Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2019 Volume 18 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review)

  • Authors:
    • Qiongli Su
    • Shengping Luo
    • Qiuhong Tan
    • Jun Deng
    • Sichun Zhou
    • Mei Peng
    • Ting Tao
    • Xiaoping Yang
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, Zhuzhou Central Hospital, Zhuzhou, Hunan 412000, P.R. China, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha, Hunan 410013, P.R. China, Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China, Department of Pharmacy, Yueyang Maternal‑Child Medicine Health Hospital, Yueyang, Hunan 414000, P.R. China
    Copyright: © Su et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 5663-5672
    |
    Published online on: October 2, 2019
       https://doi.org/10.3892/ol.2019.10948
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer cells are characterized by a high glycolytic rate, which leads to energy regeneration and anabolic metabolism; a consequence of this is the abnormal expression of pyruvate kinase isoenzyme M2 (PKM2). Multiple studies have demonstrated that the expression levels of PKM2 are upregulated in numerous cancer types. Consequently, the mechanism of action of certain anticancer drugs is to downregulate PKM2 expression, indicating the significance of PKM2 in a chemotherapeutic setting. Furthermore, it has previously been highlighted that the downregulation of PKM2 expression, using either inhibitors or short interfering RNA, enhances the anticancer effect exerted by THP treatment on bladder cancer cells, both in vitro and in vivo. The present review summarizes the detailed mechanisms and therapeutic relevance of anticancer drugs that inhibit PKM2 expression. In addition, the relationship between PKM2 expression levels and drug resistance were explored. Finally, future directions, such as the targeting of PKM2 as a strategy to explore novel anticancer agents, were suggested. The current review explored and highlighted the important role of PKM2 in anticancer treatments.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang L, Deng M, Deng S, Li P and Xu B: Cooperative effect of chidamide and chemotherapeutic drugs induce apoptosis by DNA damage accumulation and repair defects in acute myeloid leukemia stem and progenitor cells. Clin Epigenetics. 9:832017. View Article : Google Scholar : PubMed/NCBI

2 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

4 

Kang YP, Ward NP and DeNicola GM: Recent advances in cancer metabolism: A technological perspective. Exp Mol Med. 50:312018. View Article : Google Scholar : PubMed/NCBI

5 

Martinez-Outschoorn UE, Peiris-Pagés M, Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Stein EM, DiNardo CD, Pollyea DA, Fathi AT, Roboz GJ, Altman JK, Stone RM, DeAngelo DJ, Levine RL, Flinn IW, et al: Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia. Blood. 130:722–731. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Bayley JP and Devilee P: The Warburg effect in 2012. Curr Opin Oncol. 24:62–67. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Mazurek S: Pyruvate kinase type M2: A key regulator of the metabolic budget system in tumor cells. Int J Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Shinohara H, Taniguchi K, Kumazaki M, Yamada N, Ito Y, Otsuki Y, Uno B, Hayakawa F, Minami Y, Naoe T and Akao Y: Anti-cancer fatty-acid derivative induces autophagic cell death through modulation of PKM isoform expression profile mediated by bcr-abl in chronic myeloid leukemia. Cancer Lett. 360:28–38. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Taniguchi K, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama K and Akao Y: MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett. 363:17–27. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Shi HS, Li D, Zhang J, Wang YS, Yang L, Zhang HL, Wang XH, Mu B, Wang W, Ma Y, et al: Silencing of pkm2 increases the efficacy of docetaxel in human lung cancer xenografts in mice. Cancer Sci. 101:1447–1453. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang C, Yang Y, Xin X, Li X, Pu H, et al: Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN. Cell Death Dis. 9:2532018. View Article : Google Scholar : PubMed/NCBI

13 

Benesch C, Schneider C, Voelker HU, Kapp M, Caffier H, Krockenberger M, Dietl J, Kammerer U and Schmidt M: The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer. Anticancer Res. 30:1689–1694. 2010.PubMed/NCBI

