppo T, Guzik L, Stolz
DB, Lewis DW, Gollin SM, Gamblin TC, Geller DA and Lagasse E: A
stochastic model for cancer stem cell origin in metastatic colon
cancer. Cancer Research. 68:6932–6941. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Vermeulen L, Todaro M, de Sousa Mello F,
Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G and Medema
JP: Single-cell cloning of colon cancer stem cells reveals a
multi-lineage differentiation capacity. Proc Natl Acad Sci USA.
105:13427–13432. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang H, Hao C, Wang H, Shang H and Li Z:
Carboxypeptidase A4 promotes proliferation and stem cell
characteristics of hepatocellular carcinoma. Int J Exp Pathol.
100:133–138. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li X, Zhang Y, Ding J, Wang M, Li N, Yang
H, Wang K, Wang D, Lin PP, Li M, et al: Clinical significance of
detecting CSF-derived tumor cells in breast cancer patients with
leptomeningeal metastasis. Oncotarget. 9:2705–2714. 2017.PubMed/NCBI
|
|
22
|
Lin Y, Totsuka Y, He Y, Kikuchi S, Qiao Y,
Ueda J, Wei W, Inoue M and Tanaka H: Epidemiology of esophageal
cancer in Japan and China. J Epidemiol. 23:233–242. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lao-Sirieix P and Fitzgerald RC: Screening
for oesophageal cancer. Nat Rev Clin Oncol. 9:278–287. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pennathur A, Gibson MK, Jobe BA and
Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen M, Liu P, Chen Y, Chen Z, Shen M, Liu
X, Li X, Lin Y, Yang R, Ni W, et al: Primary tumor regression
patterns in esophageal squamous cell cancer treated with definitive
chemoradiotherapy and implications for surveillance schemes. Cancer
Manag Res. 11:3361–3369. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Vira D, Basak SK, Veena MS, Wang MB, Batra
RK and Srivatsan ES: Cancer stem cells, microRNAs, and therapeutic
strategies including natural products. Cancer Metastasis Rev.
31:733–751. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Fu W, Lei C, Yu Y, Liu S, Li T, Lin F, Fan
X, Shen Y, Ding M, Tang Y, et al: EGFR/Notch antagonists enhance
the response to inhibitors of the PI3K-Akt pathway by decreasing
tumour-initiating cell frequency. Clin Cancer Res. 25:2835–2847.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Jia ZF, Wu YH, Cao DH, Cao XY, Jiang J and
Zhou BS: Polymorphisms of cancer stem cell marker gene CD133 are
associated with susceptibility and prognosis of gastric cancer.
Future Oncol. 13:979–989. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kalantari E, Asgari M, Nikpanah S,
Salarieh N, Lari MH and Madjd Z: Co-expression of putative cancer
stem cell markers CD44 and CD133 in prostate carcinomas. Pathol
Oncol Res. 23:793–802. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Al-Hajj M, Wicha MS, Benito-Hernandez A,
Morrison SJ and Clarke MF: Prospective identification of
tumorigenic breast cancer cells. Proc Natl Acad Sci USA.
100:3983–3988. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yan Y, Zuo X and Wei D: Concise review:
Emerging role of CD44 in cancer stem cells: A promising biomarker
and therapeutic target. Stem Cells Transl Med. 4:1033–1043. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liou GY: CD133 as a regulator of cancer
metastasis through the cancer stem cells. Int J Biochem Cell Biol.
106:1–7. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tang KH, Dai YD, Tong M, Chan YP, Kwan PS,
Fu L, Qin YR, Tsao SW, Lung HL, Lung ML, et al: A CD90(+)
tumor-initiating cell population with an aggressive signature and
metastatic capacity in esophageal cancer. Cancer Res. 73:2322–2332.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Moreira MP, da Conceição Braga L and Silva
LM: STAT3 as a promising chemoresistance biomarker associated with
the CD44+/high/CD24-/low/ALDH+ BCSCs-like subset of the
triple-negative breast cancer (TNBC) cell line. Exp Cell Res.
