|
1
|
Li Y, Wang Y, Zhou Y, Li J, Chen K, Zhang
L, Deng M, Deng S, Li P and Xu B: Cooperative effect of chidamide
and chemotherapeutic drugs induce apoptosis by DNA damage
accumulation and repair defects in acute myeloid leukemia stem and
progenitor cells. Clin Epigenetics. 9:832017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ward PS and Thompson CB: Metabolic
reprogramming: A cancer hallmark even warburg did not anticipate.
Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kang YP, Ward NP and DeNicola GM: Recent
advances in cancer metabolism: A technological perspective. Exp Mol
Med. 50:312018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Martinez-Outschoorn UE, Peiris-Pagés M,
Pestell RG, Sotgia F and Lisanti MP: Cancer metabolism: A
therapeutic perspective. Nat Rev Clin Oncol. 14:11–31. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Stein EM, DiNardo CD, Pollyea DA, Fathi
AT, Roboz GJ, Altman JK, Stone RM, DeAngelo DJ, Levine RL, Flinn
IW, et al: Enasidenib in mutant IDH2 relapsed or refractory acute
myeloid leukemia. Blood. 130:722–731. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Bayley JP and Devilee P: The Warburg
effect in 2012. Curr Opin Oncol. 24:62–67. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mazurek S: Pyruvate kinase type M2: A key
regulator of the metabolic budget system in tumor cells. Int J
Biochem Cell Biol. 43:969–980. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shinohara H, Taniguchi K, Kumazaki M,
Yamada N, Ito Y, Otsuki Y, Uno B, Hayakawa F, Minami Y, Naoe T and
Akao Y: Anti-cancer fatty-acid derivative induces autophagic cell
death through modulation of PKM isoform expression profile mediated
by bcr-abl in chronic myeloid leukemia. Cancer Lett. 360:28–38.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Taniguchi K, Sugito N, Kumazaki M,
Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama
K and Akao Y: MicroRNA-124 inhibits cancer cell growth through
PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett.
363:17–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Shi HS, Li D, Zhang J, Wang YS, Yang L,
Zhang HL, Wang XH, Mu B, Wang W, Ma Y, et al: Silencing of pkm2
increases the efficacy of docetaxel in human lung cancer xenografts
in mice. Cancer Sci. 101:1447–1453. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zheng Q, Lin Z, Xu J, Lu Y, Meng Q, Wang
C, Yang Y, Xin X, Li X, Pu H, et al: Long noncoding RNA MEG3
suppresses liver cancer cells growth through inhibiting β-catenin
by activating PKM2 and inactivating PTEN. Cell Death Dis.
9:2532018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Benesch C, Schneider C, Voelker HU, Kapp
M, Caffier H, Krockenberger M, Dietl J, Kammerer U and Schmidt M:
The clinicopathological and prognostic relevance of pyruvate kinase
M2 and pAkt expression in breast cancer. Anticancer Res.
30:1689–1694. 2010.PubMed/NCBI
|
|
14
|
Lockney NA, Zhang M, Lu Y, Sopha SC,
Washington MK, Merchant N, Zhao Z, Shyr Y, Chakravarthy AB and Xia
F: Pyruvate kinase muscle isoenzyme 2 (PKM2) expression is
associated with overall survival in pancreatic ductal
adenocarcinoma. J Gastrointest Cancer. 46:390–398. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lin Y, Lv F, Liu F, Guo X, Fan Y, Gu F, Gu
J and Fu L: High expression of pyruvate kinase M2 is associated
with chemosensitivity to epirubicin and 5-fluorouracil in breast
cancer. J Cancer. 6:1130–1139. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yoo BC, Ku JL, Hong SH, Shin YK, Park SY,
Kim HK and Park JG: Decreased pyruvate kinase M2 activity linked to
cisplatin resistance in human gastric carcinoma cell lines. Int J
Cancer. 108:532–539. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Martinez-Balibrea E, Plasencia C, Ginés A,
Martinez-Cardús A, Musulén E, Aguilera R, Manzano JL, Neamati N and
Abad A: A proteomic approach links decreased pyruvate kinase M2
expression to oxaliplatin resistance in patients with colorectal
cancer and in human cell lines. Mol Cancer Ther. 8:771–778. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zhu H, Wu J, Zhang W, Luo H, Shen Z, Cheng
H and Zhu X: PKM2 enhances chemosensitivity to cisplatin through
interaction with the mTOR pathway in cervical cancer. Sci Rep.