14 

Lockney NA, Zhang M, Lu Y, Sopha SC, Washington MK, Merchant N, Zhao Z, Shyr Y, Chakravarthy AB and Xia F: Pyruvate kinase muscle isoenzyme 2 (PKM2) expression is associated with overall survival in pancreatic ductal adenocarcinoma. J Gastrointest Cancer. 46:390–398. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F, Gu J and Fu L: High expression of pyruvate kinase M2 is associated with chemosensitivity to epirubicin and 5-fluorouracil in breast cancer. J Cancer. 6:1130–1139. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Yoo BC, Ku JL, Hong SH, Shin YK, Park SY, Kim HK and Park JG: Decreased pyruvate kinase M2 activity linked to cisplatin resistance in human gastric carcinoma cell lines. Int J Cancer. 108:532–539. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Martinez-Balibrea E, Plasencia C, Ginés A, Martinez-Cardús A, Musulén E, Aguilera R, Manzano JL, Neamati N and Abad A: A proteomic approach links decreased pyruvate kinase M2 expression to oxaliplatin resistance in patients with colorectal cancer and in human cell lines. Mol Cancer Ther. 8:771–778. 2009. View Article : Google Scholar : PubMed/NCBI

18 

Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through interaction with the mTOR pathway in cervical cancer. Sci Rep. 6:307882016. View Article : Google Scholar : PubMed/NCBI

19 

Li Q, Zhang D, Chen X, He L, Li T, Xu X and Li M: Nuclear PKM2 contributes to gefitinib resistance via upregulation of STAT3 activation in colorectal cancer. Sci Rep. 5:160822015. View Article : Google Scholar : PubMed/NCBI

20 

Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and Cantley LC: The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature. 452:230–233. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Prakasam G, Singh RK, Iqbal MA, Saini SK, Tiku AB and Bamezai RNK: Pyruvate kinase M knockdown-induced signaling via AMP-activated protein kinase promotes mitochondrial biogenesis, autophagy, and cancer cell survival. J Biol Chem. 292:15561–15576. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Zheng B, Liu F, Zeng L, Geng L, Ouyang X, Wang K and Huang Q: Overexpression of pyruvate kinase type M2 (PKM2) promotes ovarian cancer cell growth and survival via regulation of cell cycle progression related with upregulated CCND1 and downregulated CDKN1A expression. Med Sci Monit. 24:3103–3112. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Goldberg MS and Sharp PA: Pyruvate kinase M2-specific siRNA induces apoptosis and tumor regression. J Exp Med. 209:217–224. 2012. View Article : Google Scholar : PubMed/NCBI

24 

Spoden GA, Mazurek S, Morandell D, Bacher N, Ausserlechner MJ, Jansen-Dürr P, Eigenbrodt E and Zwerschke W: Isotype-specific inhibitors of the glycolytic key regulator pyruvate kinase subtype M2 moderately decelerate tumor cell proliferation. Int J Cancer. 123:312–321. 2008. View Article : Google Scholar : PubMed/NCBI

25 

Spoden GA, Rostek U, Lechner S, Mitterberger M, Mazurek S and Zwerschke W: Pyruvate kinase isoenzyme M2 is a glycolytic sensor differentially regulating cell proliferation, cell size and apoptotic cell death dependent on glucose supply. Exp Cell Res. 315:2765–2774. 2009. View Article : Google Scholar : PubMed/NCBI