363:283–290. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nguyen PH, Giraud J, Staedel C,
Chambonnier L, Dubus P, Chevret E, Bœuf H, Gauthereau X, Rousseau
B, Fevre M, et al: All-trans retinoic acid targets gastric cancer
stem cells and inhibits patient-derived gastric carcinoma tumor
growth. Oncogene. 35:5619–5628. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Erb HHH, Guggenberger F, Santer FR and
Culig Z: Interleukin-4 induces a CD44high/CD49bhigh PC3
subpopulation with tumor-initiating characteristics. J Cell
Biochem. 119:4103–4112. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ogawa T, Hirohashi Y, Murai A, Nishidate
T, Okita K, Wang L, Ikehara Y, Satoyoshi T, Usui A, Kubo T, et al:
ST6GALNAC1 plays important roles in enhancing cancer stem
phenotypes of colorectal cancer via the Akt pathway. Oncotarget.
8:112550–112564. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang HH, Liao CC, Chow NH, Huang LL,
Chuang JI, Wei KC and Shin JW: Whether CD44 is an applicable marker
for glioma stem cells. Am J Transl Res. 9:4785–4806.
2017.PubMed/NCBI
|
|
40
|
Zhao JS, Li WJ, Ge D, Zhang PJ, Li JJ, Lu
CL, Ji XD, Guan DX, Gao H, Xu LY, et al: Tumor initiating cells in
esophageal squamous cell carcinomas express high levels of CD44.
PLoS One. 6:e214192011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Matsuya Y: A serum-free culture medium for
the minor inoculum of L line cells. Tohoku J Exp Med. 86:1–8. 1965.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Haylock DN, To LB, Dowse TL, Juttner CA
and Simmons PJ: Ex vivo expansion and maturation of peripheral
blood CD34+ cells into the myeloid lineage. Blood. 80:1405–1412.
1992.PubMed/NCBI
|
|
43
|
Petzer AL, Zandstra PW, Piret JM and Eaves
CJ: Differential cytokine effects on primitive (CD34+CD38-) human
hematopoietic cells: Novel responses to Flt3-ligand and
thrombopoietin. J Exp Med. 183:2551–2558. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Möbest D, Goan SR, Junghahn I, Winkler J,
Fichtner I, Hermann M, Becker M, de Lima-Hahn E and Henschler R:
Differential kinetics of primitive hematopoietic cells assayed
in vitro and in vivo during serum-free suspension
culture of CD34+ blood progenitor cells. Stem Cells. 17:152–161.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Jimenez-Pascual A, Hale JS, Kordowski A,
Pugh J, Silver DJ, Bayik D, Roversi G, Alban TJ, Rao S, Chen R, et
al: ADAMDEC1 maintains a growth factor signaling loop in cancer
stem cells. Cancer Discov. (pii): CD-18-1308. 2019.PubMed/NCBI
|
|
46
|
Abbaszadegan MR, Bagheri V, Razavi MS,
Momtazi AA, Sahebkar A and Gholamin M: Isolation, identification
and characterization of cancer stem cells: A review. J Cell
Physiol. 232:2008–2018. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Xiao G, Li X, Li G, Zhang B, Xu C, Qin S,
Du N, Wang J, Tang SC, Zhang J, et al: MiR-129 blocks estrogen
induction of NOTCH signaling activity in breast cancer stem-like
cells. Oncotarget. 8:103261–103273. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Trisciuoglio D, Tupone MG, Desideri M, Di
Martile M, Gabellini C, Buglioni S, Pallocca M, Alessandrini G,
D'Aguanno S and Del Bufalo D: BCL-XL overexpression promotes tumor
progression-associated properties. Cell Death Dis. 8:32162017.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang JL, Yu JP, Sun ZQ and Sun SP:
Radiobiological characteristics of cancer stem cells from
esophageal cancer cell lines. World J Gastroenterol.