6:307882016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Li Q, Zhang D, Chen X, He L, Li T, Xu X
and Li M: Nuclear PKM2 contributes to gefitinib resistance via
upregulation of STAT3 activation in colorectal cancer. Sci Rep.
5:160822015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Christofk HR, Vander Heiden MG, Harris MH,
Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL and
Cantley LC: The M2 splice isoform of pyruvate kinase is important
for cancer metabolism and tumour growth. Nature. 452:230–233. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Prakasam G, Singh RK, Iqbal MA, Saini SK,
Tiku AB and Bamezai RNK: Pyruvate kinase M knockdown-induced
signaling via AMP-activated protein kinase promotes mitochondrial
biogenesis, autophagy, and cancer cell survival. J Biol Chem.
292:15561–15576. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zheng B, Liu F, Zeng L, Geng L, Ouyang X,
Wang K and Huang Q: Overexpression of pyruvate kinase type M2
(PKM2) promotes ovarian cancer cell growth and survival via
regulation of cell cycle progression related with upregulated CCND1
and downregulated CDKN1A expression. Med Sci Monit. 24:3103–3112.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Goldberg MS and Sharp PA: Pyruvate kinase
M2-specific siRNA induces apoptosis and tumor regression. J Exp
Med. 209:217–224. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Spoden GA, Mazurek S, Morandell D, Bacher
N, Ausserlechner MJ, Jansen-Dürr P, Eigenbrodt E and Zwerschke W:
Isotype-specific inhibitors of the glycolytic key regulator
pyruvate kinase subtype M2 moderately decelerate tumor cell
proliferation. Int J Cancer. 123:312–321. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Spoden GA, Rostek U, Lechner S,
Mitterberger M, Mazurek S and Zwerschke W: Pyruvate kinase
isoenzyme M2 is a glycolytic sensor differentially regulating cell
proliferation, cell size and apoptotic cell death dependent on
glucose supply. Exp Cell Res. 315:2765–2774. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Guo W, Zhang Y, Chen T, Wang Y, Xue J,
Zhang Y, Xiao W, Mo X and Lu Y: Efficacy of RNAi targeting of
pyruvate kinase M2 combined with cisplatin in a lung cancer model.
J Cancer Res Clin Oncol. 137:65–72. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li RZ, Fan XX, Shi DF, Zhu GY, Wang YW,
Luo LX, Pan HD, Yao XJ, Leung EL and Liu L: Identification of a new
pyruvate kinase M2 isoform (PKM2) activator for the treatment of
non-small-cell lung cancer (NSCLC). Chem Biol Drug Des.