26 

Guo W, Zhang Y, Chen T, Wang Y, Xue J, Zhang Y, Xiao W, Mo X and Lu Y: Efficacy of RNAi targeting of pyruvate kinase M2 combined with cisplatin in a lung cancer model. J Cancer Res Clin Oncol. 137:65–72. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Li RZ, Fan XX, Shi DF, Zhu GY, Wang YW, Luo LX, Pan HD, Yao XJ, Leung EL and Liu L: Identification of a new pyruvate kinase M2 isoform (PKM2) activator for the treatment of non-small-cell lung cancer (NSCLC). Chem Biol Drug Des. 92:1851–1858. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Liu B, Yuan X, Xu B, Zhang H and Li R, Wang X, Ge Z and Li R: Synthesis of novel 7-azaindole derivatives containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2 activators and PKM2 nucleus translocation inhibitors. Eur J Med Chem. 170:1–15. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Boxer MB, Jiang JK, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, et al: Evaluation of substituted N,N′-diarylsulfonamides as activators of the tumor cell specific M2 isoform of pyruvate kinase. J Med Chem. 53:1048–1055. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Guo C, Linton A, Jalaie M, Kephart S, Ornelas M, Pairish M, Greasley S, Richardson P, Maegley K, Hickey M, et al: Discovery of 2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones as novel PKM2 activators. Bioorg Med Chem Lett. 23:3358–3363. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Li J, Li S, Guo J, Li Q, Long J, Ma C, Ding Y, Yan C, Li L, Wu Z, et al: Natural product micheliolide (MCL) irreversibly activates pyruvate kinase M2 and suppresses leukemia. J Med Chem. 61:4155–4164. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Jiang JK, Boxer MB, Vander Heiden MG, Shen M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park HW, et al: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 20:3387–3393. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Matsui Y, Yasumatsu I, Asahi T, Kitamura T, Kanai K, Ubukata O, Hayasaka H, Takaishi S, Hanzawa H and Katakura S: Discovery and structure-guided fragment-linking of 4-(2,3-dichlorobenzoyl)-1-methyl-pyrrole-2-carboxamide as a pyruvate kinase M2 activator. Bioorg Med Chem. 25:3540–3546. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Qi W, Keenan HA, Li Q, Ishikado A, Kannt A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, et al: Pyruvate kinase M2 activation may protect against the progression of diabetic glomerular pathology and mitochondrial dysfunction. Nat Med. 23:753–762. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Yacovan A, Ozeri R, Kehat T, Mirilashvili S, Sherman D, Aizikovich A, Shitrit A, Ben-Zeev E, Schutz N, Bohana-Kashtan O, et al: 1-(sulfonyl)-5-(arylsulfonyl)indoline as activators of the tumor cell specific M2 isoform of pyruvate kinase. Bioorg Med Chem Lett. 22:6460–6468. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Chen C, Xiao W, Huang L, Yu G, Ni J, Yang L, Wan R and Hu G: Shikonin induces apoptosis and necroptosis in pancreatic cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am J Transl Res. 9:5507–5517. 2017.PubMed/NCBI

37 

Lin TJ, Lin HT, Chang WT, Mitapalli SP, Hsiao PW, Yin SY and Yang NS: Shikonin-enhanced cell immunogenicity of tumor vaccine is mediated by the differential effects of DAMP components. Mol Cancer. 14:1742015. View Article : Google Scholar : PubMed/NCBI

38 

Chen J, Xie J, Jiang Z, Wang B, Wang Y and Hu X: Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene. 30:4297–4306. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S and Zen K: Shikonin inhibits tumor growth in mice by suppressing pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep. 8:145172018. View Article : Google Scholar : PubMed/NCBI

40 

Li W, Liu J and Zhao Y: PKM2 inhibitor shikonin suppresses TPA-induced mitochondrial malfunction and proliferation of skin epidermal JB6 cells. Mol Carcinog. 53:403–412. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Tang JC, Zhao J, Long F, Chen JY, Mu B, Jiang Z, Ren Y and Yang J: Efficacy of Shikonin against esophageal cancer cells and its possible mechanisms in vitro and in vivo. J Cancer. 9:32–40. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Tao T, Su Q, Xu S, Deng J, Zhou S, Zhuang Y, Huang Y, He C, He S, Peng M, et al: Downr-egulation of PKM2 decreases FASN expression in bladder cancer cells through AKT/mTOR/SREBP-1c axis. J Cell Physiol. 234:3088–3104. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Boulos JC, Rahama M, Hegazy MF and Efferth T: Shikonin derivatives for cancer prevention and therapy. Cancer Lett. 459:248–267. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Ning X, Qi H, Li R, Jin Y, McNutt MA and Yin Y: Synthesis and antitumor activity of novel 2, 3-didithiocarbamate substituted naphthoquinones as inhibitors of pyruvate kinase M2 isoform. J Enzyme Inhib Med Chem. 33:126–129. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Ruiter R, Visser LE, van Herk-Sukel MP, Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, Straus SM, Herings RM and Stricker BH: Lower risk of cancer in patients on metformin in comparison with those on sulfonylurea derivatives: Results from a large population-based follow-up study. Diabetes Care. 35:119–124. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KU, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS, Rosen ST and Shanmugam M: Targeting the metabolic plasticity of multiple myeloma with FDA-approved ritonavir and metformin. Clin Cancer Res. 21:1161–1171. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Shang D, Wu J, Guo L, Xu Y, Liu L and Lu J: Metformin increases sensitivity of osteosarcoma stem cells to cisplatin by inhibiting expression of PKM2. Int J Oncol. 50:1848–1856. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Silvestri A, Palumbo F, Rasi I, Posca D, Pavlidou T, Paoluzi S, Castagnoli L and Cesareni G: Metformin induces apoptosis and downregulates pyruvate kinase M2 in breast cancer cells only when grown in nutrient-poor conditions. PLoS One. 10:e01362502015. View Article : Google Scholar : PubMed/NCBI