20:18296–18305. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Goodell MA, Rosenzweig M, Kim H, Marks DF,
DeMaria M, Paradis G, Grupp SA, Sieff CA, Mulligan RC and Johnson
RP: Dye efflux studies suggest that hematopoietic stem cells
expressing low or undetectable levels of CD34 antigen exist in
multiple species. Nat Med. 3:1337–1345. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Parmar K, Sauk-Schubert C, Burdick D,
Handley M and Mauch P: Sca+CD34- murine side population cells are
highly enriched for primitive stem cells. Exp Hematol. 31:244–250.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Alvi AJ, Clayton H, Joshi C, Enver T,
Ashworth A, Vivanco Md, Dale TC and Smalley MJ: Functional and
molecular characterisation of mammary side population cells. Breast
Cancer Research. 5:R1–R8. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
53
|
Gross E, L'Faqihiolive FE, Ysebaert L,
Brassac M, Struski S, Kheirallah S, Fournié JJ, Laurent G and
Quillet-Mary A: B-chronic lymphocytic leukemia chemoresistance
involves innate and acquired leukemic side population cells.
Leukemia. 24:1885–1892. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Du J, Liu S, He J, Liu X, Qu Y, Yan W, Fan
J, Li R, Xi H, Fu W, et al: MicroRNA-451 regulates stemness of side
population cells via PI3K/Akt/mTOR signaling pathway in multiple
myeloma. Oncotarget. 6:14993–15007. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Britton KM, Kirby JA, Lennard TW and
Meeson AP: Cancer stem cells and side population cells in breast
cancer and metastasis. Cancers. 3:2106–2130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Macpherson H, Keir P, Webb S, Samuel K,
Boyle S, Bickmore W, Forrester L and Dorin J: Bone marrow-derived
SP cells can contribute to the respiratory tract of mice in
vivo. J Cell Sci. 118:2441–2450. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shimoda M, Ota M and Okada Y: Isolation of
cancer stem cells by side population method. Methods Mol Biol.
1692:49–59. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Patrawala L, Calhoun T,
Schneider-Broussard R, Zhou J, Claypool K and Tang DG: Side
population is enriched in tumorigenic, stem-like cancer cells,
whereas ABCG2+ and ABCG2-cancer cells are similarly tumorigenic.
Cancer Res. 65:6207–6019. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhang X, Komaki R, Wang L, Fang B and
Chang JY: Treatment of radioresistant stem-like esophageal cancer
cells by an apoptotic gene-armed, telomerase-specific oncolytic
adenovirus. Clin Cancer Res. 14:2813–2823. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhang G, Ma L, Xie YK, Miao XB and Jin C:
Esophageal cancer tumorspheres involve cancer stem-like populations
with elevated aldehyde dehydrogenase enzymatic activity. Mol Med
Rep. 6:519–524. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yue Z, Qi B, Bettina S, Zhao L, Mysliwietz
J, Ellwart J, Renner A, Hirner H, Niess H, Camaj P, et al: Stem
cell-like side populations in esophageal cancer: A source of
chemotherapy resistance and metastases. Stem Cells Dev. 23:180–192.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Chen J, Xia Q, Jiang B, Chang W, Yuan W,
Ma Z, Liu Z and Shu X: Prognostic value of cancer stem cell marker
ALDH1 expression in colorectal cancer: A systematic review and
meta-analysis. PLoS One. 10:e01451642015. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Zhou Y, Wang Y, Ju X, Lan J, Zou H, Li S,
Qi Y, Jia W, Hu J, Liang W, et al: Clinicopathological significance
of ALDH1A1 in lung, colorectal, and breast cancers: A
meta-analysis. Biomark Med. 9:777–790. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ferrell CM, Dorsam ST, Ohta H, Humphries
RK, Derynck MK, Haqq C, Largman C and Lawrence HJ: Activation of
stem-cell specific genes by HOXA9 and HOXA10 homeodomain proteins
in CD34+ human cord blood cells. Stem Cells. 23:644–655. 2010.
