1
|
Whiteman DC, Green AC and Olsen CM: The
growing burden of invasive melanoma: Projections of incidence rates
and numbers of new cases in six susceptible populations through
2031. J Invest Dermatol. 136:1161–1171. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Gilchrest BA, Eller MS, Geller AC and Yaar
M: The pathogenesis of melanoma induced by ultraviolet radiation. N
Engl J Med. 340:1341–1348. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Gandini S, Sera F, Cattaruzza MS, Pasquini
P, Abeni D, Boyle P and Melchi CF: Meta-analysis of risk factors
for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer.
41:28–44. 2005. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gandini S, Sera F, Cattaruzza MS, Pasquini
P, Zanetti R, Masini C, Boyle P and Melchi CF: Meta-analysis of
risk factors for cutaneous melanoma: III. Family history, actinic
damage and phenotypic factors. Eur J Cancer. 41:2040–2059. 2005.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Read J, Wadt K and Hayward NK: Melanoma
genetics. J Med Genet. 53:1–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Pérez Oliva AB, Fernéndez LP, Detorre C,
Herráiz C, Martínez-Escribano JA, Benítez J, Lozano Teruel JA,
García-Borrón JC, Jiménez-Cervantes C and Ribas G: Identification
and functional analysis of novel variants of the human melanocortin
1 receptor found in melanoma patients. Hum Mutat. 30:811–822. 2009.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Williams PF, Olsen CM, Hayward NK and
Whiteman DC: Melanocortin 1 receptor and risk of cutaneous
melanoma: A meta-analysis and estimates of population burden. Int J
Cancer. 129:1730–1740. 2011. View Article : Google Scholar : PubMed/NCBI
|
8
|
Duffy DL, Box NF, Chen W, Palmer JS,
Montgomery GW, James MR, Hayward NK, Martin NG and Sturm RA:
Interactive effects of MC1R and OCA2 on melanoma risk phenotypes.
Hum Mol Genet. 13:447–461. 2004. View Article : Google Scholar : PubMed/NCBI
|
9
|
Bishop DT, Demenais F, Iles MM, Harland M,
Taylor JC, Corda E, Randerson-Moor J, Aitken JF, Avril MF, Azizi E,
et al: Genome-wide association study identifies three loci
associated with melanoma risk. Nat Genet. 41:920–925. 2009.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Han J, Kraft P, Nan H, Guo Q, Chen C,
Qureshi A, Hankinson SE, Hu FB, Duffy DL, Zhao ZZ, et al: A
genome-wide association study identifies novel alleles associated
with hair color and skin pigmentation. PLoS Genet. 4:e10000742008.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Hunt G, Kyne S, Wakamatsu K, Ito S and
Thody AJ: Nle4DPhe7 alpha-melanocyte-stimulating hormone increases
the eumelanin: Phaeomelanin ratio in cultured human melanocytes. J
Invest Dermatol. 104:83–85. 1995. View Article : Google Scholar : PubMed/NCBI
|
12
|
Cui R, Widlund HR, Feige E, Lin JY,
Wilensky DL, Igras VE, D'Orazio J, Fung CY, Schanbacher CF, Granter
SR and Fisher DE: Central role of p53 in the suntan response and
pathologic hyperpigmentation. Cell. 128:853–864. 2007. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kandoth C, McLellan MD, Vandin F, Ye K,
Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al:
Mutational landscape and significance across 12 major cancer types.
Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Stracquadanio G, Wang X, Wallace MD,
Grawenda AM, Zhang P, Hewitt J, Zeron-Medina J, Castro-Giner F,
Tomlinson IP, Goding CR, et al: The importance of p53 pathway
genetics in inherited and somatic cancer genomes. Nat Rev Cancer.
16:251–265. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Sakamuro D, Sabbatini P, White E and
Prendergast GC: The polyproline region of p53 is required to
activate apoptosis but not growth arrest. Oncogene. 15:887–898.