49 

Hamabe A, Konno M, Tanuma N, Shima H, Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N, et al: Role of pyruvate kinase M2 in transcriptional regulation leading to epithelial-mesenchymal transition. Proc Natl Acad Sci USA. 111:15526–15531. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Cheng K and Hao M: Metformin inhibits TGF-β1-induced Epithelial-to-Mesenchymal transition via PKM2 relative-mTOR/p70s6k signaling pathway in cervical carcinoma cells. Int J Mol Sci. 17(pii): E20002016. View Article : Google Scholar : PubMed/NCBI

51 

Su Q, Tao T, Tang L, Deng J, Darko KO, Zhou S, Peng M, He S, Zeng Q, Chen AF and Yang X: Down-regulation of PKM2 enhances anticancer efficiency of THP on bladder cancer. J Cell Mol Med. 22:2774–2790. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Hey E: Vitamin K-what, why, and when. Arch Dis Child Fetal Neonatal Ed. 88:F80–F83. 2003. View Article : Google Scholar : PubMed/NCBI

53 

Ogawa M, Nakai S, Deguchi A, Nonomura T, Masaki T, Uchida N, Yoshiji H and Kuriyama S: Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol. 31:323–331. 2007.PubMed/NCBI

54 

Ivanova D, Zhelev Z, Getsov P, Nikolova B, Aoki I, Higashi T and Bakalova R: Vitamin K: Redox-modulation, prevention of mitochondrial dysfunction and anticancer effect. Redox Biol. 16:352–358. 2018. View Article : Google Scholar : PubMed/NCBI

55 

Hitomi M, Nonomura T, Yokoyama F, Yoshiji H, Ogawa M, Nakai S, Deguchi A, Masaki T, Inoue H, Kimura Y, et al: In vitro and in vivo antitumor effects of vitamin K5 on hepatocellular carcinoma. Int J Oncol. 26:1337–1344. 2005.PubMed/NCBI

56 

Yamada A, Osada S, Tanahashi T, Matsui S, Sasaki Y, Tanaka Y, Okumura N, Matsuhashi N, Takahashi T, Yamaguchi K and Yoshida K: Novel therapy for locally advanced triple-negative breast cancer. Int J Oncol. 47:1266–1272. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Osada S, Saji S and Osada K: Critical role of extracellular signal-regulated kinase phosphorylation on menadione (vitamin K3) induced growth inhibition. Cancer. 91:1156–1165. 2001. View Article : Google Scholar : PubMed/NCBI

58 

Lamson DW and Plaza SM: The anticancer effects of vitamin K. Altern Med Rev. 8:303–318. 2003.PubMed/NCBI

59 

Bonilla-Porras AR, Jimenez-Del-Rio M and Velez-Pardo C: Vitamin K3 and vitamin C alone or in combination induced apoptosis in leukemia cells by a similar oxidative stress signalling mechanism. Cancer Cell Int. 11:192011. View Article : Google Scholar : PubMed/NCBI

60 

Parekh HK, Mansuri-Torshizi H, Srivastava TS and Chitnis MP: Circumvention of adriamycin resistance: Effect of 2-methyl-1,4-naphthoquinone (vitamin K3) on drug cytotoxicity in sensitive and MDR P388 leukemia cells. Cancer Lett. 61:147–156. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Chen J, Jiang Z, Wang B, Wang Y and Hu X: Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2. Cancer Lett. 316:204–210. 2012. View Article : Google Scholar : PubMed/NCBI

62 

Scicchitano BM, Sorrentino S, Proietti G, Lama G, Dobrowolny G, Catizone A, Binda E, Larocca LM and Sica G: Levetiracetam enhances the temozolomide effect on glioblastoma stem cell proliferation and apoptosis. Cancer Cell Int. 18:1362018. View Article : Google Scholar : PubMed/NCBI