View Article : Google Scholar
|
|
65
|
Seigel GM, Campbell LM, Narayan M and
Gonzalez-Fernandez F: Cancer stem cell characteristics in
retinoblastoma. Mol Vis. 11:729–737. 2005.PubMed/NCBI
|
|
66
|
Macdonagh L, Gallagher MF, Ffrench B,
Gasch C, Breen E, Gray SG, Nicholson S, Leonard N, Ryan R, Young V,
et al: Targeting the cancer stem cell marker, aldehyde
dehydrogenase 1, to circumvent cisplatin resistance in NSCLC.
Oncotarget. 8:72544–72563. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Fu Z, Chen C, Zhou Q, Wang Y, Zhao Y, Zhao
X, Li W, Zheng S, Ye H, Wang L, et al: LncRNA HOTTIP modulates
cancer stem cell properties in human pancreatic cancer by
regulating HOXA9. Cancer Lett. 410:68–81. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ji Y, Li X, Li Y, Zhong Y, Cao J, Xu R,
Wang J, Zhou F, Li X, Yu D, et al: Aldehyde dehydrogenase-1
expression predicts unfavorable outcomes in patients with
esophageal squamous cell carcinoma. Anticancer Res. 36:343–349.
2016.PubMed/NCBI
|
|
69
|
Song S, Ajani JA, Honjo S, Maru DM, Chen
Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B, et al:
Hippo coactivator YAP1 upregulates SOX9 and endows esophageal
cancer cells with stem-like properties. Cancer Res. 74:4170–4182.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen MF, Chen PT, Lu MS and Chen WC: Role
of ALDH1 in the prognosis of esophageal cancer and its relationship
with tumor microenvironment. Mol Carcinog. 57:78–88. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Akbarzadeh M, Maroufi NF, Tazehkand AP,
Akbarzadeh M, Bastani S, Safdari R, Farzane A, Fattahi A, Nejabati
HR, Nouri M and Samadi N: Current approaches in identification and
isolation of cancer stem cells. J Cell Physiol. Feb 11–2019.doi:
10.1002/jcp.28271 (Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yang Z, Ni W, Cui C, Qi W, Piao L and Xuan
Y: Identification of LETM1 as a marker of cancer stem-like cells
and predictor of poor prognosis in esophageal squamous cell
carcinoma. Hum Pathol. 81:148–156. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Liu Q, Cui X, Yu X, Bian BS, Qian F, Hu
XG, Ji CD, Yang L, Ren Y, Cui W, et al: Cripto-1 acts as a
functional marker of cancer stem-like cells and predicts prognosis
of the patients in esophageal squamous cell carcinoma. Mol Cancer.
16:812017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Cabrera MC, Hollingsworth RE and Hurt EM:
Cancer stem cell plasticity and tumor hierarchy. World J Stem
Cells. 7:27–36. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Almanaa TN, Geusz ME and Jamasbi RJ: A new
method for identifying stem-like cells in esophageal cancer cell
lines. J Cancer. 4:536–548. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Ajani JA, Wang X, Song S, Suzuki A, Taketa
T, Sudo K, Wadhwa R, Hofstetter WL, Komaki R, Maru DM, et al:
ALDH-1 expression levels predict response or resistance to
preoperative chemoradiation in resectable esophageal cancer
patients. Mol Oncol. 8:142–149. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chang L, Graham P, Hao J, Ni J, Deng J,
Bucci J, Malouf D, Gillatt D and Li Y: Cancer stem cells and
signaling pathways in radioresistance. Oncotarget. 7:11002–11017.