1997. View Article : Google Scholar : PubMed/NCBI
|
16
|
Han J, Cox DG, Colditz GA and Hunter DJ:
The p53 codon 72 polymorphism, sunburns, and risk of skin cancer in
US caucasian women. Mol Carcinog. 45:694–700. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Stefanaki I, Stratigos AJ, Dimisianos G,
Nikolaou V, Papadopoulos O, Polydorou D, Gogas H, Tsoutsos D,
Panagiotou P, Kanavakis E, et al: P53 codon 72 Pro homozygosity
increases the risk of cutaneous melanoma in individuals with dark
skin complexion and among noncarriers of melanocortin 1 receptor
red hair variants. Br J Dermatol. 156:357–362. 2007. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shen H, Liu Z, Strom SS, Spitz MR, Lee JE,
Gershenwald JE, Ross MI, Mansfield PF, Duvic M, Ananthaswamy HN and
Wei Q: P53 codon 72 arg homozygotes are associated with an
increased risk of cutaneous melanoma. J Invest Dermatol.
121:1510–1514. 2003. View Article : Google Scholar : PubMed/NCBI
|
19
|
Li C, Chen K, Liu Z, Wang LE, Gershenwald
JE, Lee JE, Prieto VG, Duvic M, Grimm EA and Wei Q: Polymorphisms
of TP53 Arg72Pro, but not p73 G4C14>A4TA4 and p21 Ser31Arg,
contribute to risk of cutaneous melanoma. J Invest Dermatol.
128:1585–1588. 2008. View Article : Google Scholar : PubMed/NCBI
|
20
|
Zauberman A, Flusberg D, Haupt Y, Barak Y
and Oren M: A functional p53-responsive intronic promoter is
contained within the human mdm2 gene. Nucleic Acids Res.
23:2584–2592. 1995. View Article : Google Scholar : PubMed/NCBI
|
21
|
Bond GL, Hu W, Bond EE, Robins H, Lutzker
SG, Arva NC, Bargonetti J, Bartel F, Taubert H, Wuerl P, et al: A
single nucleotide polymorphism in the MDM2 promoter attenuates the
p53 tumor suppressor pathway and accelerates tumor formation in
humans. Cell. 119:591–602. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Thunell LK, Bivik C, Wäster P, Fredrikson
M, Stjernström A, Synnerstad I, Rosdahl I and Enerbäck C: MDM2
SNP309 promoter polymorphism confers risk for hereditary melanoma.
Melanoma Res. 24:190–197. 2014. View Article : Google Scholar : PubMed/NCBI
|
23
|
Cotignola J, Chou JF, Roy P, Mitra N,
Busam K, Halpern AC and Orlow I: Investigation of the effect of
MDM2 SNP309 and TP53 Arg72Pro polymorphisms on the age of onset of
cutaneous melanoma. J Invest Dermatol. 132:1471–1478. 2012.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Firoz EF, Warycha M, Zakrzewski J, Pollens
D, Wang G, Shapiro R, Berman R, Pavlick A, Manga P, Ostrer H, et
al: Association of MDM2 SNP309, age of onset, and gender in
cutaneous melanoma. Clin Cancer Res. 15:2573–2580. 2009. View Article : Google Scholar : PubMed/NCBI
|
25
|
Capasso M, Ayala F, Avvisati RA, Russo R,
Gambale A, Mozzillo N, Ascierto PA and Iolascon A: MDM2 SNP309 and
p53 arg72Pro in cutaneous melanoma: Association between SNP309 GG
genotype and tumor breslow thickness. J Hum Genet. 55:518–524.
2010. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rovite V, Wolff-Sagi Y, Zaharenko L,
Nikitina-Zake L, Grens E and Klovins J: Genome database of the
latvian population (LGDB): Design, goals, and primary results. J
Epidemiol. 28:353–360. 2018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ozola A, Ruklisa D and Pjanova D:
Association of the 16q24.3 region gene variants rs1805007 and
rs4785763 with heightened risk of melanoma in latvian population.