92:1851–1858. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu B, Yuan X, Xu B, Zhang H and Li R,
Wang X, Ge Z and Li R: Synthesis of novel 7-azaindole derivatives
containing pyridin-3-ylmethyl dithiocarbamate moiety as potent PKM2
activators and PKM2 nucleus translocation inhibitors. Eur J Med
Chem. 170:1–15. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Boxer MB, Jiang JK, Vander Heiden MG, Shen
M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park
HW, et al: Evaluation of substituted N,N′-diarylsulfonamides as
activators of the tumor cell specific M2 isoform of pyruvate
kinase. J Med Chem. 53:1048–1055. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Guo C, Linton A, Jalaie M, Kephart S,
Ornelas M, Pairish M, Greasley S, Richardson P, Maegley K, Hickey
M, et al: Discovery of
2-((1H-benzo[d]imidazol-1-yl)methyl)-4H-pyrido[1,2-a]pyrimidin-4-ones
as novel PKM2 activators. Bioorg Med Chem Lett. 23:3358–3363. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Li J, Li S, Guo J, Li Q, Long J, Ma C,
Ding Y, Yan C, Li L, Wu Z, et al: Natural product micheliolide
(MCL) irreversibly activates pyruvate kinase M2 and suppresses
leukemia. J Med Chem. 61:4155–4164. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jiang JK, Boxer MB, Vander Heiden MG, Shen
M, Skoumbourdis AP, Southall N, Veith H, Leister W, Austin CP, Park
HW, et al: Evaluation of thieno[3,2-b]pyrrole[3,2-d]pyridazinones
as activators of the tumor cell specific M2 isoform of pyruvate
kinase. Bioorg Med Chem Lett. 20:3387–3393. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Matsui Y, Yasumatsu I, Asahi T, Kitamura
T, Kanai K, Ubukata O, Hayasaka H, Takaishi S, Hanzawa H and
Katakura S: Discovery and structure-guided fragment-linking of
4-(2,3-dichlorobenzoyl)-1-methyl-pyrrole-2-carboxamide as a
pyruvate kinase M2 activator. Bioorg Med Chem. 25:3540–3546. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Qi W, Keenan HA, Li Q, Ishikado A, Kannt
A, Sadowski T, Yorek MA, Wu IH, Lockhart S, Coppey LJ, et al:
Pyruvate kinase M2 activation may protect against the progression
of diabetic glomerular pathology and mitochondrial dysfunction. Nat
Med. 23:753–762. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yacovan A, Ozeri R, Kehat T, Mirilashvili
S, Sherman D, Aizikovich A, Shitrit A, Ben-Zeev E, Schutz N,
Bohana-Kashtan O, et al: 1-(sulfonyl)-5-(arylsulfonyl)indoline as
activators of the tumor cell specific M2 isoform of pyruvate
kinase. Bioorg Med Chem Lett. 22:6460–6468. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Chen C, Xiao W, Huang L, Yu G, Ni J, Yang
L, Wan R and Hu G: Shikonin induces apoptosis and necroptosis in
pancreatic cancer via regulating the expression of RIP1/RIP3 and
synergizes the activity of gemcitabine. Am J Transl Res.
9:5507–5517. 2017.PubMed/NCBI
|
|
37
|
Lin TJ, Lin HT, Chang WT, Mitapalli SP,
Hsiao PW, Yin SY and Yang NS: Shikonin-enhanced cell immunogenicity
of tumor vaccine is mediated by the differential effects of DAMP
components. Mol Cancer. 14:1742015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen J, Xie J, Jiang Z, Wang B, Wang Y and
Hu X: Shikonin and its analogs inhibit cancer cell glycolysis by
targeting tumor pyruvate kinase-M2. Oncogene. 30:4297–4306. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zhao X, Zhu Y, Hu J, Jiang L, Li L, Jia S
and Zen K: Shikonin inhibits tumor growth in mice by suppressing
pyruvate kinase M2-mediated aerobic glycolysis. Sci Rep.
8:145172018. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Li W, Liu J and Zhao Y: PKM2 inhibitor
shikonin suppresses TPA-induced mitochondrial malfunction and
proliferation of skin epidermal JB6 cells. Mol Carcinog.
53:403–412. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Tang JC, Zhao J, Long F, Chen JY, Mu B,
Jiang Z, Ren Y and Yang J: Efficacy of Shikonin against esophageal
cancer cells and its possible mechanisms in vitro and in vivo. J
Cancer. 9:32–40. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Tao T, Su Q, Xu S, Deng J, Zhou S, Zhuang
Y, Huang Y, He C, He S, Peng M, et al: Downr-egulation of PKM2
decreases FASN expression in bladder cancer cells through
AKT/mTOR/SREBP-1c axis. J Cell Physiol. 234:3088–3104. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Boulos JC, Rahama M, Hegazy MF and Efferth
T: Shikonin derivatives for cancer prevention and therapy. Cancer
Lett. 459:248–267. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ning X, Qi H, Li R, Jin Y, McNutt MA and
Yin Y: Synthesis and antitumor activity of novel 2,
3-didithiocarbamate substituted naphthoquinones as inhibitors of
pyruvate kinase M2 isoform. J Enzyme Inhib Med Chem. 33:126–129.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ruiter R, Visser LE, van Herk-Sukel MP,
Coebergh JW, Haak HR, Geelhoed-Duijvestijn PH, Straus SM, Herings
RM and Stricker BH: Lower risk of cancer in patients on metformin
in comparison with those on sulfonylurea derivatives: Results from
a large population-based follow-up study. Diabetes Care.