63 

Johnson DR and O'Neill BP: Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Chu L, Wang A, Ni L, Yan X, Song Y, Zhao M, Sun K, Mu H, Liu S, Wu Z and Zhang C: Nose-to-brain delivery of temozolomide-loaded PLGA nanoparticles functionalized with anti-EPHA3 for glioblastoma targeting. Drug Deliv. 25:1634–1641. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Park I, Mukherjee J, Ito M, Chaumeil MM, Jalbert LE, Gaensler K, Ronen SM, Nelson SJ and Pieper RO: Changes in pyruvate metabolism detected by magnetic resonance imaging are linked to DNA damage and serve as a sensor of temozolomide response in glioblastoma cells. Cancer Res. 74:7115–7124. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Yuan S, Qiao T, Zhuang X, Chen W, Xing N and Zhang Q: Knockdown of the M2 isoform of pyruvate kinase (PKM2) with shRNA enhances the effect of docetaxel in human NSCLC cell lines in vitro. Yonsei Med J. 57:1312–1323. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Cheng C, Xie Z, Li Y, Wang J, Qin C and Zhang Y: PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother. 108:194–200. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Taieb J, Pointet AL, Van Laethem JL, Laquente B, Pernot S, Lordick F and Reni M: What treatment in 2017 for inoperable pancreatic cancers? Ann Oncol. 28:1473–1483. 2017. View Article : Google Scholar : PubMed/NCBI

69 

Sun C, Ansari D, Andersson R and Wu DQ: Does gemcitabine-based combination therapy improve the prognosis of unresectable pancreatic cancer? World J Gastroenterol. 18:4944–4958. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Tian S, Li P, Sheng S and Jin X: Upregulation of pyruvate kinase M2 expression by fatty acid synthase contributes to gemcitabine resistance in pancreatic cancer. Oncol Lett. 15:2211–2217. 2018.PubMed/NCBI

71 

Li C, Zhao Z, Zhou Z and Liu R: Linc-ROR confers gemcitabine resistance to pancreatic cancer cells via inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis. Cancer Chemother Pharmacol. 78:1199–1207. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Kim DJ, Park YS, Kang MG, You YM, Jung Y, Koo H, Kim JA, Kim MJ, Hong SM, Lee KB, et al: Pyruvate kinase isoenzyme M2 is a therapeutic target of gemcitabine-resistant pancreatic cancer cells. Exp Cell Res. 336:119–129. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Calabretta S, Bielli P, Passacantilli I, Pilozzi E, Fendrich V, Capurso G, Fave GD and Sette C: Modulation of PKM alternative splicing by PTBP1 promotes gemcitabine resistance in pancreatic cancer cells. Oncogene. 35:2031–2039. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Dilruba S and Kalayda GV: Platinum-based drugs: Past, present and future. Cancer Chemother Pharmacol. 77:1103–1124. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Belanger F, Fortier E, Dubé M, Lemay JF, Buisson R, Masson JY, Elsherbiny A, Costantino S, Carmona E, Mes-Masson AM, et al: Replication protein A availability during DNA replication stress is a major determinant of cisplatin resistance in ovarian cancer cells. Cancer Res. 78:5561–5573. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Wang X, Zhang F and Wu XR: Inhibition of pyruvate kinase M2 markedly reduces chemoresistance of advanced bladder cancer to cisplatin. Sci Rep. 7:459832017. View Article : Google Scholar : PubMed/NCBI

77 

Galanski M: Recent developments in the field of anticancer platinum complexes. Recent Pat Anticancer Drug Discov. 1:285–295. 2006. View Article : Google Scholar : PubMed/NCBI

78 

Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Wang Y, Hao F, Nan Y, Qu L, Na W, Jia C and Chen X: PKM2 inhibitor shikonin overcomes the cisplatin resistance in bladder cancer by inducing necroptosis. Int J Biol Sci. 14:1883–1891. 2018. View Article : Google Scholar : PubMed/NCBI

80 

Li W, Qiu Y, Hao J, Zhao C, Deng X and Shu G: Dauricine upregulates the chemosensitivity of hepatocellular carcinoma cells: Role of repressing glycolysis via miR-199a: HK2/PKM2 modulation. Food Chem Toxicol. 121:156–165. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Miya T, Kobayashi K, Hino M, Ando M, Takeuchi S, Seike M, Kubota K and Gemma A; East Japan Chesters Group, : Efficacy of triple antiemetic therapy (palonosetron, dexamethasone, aprepitant) for chemotherapy-induced nausea and vomiting in patients receiving carboplatin-based, moderately emetogenic chemotherapy. Springerplus. 5:20802016. View Article : Google Scholar : PubMed/NCBI