2016.PubMed/NCBI
|
|
78
|
Lynam-Lennon N, Heavey S, Sommerville G,
Bibby BA, Ffrench B, Quinn J, Gasch C, O'Leary JJ, Gallagher MF,
Reynolds JV and Maher SG: MicroRNA-17 is downregulated in
esophageal adenocarcinoma cancer stem-like cells and promotes a
radioresistant phenotype. Oncotarget. 8:11400–11413. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen KH, Guo Y, Li L, Qu S, Zhao W, Lu QT,
Mo QY, Yu BB, Zhou L, Lin GX, et al: Cancer stem cell-like
characteristics and telomerase activity of the nasopharyngeal
carcinoma radioresistant cell line CNE-2R. Cancer Med. 7:4755–4764.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Chen Y, Jiang T, Mao A and Xu J:
Esophageal cancer stem cells express PLGF to increase cancer
invasion through MMP9 activation. Tumour Biol. 35:12749–12755.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Tsai ST, Wang PJ, Liou NJ, Lin PS, Chen CH
and Chang WC: ICAM1 is a potential cancer stem cell marker of
esophageal squamous cell carcinoma. PLoS One. 10:e01428342015.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sauzay C, Voutetakis K, Chatziioannou A,
Chevet E and Avril T: CD90/Thy-1, a cancer-associated cell surface
signaling molecule. Front Cell Dev Biol. 7:662019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Ji N, Yu JW, Ni XC, Wu JG, Wang SL and
Jiang BJ: Bone marrow-derived mesenchymal stem cells increase drug
resistance in CD133-expressing gastric cancer cells by regulating
the PI3K/AKT pathway. Tumor Biol. 37:14637–14651. 2016. View Article : Google Scholar
|
|
84
|
Fan H and Lu S: Fusion of human bone
hemopoietic stem cell with esophageal carcinoma cells didn't
generate esophageal cancer stem cell. Neoplasma. 61:540–545. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Mo JS, Park HW and Guan KL: The Hippo
signaling pathway in stem cell biology and cancer. EMBO Rep.
15:642–656. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Sharon N, Vanderhooft J, Straubhaar J,
Mueller J, Chawla R, Zhou Q, Engquist EN, Trapnell C, Gifford DK
and Melton DA: Wnt signaling separates the progenitor and endocrine
compartments during pancreas development. Cell Rep.
27:2281–2291.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ma L, Wang Y, Hui Y, Du Y, Chen Z, Feng H,
Zhang S, Li N, Song J, Fang Y, et al: WNT/NOTCH pathway is
essential for the maintenance and expansion of human MGE
progenitors. Stem Cell Reports. 12:934–949. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Huynh DL, Koh H, Chandimali N, Zhang JJ,
Kim N, Kang TY, Ghosh M, Gera M, Park YH, Kwon T and Jeong DK:
BRM270 inhibits the proliferation of CD44 positive pancreatic
ductal adenocarcinoma cells via downregulation of sonic hedgehog
signaling. Evid Based Complement Alternat Med. 2019:86204692019.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Che SM, Zhang XZ, Liu XL, Chen X and Hou
L: The radiosensitization effect of NS398 on esophageal cancer stem
cell-like radioresistant cells. Dis Esophagus. 24:265–273. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yue D, Zhang Z, Li J, Chen X, Ping Y, Liu
S, Shi X, Li L, Wang L, Huang L, et al: Transforming growth
factor-beta1 promotes the migration and invasion of sphere-forming
stem-like cell subpopulations in esophageal cancer. Exp Cell Res.
336:141–149. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Ding W, Mouzaki M, You H, Laird JC, Mato
J, Lu SC and Rountree CB: CD133+ liver cancer stem cells from
methionine adenosyl transferase 1A-deficient mice demonstrate
resistance to transforming growth factor (TGF)-beta-induced
apoptosis. Hepatology. 49:1277–1286. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Mima K, Okabe H, Ishimoto T, Hayashi H,
Nakagawa S, Kuroki H, Watanabe M, Beppu T, Tamada M, Nagano O, et
al: CD44s regulates the TGF-β-mediated mesenchymal phenotype and is
associated with poor prognosis in patients with hepatocellular
carcinoma. Cancer Res. 72:3414–3423. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Mitra M, Kandalam M, Harilal A, Verma RS,
Krishnan UM, Swaminathan S and Krishnakumar S: EpCAM is a putative
stem marker in retinoblastoma and an effective target for
T-cell-mediated immunotherapy. Mol Vis. 18:290–308. 2012.PubMed/NCBI
|
|
94
|
Zhang M, Tan S, Yu D, Zhao Z, Zhang B,
Zhang P, Lv C, Zhou Q and Cao Z: Triptonide inhibits lung cancer
cell tumorigenicity by selectively attenuating the Shh-Gli1
signaling pathway. Toxicol Appl Pharmacol. 365:1–8. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Arai MA, Ochi F, Makita Y, Chiba T,
Higashi K, Suganami A, Tamura Y, Toida T, Iwama A, Sadhu SK, et al:
GLI1 inhibitors identified by target protein oriented natural
products isolation (TPO-NAPI) with hedgehog inhibition. ACS Chem
Biol. 13:2551–2559. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Yang Z, Cui Y, Ni W, Kim S and Xuan Y:
Gli1, a potential regulator of esophageal cancer stem cell, is
identified as an independent adverse prognostic factor in
esophageal squamous cell carcinoma. J Cancer Res Clin Oncol.