35:119–124. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dalva-Aydemir S, Bajpai R, Martinez M,
Adekola KU, Kandela I, Wei C, Singhal S, Koblinski JE, Raje NS,
Rosen ST and Shanmugam M: Targeting the metabolic plasticity of
multiple myeloma with FDA-approved ritonavir and metformin. Clin
Cancer Res. 21:1161–1171. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shang D, Wu J, Guo L, Xu Y, Liu L and Lu
J: Metformin increases sensitivity of osteosarcoma stem cells to
cisplatin by inhibiting expression of PKM2. Int J Oncol.
50:1848–1856. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Silvestri A, Palumbo F, Rasi I, Posca D,
Pavlidou T, Paoluzi S, Castagnoli L and Cesareni G: Metformin
induces apoptosis and downregulates pyruvate kinase M2 in breast
cancer cells only when grown in nutrient-poor conditions. PLoS One.
10:e01362502015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hamabe A, Konno M, Tanuma N, Shima H,
Tsunekuni K, Kawamoto K, Nishida N, Koseki J, Mimori K, Gotoh N, et
al: Role of pyruvate kinase M2 in transcriptional regulation
leading to epithelial-mesenchymal transition. Proc Natl Acad Sci
USA. 111:15526–15531. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cheng K and Hao M: Metformin inhibits
TGF-β1-induced Epithelial-to-Mesenchymal transition via PKM2
relative-mTOR/p70s6k signaling pathway in cervical carcinoma cells.
Int J Mol Sci. 17(pii): E20002016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Su Q, Tao T, Tang L, Deng J, Darko KO,
Zhou S, Peng M, He S, Zeng Q, Chen AF and Yang X: Down-regulation
of PKM2 enhances anticancer efficiency of THP on bladder cancer. J
Cell Mol Med. 22:2774–2790. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hey E: Vitamin K-what, why, and when. Arch
Dis Child Fetal Neonatal Ed. 88:F80–F83. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ogawa M, Nakai S, Deguchi A, Nonomura T,
Masaki T, Uchida N, Yoshiji H and Kuriyama S: Vitamins K2, K3 and
K5 exert antitumor effects on established colorectal cancer in mice
by inducing apoptotic death of tumor cells. Int J Oncol.
31:323–331. 2007.PubMed/NCBI
|
|
54
|
Ivanova D, Zhelev Z, Getsov P, Nikolova B,
Aoki I, Higashi T and Bakalova R: Vitamin K: Redox-modulation,
prevention of mitochondrial dysfunction and anticancer effect.
Redox Biol. 16:352–358. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Hitomi M, Nonomura T, Yokoyama F, Yoshiji
H, Ogawa M, Nakai S, Deguchi A, Masaki T, Inoue H, Kimura Y, et al:
In vitro and in vivo antitumor effects of vitamin K5
on hepatocellular carcinoma. Int J Oncol. 26:1337–1344.
2005.PubMed/NCBI
|
|
56
|
Yamada A, Osada S, Tanahashi T, Matsui S,
Sasaki Y, Tanaka Y, Okumura N, Matsuhashi N, Takahashi T, Yamaguchi
K and Yoshida K: Novel therapy for locally advanced triple-negative
breast cancer. Int J Oncol. 47:1266–1272. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Osada S, Saji S and Osada K: Critical role
of extracellular signal-regulated kinase phosphorylation on
menadione (vitamin K3) induced growth inhibition. Cancer.
91:1156–1165. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Lamson DW and Plaza SM: The anticancer
effects of vitamin K. Altern Med Rev. 8:303–318. 2003.PubMed/NCBI
|
|
59
|
Bonilla-Porras AR, Jimenez-Del-Rio M and
Velez-Pardo C: Vitamin K3 and vitamin C alone or in combination
induced apoptosis in leukemia cells by a similar oxidative stress
signalling mechanism. Cancer Cell Int. 11:192011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Parekh HK, Mansuri-Torshizi H, Srivastava
TS and Chitnis MP: Circumvention of adriamycin resistance: Effect
of 2-methyl-1,4-naphthoquinone (vitamin K3) on drug cytotoxicity in
sensitive and MDR P388 leukemia cells. Cancer Lett. 61:147–156.