82 

Sève P and Dumontet C: Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents. 5:73–88. 2005. View Article : Google Scholar : PubMed/NCBI

83 

Liu Y, He C and Huang X: Metformin partially reverses the carboplatin-resistance in NSCLC by inhibiting glucose metabolism. Oncotarget. 8:75206–75216. 2017.PubMed/NCBI

84 

Kelland L: The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Graham J, Mushin M and Kirkpatrick P: Oxaliplatin. Nat Rev Drug Discov. 3:11–12. 2004. View Article : Google Scholar : PubMed/NCBI

86 

Hsu HH, Chen MC, Baskaran R, Lin YM, Day CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW and Huang CY: Oxaliplatin resistance in colorectal cancer cells is mediated via activation of ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol. 233:5458–5467. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li H, Wang X, Hu Y, Gu K, Chen X, et al: NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 415:58–72. 2018. View Article : Google Scholar : PubMed/NCBI

88 

Lu WQ, Hu YY, Lin XP and Fan W: Knockdown of PKM2 and GLS1 expression can significantly reverse oxaliplatin-resistance in colorectal cancer cells. Oncotarget. 8:44171–44185. 2017.PubMed/NCBI

89 

Ginés A, Bystrup S, Ruiz de Porras V, Guardia C, Musulén E, Martínez-Cardús A, Manzano JL, Layos L, Abad A and Martínez-Balibrea E: PKM2 subcellular localization is involved in oxaliplatin resistance acquisition in HT29 human colorectal cancer cell lines. PLoS One. 10:e01238302015. View Article : Google Scholar : PubMed/NCBI

90 

Russo A, Maiolino S, Pagliara V, Ungaro F, Tatangelo F, Leone A, Scalia G, Budillon A, Quaglia F and Russo G: Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in p53 null colon cancer cells through combined polymer nanoparticles. Oncotarget. 7:79670–79687. 2016. View Article : Google Scholar : PubMed/NCBI

91 

He J, Xie G, Tong J, Peng Y, Huang H, Li J, Wang N and Liang H: Overexpression of microRNA-122 re-sensitizes 5-FU-resistant colon cancer cells to 5-FU through the inhibition of PKM2 in vitro and in vivo. Cell Biochem Biophys. 70:1343–1350. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Hjerpe E, Egyhazi Brage S, Carlson J, Frostvik Stolt M, Schedvins K, Johansson H, Shoshan M and Avall-Lundqvist E: Metabolic markers GAPDH, PKM2, ATP5B and BEC-index in advanced serous ovarian cancer. BMC Clin Pathol. 13:302013. View Article : Google Scholar : PubMed/NCBI

93 

Pan C, Wang X, Shi K, Zheng Y, Li J, Chen Y, Jin L and Pan Z: MiR-122 reverses the doxorubicin-resistance in hepatocellular carcinoma cells through regulating the tumor metabolism. PLoS One. 11:e01520902016. View Article : Google Scholar : PubMed/NCBI

94 

Han TD, Shang DH and Tian Y: Docetaxel enhances apoptosis and G2/M cell cycle arrest by suppressing mitogen-activated protein kinase signaling in human renal clear cell carcinoma. Genet Mol Res. 152016.doi: 10.4238/gmr.15017321.

95 

Sim S, Bergh J, Hellström M, Hatschek T and Xie H: Pharmacogenetic impact of docetaxel on neoadjuvant treatment of breast cancer patients. Pharmacogenomics. 19:1259–1268. 2018. View Article : Google Scholar : PubMed/NCBI