143:243–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Fujiwara D, Kato K, Nohara S, Iwanuma Y
and Kajiyama Y: The usefulness of three-dimensional cell culture in
induction of cancer stem cells from esophageal squamous cell
carcinoma cell lines. Biochem Biophys Res Commun. 434:773–778.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Kanamoto A, Ninomiya I, Harada S, Tsukada
T, Okamoto K, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi
H, et al: Valproic acid inhibits irradiation-induced
epithelial-mesenchymal transition and stem cell-like
characteristics in esophageal squamous cell carcinoma. Int J Oncol.
49:1859–1869. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang JX, Chen ZH, Xu Y, Chen JW, Weng HW,
Yun M, Zheng ZS, Chen C, Wu BL, Li EM, et al: Downregulation of
MicroRNA-644a promotes esophageal squamous cell carcinoma
aggressiveness and stem-cell-like phenotype via dysregulation of
PITX2. Clin Cancer Res. 23:298–310. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
De Luca M, Aiuti A, Cossu G, Parmar M,
Pellegrini G and Robey PG: Advances in stem cell research and
therapeutic development. Nat Cell Biol. 21:801–811. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Reya T, Morrison SJ, Clarke MF and
Weissman IL: Stem cells, cancer, and cancer stem cells. Nature.
414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
de Sousa EM, Vermeulen L, Richel D and
Medema JP: Targeting Wnt signaling in colon cancer stem cells. Clin
Cancer Res. 17:647–653. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Merchant AA and William M: Targeting
Hedgehog-a cancer stem cell pathway. Clin Cancer Res. 16:3130–3140.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Galoczova M, Coates P and Vojtesek B:
STAT3, stem cells, cancer stem cells and p63. Cell Mol Biol Lett.
23:122018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Fu J and Wang H: Precision diagnosis and
treatment of liver cancer in China. Cancer Lett. 412:283–288. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Irwin CR, Hitt MM and Evans DH: Targeting
nucleotide biosynthesis: A strategy for improving the oncolytic
potential of DNA viruses. Front Oncol. 7:2292017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Pandey S and Robertson ES: Oncogenic
Epstein-Barr virus recruits Nm23-H1 to regulate chromatin
modifiers. Lab Invest. 98:258–268. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Lin TA, Garden AS, Elhalawani H, Elgohari
B, Jethanandani A, Ng SP, Mohamed AS, Frank SJ, Glisson BS, Debnam
JM, et al: Radiographic retropharyngeal lymph node involvement in
human papillomavirus-associated oropharyngeal carcinoma: Patterns
of involvement and impact on patient outcomes. Cancer.
125:1536–1546. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang D, Plukker JTM and Coppes RP: Cancer
stem cells with increased metastatic potential as a therapeutic
target for esophageal cancer. Semin Cancer Biol. 44:60–66. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Hirai M, Kelsey LS, Vaillancourt M,
Maneval DC, Watanabe T and Talmadge JE: Purging of human breast
cancer cells from stem cell products with an adenovirus containing
p53. Cancer Gene Ther. 7:197–206. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Eriksson M, Guse K, Bauerschmitz G,
Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A,
Desmond RA, Pesonen S and Hemminki A: Oncolytic adenoviruses kill
breast cancer initiating CD44+CD24-/low cells. Mol Ther.