Meta Gene. 18:87–92. 2018. View Article : Google Scholar
|
28
|
Pliss L, Timša L, Rootsi S, Tambets K,
Pelnena I, Zole E, Puzuka A, Sabule A, Rozane S, Lace B, et al:
Y-Chromosomal lineages of latvians in the context of the genetic
variation of the eastern-baltic region. Ann Hum Genet. 79:418–430.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
O'Reilly PF, Hoggart CJ, Pomyen Y, Calboli
FC, Elliott P, Jarvelin MR and Coin LJ: MultiPhen: Joint model of
multiple phenotypes can increase discovery in GWAS. PLoS One.
7:e348612012. View Article : Google Scholar : PubMed/NCBI
|
30
|
Antonopoulou K, Stefanaki I, Lill CM,
Chatzinasiou F, Kypreou KP, Karagianni F, Athanasiadis E, Spyrou
GM, Ioannidis JPA, Bertram L, et al: Updated field synopsis and
systematic meta-analyses of genetic association studies in
cutaneous melanoma: The MelGene database. J Invest Dermatol.
135:1074–1079. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Gudbjartsson DF, Sulem P, Stacey SN,
Goldstein AM, Rafnar T, Sigurgeirsson B, Benediktsdottir KR,
Thorisdottir K, Ragnarsson R, Sveinsdottir SG, et al: ASIP and TYR
pigmentation variants associate with cutaneous melanoma and basal
cell carcinoma. Nat Genet. 40:886–891. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kennedy C, ter Huurne J, Berkhout M, Gruis
N, Bastiaens M, Bergman W, Willemze R and Bavinck JN: Melanocortin
1 receptor (MC1R) gene variants are associated with an increased
risk for cutaneous melanoma which is largely independent of skin
type and hair color. J Invest Dermatol. 117:294–300. 2001.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Guedj M, Bourillon A, Combadières C,
Rodero M, Dieudé P, Descamps V, Dupin N, Wolkenstein P, Aegerter P,
Lebbe C, et al: Variants of the MATP/SLC45A2 gene are protective
for melanoma in the french population. Hum Mutat. 29:1154–1160.
2008. View Article : Google Scholar : PubMed/NCBI
|
34
|
Demenais F, Corda E, Barrett J, Iles M,
Gillanders EM, Goldstein AM, Kanetsky PA, Bakker E, Bishop DT,
Newton-Bishop JA, et al: Importance of sequencing rare variants
after a genome-wide association study (GWAS): The MC1R gene, 16q24
region and melanoma story. Genet Epidemiol. 33:757–758. 2009.
|
35
|
Nan H, Kraft P, Qureshi AA, Guo Q, Chen C,
Hankinson SE, Hu FB, Thomas G, Hoover RN, Chanock S, et al:
Genome-wide association study of tanning phenotype in a population
of european ancestry. J Invest Dermatol. 129:2250–2257. 2009.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Beckman G, Birgander R, Sjalander A, Saha
N, Nolmberg PA, Kivela A and Beckman L: Is p53 polymorphism
maintained by natural selection? Hum Hered. 44:266–270. 1994.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Oliveira C, Rinck-Junior JA, Lourenço GJ,
Moraes AM and Lima CS: Assessment of the XPC (A2920C), XPF
(T30028C), TP53 (Arg72Pro) and GSTP1 (Ile105Val) polymorphisms in
the risk of cutaneous melanoma. J Cancer Res Clin Oncol.
139:1199–1206. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Geng P, Liao Y, Ruan Z and Liang H:
Increased risk of cutaneous melanoma associated with p53 Arg72Pro
polymorphism. PLoS One. 10:e01181122015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Gwosdz C, Scheckenbach K, Lieven O,
Reifenberger J, Knopf A, Bier H and Balz V: Comprehensive analysis
of the p53 status in mucosal and cutaneous melanomas. Int J Cancer.