1992. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen J, Jiang Z, Wang B, Wang Y and Hu X:
Vitamin K(3) and K(5) are inhibitors of tumor pyruvate kinase M2.
Cancer Lett. 316:204–210. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Scicchitano BM, Sorrentino S, Proietti G,
Lama G, Dobrowolny G, Catizone A, Binda E, Larocca LM and Sica G:
Levetiracetam enhances the temozolomide effect on glioblastoma stem
cell proliferation and apoptosis. Cancer Cell Int. 18:1362018.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Johnson DR and O'Neill BP: Glioblastoma
survival in the United States before and during the temozolomide
era. J Neurooncol. 107:359–364. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Chu L, Wang A, Ni L, Yan X, Song Y, Zhao
M, Sun K, Mu H, Liu S, Wu Z and Zhang C: Nose-to-brain delivery of
temozolomide-loaded PLGA nanoparticles functionalized with
anti-EPHA3 for glioblastoma targeting. Drug Deliv. 25:1634–1641.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Park I, Mukherjee J, Ito M, Chaumeil MM,
Jalbert LE, Gaensler K, Ronen SM, Nelson SJ and Pieper RO: Changes
in pyruvate metabolism detected by magnetic resonance imaging are
linked to DNA damage and serve as a sensor of temozolomide response
in glioblastoma cells. Cancer Res. 74:7115–7124. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yuan S, Qiao T, Zhuang X, Chen W, Xing N
and Zhang Q: Knockdown of the M2 isoform of pyruvate kinase (PKM2)
with shRNA enhances the effect of docetaxel in human NSCLC cell
lines in vitro. Yonsei Med J. 57:1312–1323. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cheng C, Xie Z, Li Y, Wang J, Qin C and
Zhang Y: PTBP1 knockdown overcomes the resistance to vincristine
and oxaliplatin in drug-resistant colon cancer cells through
regulation of glycolysis. Biomed Pharmacother. 108:194–200. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Taieb J, Pointet AL, Van Laethem JL,
Laquente B, Pernot S, Lordick F and Reni M: What treatment in 2017
for inoperable pancreatic cancers? Ann Oncol. 28:1473–1483. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sun C, Ansari D, Andersson R and Wu DQ:
Does gemcitabine-based combination therapy improve the prognosis of
unresectable pancreatic cancer? World J Gastroenterol.
18:4944–4958. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Tian S, Li P, Sheng S and Jin X:
Upregulation of pyruvate kinase M2 expression by fatty acid
synthase contributes to gemcitabine resistance in pancreatic
cancer. Oncol Lett. 15:2211–2217. 2018.PubMed/NCBI
|
|
71
|
Li C, Zhao Z, Zhou Z and Liu R: Linc-ROR
confers gemcitabine resistance to pancreatic cancer cells via
inducing autophagy and modulating the miR-124/PTBP1/PKM2 axis.
Cancer Chemother Pharmacol. 78:1199–1207. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kim DJ, Park YS, Kang MG, You YM, Jung Y,
Koo H, Kim JA, Kim MJ, Hong SM, Lee KB, et al: Pyruvate kinase
isoenzyme M2 is a therapeutic target of gemcitabine-resistant
pancreatic cancer cells. Exp Cell Res. 336:119–129. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Calabretta S, Bielli P, Passacantilli I,
Pilozzi E, Fendrich V, Capurso G, Fave GD and Sette C: Modulation
of PKM alternative splicing by PTBP1 promotes gemcitabine
resistance in pancreatic cancer cells. Oncogene. 35:2031–2039.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dilruba S and Kalayda GV: Platinum-based
drugs: Past, present and future. Cancer Chemother Pharmacol.