96 

van Rossum AGJ, Kok M, van Werkhoven E, Opdam M, Mandjes IAM, van Leeuwen-Stok AE, van Tinteren H, Imholz ALT, Portielje JEA, Bos MMEM, et al: Adjuvant dose-dense doxorubicin-cyclophosphamide versus docetaxel-doxorubicin-cyclophosphamide for high-risk breast cancer: First results of the randomised MATADOR trial (BOOG 2004-04). Eur J Cancer. 102:40–48. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Sharma P, López-Tarruella S, García-Saenz JA, Khan QJ, Gómez HL, Prat A, Moreno F, Jerez-Gilarranz Y, Barnadas A, Picornell AC, et al: Pathological response and survival in triple-negative breast cancer following neoadjuvant carboplatin plus docetaxel. Clin Cancer Res. 24:5820–5829. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Hata A, Katakami N, Shimokawa M, Mitsudomi T, Yamamoto N and Nakagawa K: Docetaxel Plus RAmucirumab with primary prophylactic pegylated Granulocyte-ColONy stimulating factor support for elderly patients with advanced Non-small-cell lung cancer: A multicenter prospective single arm phase II Trial: DRAGON study (WJOG9416L). Clin Lung Cancer. 19:e865–e869. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Tanimura K, Uchino J, Tamiya N, Kaneko Y, Yamada T1, Yoshimura K and Takayama K: Treatment rationale and design of the RAMNITA study: A phase II study of the efficacy of docetaxel + ramucirumab for non-small cell lung cancer with brain metastasis. Medicine (Baltimore). 97:e110842018. View Article : Google Scholar : PubMed/NCBI

100 

Milbar N, Kates M, Chappidi MR, Pederzoli F, Yoshida T, Sankin A, Pierorazio PM, Schoenberg MP and Bivalacqua TJ: Oncological outcomes of sequential intravesical gemcitabine and docetaxel in patients with Non-muscle invasive bladder cancer. Bladder Cancer. 3:293–303. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Mortimer J, Zonder HB and Pal SK: Lessons learned from the bevacizumab experience. Cancer Control. 19:309–316. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Wong N, Ojo D, Yan J and Tang D: PKM2 contributes to cancer metabolism. Cancer Lett. 356:184–191. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Hsu MC and Hung WC: Pyruvate kinase M2 fuels multiple aspects of cancer cells: From cellular metabolism, transcriptional regulation to extracellular signaling. Mol Cancer. 17:352018. View Article : Google Scholar : PubMed/NCBI

104 

Papadaki C, Sfakianaki M, Lagoudaki E, Giagkas G, Ioannidis G, Trypaki M, Tsakalaki E, Voutsina A, Koutsopoulos A, Mavroudis D, et al: PKM2 as a biomarker for chemosensitivity to front-line platinum-based chemotherapy in patients with metastatic non-small-cell lung cancer. Br J Cancer. 111:1757–1764. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T and Yang X: The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review). Oncol Lett 18: 5663-5672, 2019.
APA
Su, Q., Luo, S., Tan, Q., Deng, J., Zhou, S., Peng, M. ... Yang, X. (2019). The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review). Oncology Letters, 18, 5663-5672. https://doi.org/10.3892/ol.2019.10948
MLA
Su, Q., Luo, S., Tan, Q., Deng, J., Zhou, S., Peng, M., Tao, T., Yang, X."The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review)". Oncology Letters 18.6 (2019): 5663-5672.
Chicago
Su, Q., Luo, S., Tan, Q., Deng, J., Zhou, S., Peng, M., Tao, T., Yang, X."The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review)". Oncology Letters 18, no. 6 (2019): 5663-5672. https://doi.org/10.3892/ol.2019.10948
Copy and paste a formatted citation
x
Spandidos Publications style
Su Q, Luo S, Tan Q, Deng J, Zhou S, Peng M, Tao T and Yang X: The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review). Oncol Lett 18: 5663-5672, 2019.
APA
Su, Q., Luo, S., Tan, Q., Deng, J., Zhou, S., Peng, M. ... Yang, X. (2019). The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review). Oncology Letters, 18, 5663-5672. https://doi.org/10.3892/ol.2019.10948
MLA
Su, Q., Luo, S., Tan, Q., Deng, J., Zhou, S., Peng, M., Tao, T., Yang, X."The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review)". Oncology Letters 18.6 (2019): 5663-5672.
Chicago
Su, Q., Luo, S., Tan, Q., Deng, J., Zhou, S., Peng, M., Tao, T., Yang, X."The role of pyruvate kinase M2 in anticancer therapeutic treatments (Review)". Oncology Letters 18, no. 6 (2019): 5663-5672. https://doi.org/10.3892/ol.2019.10948
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team