118:577–582. 2006. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bastiaens MT, Struyk L, Tjong-A-Hung SP,
Gruis N, ter Huurne J, Westendorp RG, Vermeer BJ, Bavinck JN and
ter Schegget J: Cutaneous squamous cell carcinoma and p53 codon 72
polymorphism: A need for screening? Mol Carcinog. 30:56–61. 2001.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Povey JE, Darakhshan F, Robertson K,
Bisset Y, Mekky M, Rees J, Doherty V, Kavanagh G, Anderson N,
Campbell H, et al: DNA repair gene polymorphisms and genetic
predisposition to cutaneous melanoma. Carcinogenesis. 28:1087–1093.
2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Xiao W, Du N, Huang T, Guo J, Mo X, Yuan
T, Chen Y, Ye T, Xu C, Wang W, et al: TP53 Mutation as potential
negative predictor for response of anti-CTLA-4 therapy in
metastatic melanoma. EBioMedicine. 32:119–124. 2018. View Article : Google Scholar : PubMed/NCBI
|
43
|
Raimondi S, Sera F, Gandini S, Iodice S,
Caini S, Maisonneuve P and Fargnoli MC: MC1R variants, melanoma and
red hair color phenotype: A meta-analysis. Int J Cancer.
122:2753–2760. 2008. View Article : Google Scholar : PubMed/NCBI
|
44
|
Nan H, Qureshi AA, Hunter DJ and Han J: A
functional SNP in the MDM2 promoter, pigmentary phenotypes, and
risk of skin cancer. Cancer Causes Control. 20:171–179. 2009.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Oliveira C, Lourenço GJ, Rinck-Junior JA,
Cintra ML, Moraes AM and Lima CS: Association between genetic
polymorphisms in apoptosis-related genes and risk of cutaneous
melanoma in women and men. J Dermatol Sci. 74:135–141. 2014.
View Article : Google Scholar : PubMed/NCBI
|
46
|
Qin J, Cong X, Jin J, Chu Z, Gu X and Cai
Y: Association between MDM2 SNP309 and skin cancer: A meta-analysis
of case-control studies. J Dermatol Sci. 79:171–173. 2015.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Landi MT, Kanetsky PA, Tsang S, Gold B,
Munroe D, Rebbeck T, Swoyer J, Ter-Minassian M, Hedayati M,
Grossman L, et al: MC1R, ASIP, and DNA repair in sporadic and
familial melanoma in a mediterranean population. J Natl Cancer
Inst. 97:998–1007. 2005. View Article : Google Scholar : PubMed/NCBI
|
48
|
Fargnoli MC, Spica T, Sera F, Pellacani G,
Chiarugi A, Seidenari S, Carli P, Chimenti S and Peris K: Re: MC1R,
ASIP, and DNA repair in sporadic and familial melanoma in a
mediterranean population. J Natl Cancer Inst. 98:144–145. 2006.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Taylor NJ, Busam KJ, From L, Groben PA,
Anton-Culver H, Cust AE, Begg CB, Dwyer T, Gallagher RP, Gruber SB,
et al: Inherited variation at MC1R and histological characteristics
of primary melanoma. PLoS One. 10:e01199202015. View Article : Google Scholar : PubMed/NCBI
|
50
|
Davies JR, Randerson-Moor J, Kukalizch K,
Harland M, Kumar R, Madhusudan S, Nagore E, Hansson J, Höiom V,
Ghiorzo P, et al: Inherited variants in the MC1R gene and survival
from cutaneous melanoma: A BioGenoMEL study. Pigment Cell Melanoma
Res. 25:384–394. 2012. View Article : Google Scholar : PubMed/NCBI
|
51
|
Rajabi P, Karimian P and Heidarpour M: The
relationship between MDM2 expression and tumor thickness and
invasion in primary cutaneous malignant melanoma. J Res Med Sci.
17:452–455. 2012.PubMed/NCBI
|