77:1103–1124. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Belanger F, Fortier E, Dubé M, Lemay JF,
Buisson R, Masson JY, Elsherbiny A, Costantino S, Carmona E,
Mes-Masson AM, et al: Replication protein A availability during DNA
replication stress is a major determinant of cisplatin resistance
in ovarian cancer cells. Cancer Res. 78:5561–5573. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang X, Zhang F and Wu XR: Inhibition of
pyruvate kinase M2 markedly reduces chemoresistance of advanced
bladder cancer to cisplatin. Sci Rep. 7:459832017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Galanski M: Recent developments in the
field of anticancer platinum complexes. Recent Pat Anticancer Drug
Discov. 1:285–295. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Galluzzi L, Senovilla L, Vitale I, Michels
J, Martins I, Kepp O, Castedo M and Kroemer G: Molecular mechanisms
of cisplatin resistance. Oncogene. 31:1869–1883. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Wang Y, Hao F, Nan Y, Qu L, Na W, Jia C
and Chen X: PKM2 inhibitor shikonin overcomes the cisplatin
resistance in bladder cancer by inducing necroptosis. Int J Biol
Sci. 14:1883–1891. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li W, Qiu Y, Hao J, Zhao C, Deng X and Shu
G: Dauricine upregulates the chemosensitivity of hepatocellular
carcinoma cells: Role of repressing glycolysis via miR-199a:
HK2/PKM2 modulation. Food Chem Toxicol. 121:156–165. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Miya T, Kobayashi K, Hino M, Ando M,
Takeuchi S, Seike M, Kubota K and Gemma A; East Japan Chesters
Group, : Efficacy of triple antiemetic therapy (palonosetron,
dexamethasone, aprepitant) for chemotherapy-induced nausea and
vomiting in patients receiving carboplatin-based, moderately
emetogenic chemotherapy. Springerplus. 5:20802016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sève P and Dumontet C: Chemoresistance in
non-small cell lung cancer. Curr Med Chem Anticancer Agents.
5:73–88. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Liu Y, He C and Huang X: Metformin
partially reverses the carboplatin-resistance in NSCLC by
inhibiting glucose metabolism. Oncotarget. 8:75206–75216.
2017.PubMed/NCBI
|
|
84
|
Kelland L: The resurgence of
platinum-based cancer chemotherapy. Nat Rev Cancer. 7:573–584.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Graham J, Mushin M and Kirkpatrick P:
Oxaliplatin. Nat Rev Drug Discov. 3:11–12. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hsu HH, Chen MC, Baskaran R, Lin YM, Day
CH, Lin YJ, Tu CC, Vijaya Padma V, Kuo WW and Huang CY: Oxaliplatin
resistance in colorectal cancer cells is mediated via activation of
ABCG2 to alleviate ER stress induced apoptosis. J Cell Physiol.
233:5458–5467. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li
H, Wang X, Hu Y, Gu K, Chen X, et al: NFYB-induced high expression
of E2F1 contributes to oxaliplatin resistance in colorectal cancer
via the enhancement of CHK1 signaling. Cancer Lett. 415:58–72.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Lu WQ, Hu YY, Lin XP and Fan W: Knockdown
of PKM2 and GLS1 expression can significantly reverse
oxaliplatin-resistance in colorectal cancer cells. Oncotarget.
8:44171–44185. 2017.PubMed/NCBI
|
|
89
|
Ginés A, Bystrup S, Ruiz de Porras V,
Guardia C, Musulén E, Martínez-Cardús A, Manzano JL, Layos L, Abad
A and Martínez-Balibrea E: PKM2 subcellular localization is
involved in oxaliplatin resistance acquisition in HT29 human
colorectal cancer cell lines. PLoS One. 10:e01238302015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Russo A, Maiolino S, Pagliara V, Ungaro F,
Tatangelo F, Leone A, Scalia G, Budillon A, Quaglia F and Russo G:
Enhancement of 5-FU sensitivity by the proapoptotic rpL3 gene in
p53 null colon cancer cells through combined polymer nanoparticles.