15:2088–2093. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Cho RW, Wang X, Diehn M, Shedden K, Chen
GY, Sherlock G, Gurney A, Lewicki J and Clarke MF: Isolation and
molecular characterization of cancer stem cells in MMTV-Wnt-1
murine breast tumors. Stem Cells. 26:364–371. 2010. View Article : Google Scholar
|
|
113
|
Mui UN, Haley CT and Tyring SK: Viral
oncology: Molecular biology and pathogenesis. J Clin Med. 6(pii):
1112017. View Article : Google Scholar
|
|
114
|
Ali SM, Ross JS and Wang K: Reply to
Genomic profiles of nasopharyngeal carcinoma: The importance of
histological subtyping and Epstein-Barr virus in situ
assays. Cancer. 124:435–436. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Satoru K, Naohiro W, Masamichi M, Zen Y,
Endo K, Murono S, Sugimoto H, Yamaoka S, Pagano JS and Yoshizaki T:
Epstein-Barr virus latent membrane protein 1 induces cancer
stem/progenitor-like cells in nasopharyngeal epithelial cell lines.
J Virol. 85:11255–11264. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Chris C, Figueroa JA, Leonardo M, Colombo
M, Summers G, Figueroa A, Aulakh A, Konala V, Verma R, Riaz J, et
al: The role of human papilloma virus (HPV) infection in
non-anogenital cancer and the promise of immunotherapy: A review.
Int Rev Immunol. 33:383–401. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Swanson MS, Kokot N and Sinha UK: The role
of HPV in head and neck cancer stem cell formation and
tumorigenesis. Cancers (Basel). 8(pii): E242016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Ortiz-Sánchez E, Santiago-López L,
Cruz-Domínguez VB, Toledo-Guzmán ME, Hernández-Cueto D,
Muñiz-Hernández S, Garrido E, Cantú De León D and García-Carrancá
A: Characterization of cervical cancer stem cell-like cells:
Phenotyping, stemness, and human papilloma virus co-receptor
expression. Oncotarget. 7:31943–31954. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Lanfredini S, Olivero C, Borgogna C,
Calati F, Powell K, Davies KJ, De Andrea M, Harries S, Tang HKC,
Pfister H, et al: HPV8 field cancerization in a transgenic mouse
model is due to Lrig1+ keratinocyte stem cell expansion. J Invest
Dermatol. 137:2208–2216. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang M, Kumar B, Piao L, Xie X, Schmitt
A, Arradaza N, Cippola M, Old M, Agrawal A, Ozer E, et al: Elevated
intrinsic cancer stem cell population in human
papillomavirus-associated head and neck squamous cell carcinoma.
Cancer. 120:992–1001. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhang M, Zhuang G, Sun X, Shen Y, Wang W,
Li Q and Di W: TP53 mutation-mediated genomic instability induces
the evolution of chemoresistance and recurrence in epithelial
ovarian cancer. Diagn Pathol. 12:162017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Chiche A, Moumen M, Romagnoli M, Petit V,
Lasla H, Jézéquel P, de la Grange P, Jonkers J, Deugnier MA,
Glukhova MA and Faraldo MM: p53 deficiency induces cancer stem cell
pool expansion in a mouse model of triple-negative breast tumors.
Oncogene. 36:2355–2365. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Shetzer Y, Molchadsky A and Rotter V:
Oncogenic mutant p53 gain of function nourishes the vicious cycle
of tumor development and cancer stem-cell formation. Cold Spring
Harb Perspect Med. 6(pii): a0262032016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Tan MJ, White EA, Sowa ME, Harper JW,
Aster JC and Howley PM: Cutaneous β-human papillomavirus E6
proteins bind Mastermind-like coactivators and repress Notch
signaling. Proc Natl Acad Sci USA. 109:E1473–E1480. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Shamir ER, Devine WP, Pekmezci M, Umetsu
SE, Krings G, Federman S, Cho SJ, Saunders TA, Jen KY, Bergsland E,
et al: Identification of high-risk human papillomavirus and Rb/E2F
pathway genomic alterations in mutually exclusive subsets of
colorectal neuroendocrine carcinoma. Mod Pathol. 32:290–305. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Dyson N, Howley PM, Münger K and Harlow E:
The human papilloma virus-16 E7 oncoprotein is able to bind to the
retinoblastoma gene product. Science. 243:934–937. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Shanmugarajah R, Bin W, Snow ET, Sharma P,
Pavey D, Merrett N, Ball MJ, Brain T, Fernando R and Robertson IK:
Transcriptionally active human papillomavirus is strongly
associated with Barrett's dysplasia and esophageal adenocarcinoma.
Am J Gastroenterol. 108:1082–1093. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Anders M, Rösch T, Küster K, Becker I,
Höfler H, Stein HJ, Meining A, Wiedenmann B and Sarbia M:
Expression and function of the coxsackie and adenovirus receptor in
Barrett's esophagus and associated neoplasia. Cancer Gene Ther.
16:508–515. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Chang F, Syrjänen S, Wang L and Syrjänen
K: Infectious agents in the etiology of esophageal cancer.
Gastroenterology. 103:1336–1348. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Chang F, Syrjänen S, Shen Q, Ji HX and
Syrjänen K: Human papillomavirus (HPV) DNA in esophageal precancer
lesions and squamous cell carcinomas from China. Int J Cancer.
45:21–25. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
He Z, Xu Z, Hang D, Guo F, Abliz A, Weiss
NS, Xi L, Liu F, Ning T, Pan Y, et al: Anti-HPV-E7 seropositivity
and risk of esophageal squamous cell carcinoma in a high-risk
population in China. Carcinogenesis. 35:816–821. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Wang L, Li J, Hou J, Li M, Cui X, Li S, Yu
X, Zhang Z, Liang W, Jiang J, et al: p53 expression but not
p16(INK4A) correlates with human papillomavirus-associated
esophageal squamous cell carcinoma in Kazakh population. Infect
Agent Cancer. 11:192016. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Ludmir EB, Stephens SJ, Palta M, Willett
CG and Czito BG: Human papillomavirus tumor infection in esophageal
squamous cell carcinoma. J Gastrointest Oncol. 6:287–295.
2015.PubMed/NCBI
|
|
134
|
Xi R, Pan S, Chen X, Hui B, Zhang L, Fu S,
Li X, Zhang X, Gong T, Guo J, et al: HPV16 E6-E7 induces cancer
stem-like cells phenotypes in esophageal squamous cell carcinoma
through the activation of PI3K/Akt signaling pathway in
vitro and in vivo. Oncotarget. 7:57050–57065. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Syrjänen KJ: HPV infections and
oesophageal cancer. J Clin Pathol. 55:721–728. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Halec G, Schmitt M, Egger S, Abnet CC,
Babb C, Dawsey SM, Flechtenmacher C, Gheit T, Hale M, Holzinger D,
et al: Mucosal alpha-papillomaviruses are not associated with
esophageal squamous cell carcinomas: Lack of mechanistic evidence
from South Africa, China and Iran and from a world-wide
meta-analysis. Int J Cancer. 139:85–98. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yang L, Ji Y, Chen L, Li M, Wu F, Hu J,
Jiang J, Cui X, Chen Y, Pang L, et al: Genetic variability in LMP2
and LMP7 is associated with the risk of esophageal squamous cell
carcinoma in the Kazakh population but is not associated with HPV
infection. PLoS One. 12:e01863192017. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
da Costa AM, Fregnani JHTG, Pastrez PRA,
Mariano VS, Silva EM, Neto CS, Guimarães DP, Villa LL, Sichero L,
Syrjanen KJ and Longatto-Filho A: HPV infection and p53 and p16
expression in esophageal cancer: are they prognostic factors?
Infect Agent Cancer. 12:542017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Kayamba V, Bateman AC, Asombang AW,
Shibemba A, Zyambo K, Banda T, Soko R and Kelly P: S HIV infection
and domestic smoke exposure, but not human papilloma virus, are
risk factors for oesophageal squamous cell carcinoma in Zambia: A
case-control study. Cancer Med. 4:588–595. 2015. View Article : Google Scholar : PubMed/NCBI
|