Oncotarget. 7:79670–79687. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
He J, Xie G, Tong J, Peng Y, Huang H, Li
J, Wang N and Liang H: Overexpression of microRNA-122 re-sensitizes
5-FU-resistant colon cancer cells to 5-FU through the inhibition of
PKM2 in vitro and in vivo. Cell Biochem Biophys. 70:1343–1350.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hjerpe E, Egyhazi Brage S, Carlson J,
Frostvik Stolt M, Schedvins K, Johansson H, Shoshan M and
Avall-Lundqvist E: Metabolic markers GAPDH, PKM2, ATP5B and
BEC-index in advanced serous ovarian cancer. BMC Clin Pathol.
13:302013. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Pan C, Wang X, Shi K, Zheng Y, Li J, Chen
Y, Jin L and Pan Z: MiR-122 reverses the doxorubicin-resistance in
hepatocellular carcinoma cells through regulating the tumor
metabolism. PLoS One. 11:e01520902016. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Han TD, Shang DH and Tian Y: Docetaxel
enhances apoptosis and G2/M cell cycle arrest by suppressing
mitogen-activated protein kinase signaling in human renal clear
cell carcinoma. Genet Mol Res. 152016.doi:
10.4238/gmr.15017321.
|
|
95
|
Sim S, Bergh J, Hellström M, Hatschek T
and Xie H: Pharmacogenetic impact of docetaxel on neoadjuvant
treatment of breast cancer patients. Pharmacogenomics.
19:1259–1268. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
van Rossum AGJ, Kok M, van Werkhoven E,
Opdam M, Mandjes IAM, van Leeuwen-Stok AE, van Tinteren H, Imholz
ALT, Portielje JEA, Bos MMEM, et al: Adjuvant dose-dense
doxorubicin-cyclophosphamide versus
docetaxel-doxorubicin-cyclophosphamide for high-risk breast cancer:
First results of the randomised MATADOR trial (BOOG 2004-04). Eur J
Cancer. 102:40–48. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Sharma P, López-Tarruella S, García-Saenz
JA, Khan QJ, Gómez HL, Prat A, Moreno F, Jerez-Gilarranz Y,
Barnadas A, Picornell AC, et al: Pathological response and survival
in triple-negative breast cancer following neoadjuvant carboplatin
plus docetaxel. Clin Cancer Res. 24:5820–5829. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Hata A, Katakami N, Shimokawa M, Mitsudomi
T, Yamamoto N and Nakagawa K: Docetaxel Plus RAmucirumab with
primary prophylactic pegylated Granulocyte-ColONy stimulating
factor support for elderly patients with advanced Non-small-cell
lung cancer: A multicenter prospective single arm phase II Trial:
DRAGON study (WJOG9416L). Clin Lung Cancer. 19:e865–e869. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Tanimura K, Uchino J, Tamiya N, Kaneko Y,
Yamada T1, Yoshimura K and Takayama K: Treatment rationale and
design of the RAMNITA study: A phase II study of the efficacy of
docetaxel + ramucirumab for non-small cell lung cancer with brain
metastasis. Medicine (Baltimore). 97:e110842018. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Milbar N, Kates M, Chappidi MR, Pederzoli
F, Yoshida T, Sankin A, Pierorazio PM, Schoenberg MP and Bivalacqua
TJ: Oncological outcomes of sequential intravesical gemcitabine and
docetaxel in patients with Non-muscle invasive bladder cancer.
Bladder Cancer. 3:293–303. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Mortimer J, Zonder HB and Pal SK: Lessons
learned from the bevacizumab experience. Cancer Control.
19:309–316. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wong N, Ojo D, Yan J and Tang D: PKM2
contributes to cancer metabolism. Cancer Lett. 356:184–191. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Hsu MC and Hung WC: Pyruvate kinase M2
fuels multiple aspects of cancer cells: From cellular metabolism,
transcriptional regulation to extracellular signaling. Mol Cancer.
17:352018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Papadaki C, Sfakianaki M, Lagoudaki E,
Giagkas G, Ioannidis G, Trypaki M, Tsakalaki E, Voutsina A,
Koutsopoulos A, Mavroudis D, et al: PKM2 as a biomarker for
chemosensitivity to front-line platinum-based chemotherapy in
patients with metastatic non-small-cell lung cancer. Br J Cancer.
111:1757–1764. 2014. View Article : Google Scholar : PubMed/NCBI
|