|
1
|
Sosman JA: Patient education: Melanoma
treatment; advanced or metastatic melanoma (Beyond the Basics).
Atkins MB and Vora SR (eds). https://www.uptodate.com/contents/melanoma-treatment-advanced-or-metastatic-melanoma-beyond-the-basics
|
|
2
|
Azimi F, Scolyer RA, Rumcheva P, Moncrieff
M, Murali R, McCarthy SW, Saw RP and Thompson JF:
Tumor-infiltrating lymphocyte grade is an independent predictor of
sentinel lymph node status and survival in patients with cutaneous
melanoma. J Clin Oncol. 30:2678–2683. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Neagu M: The immune system: A hidden
treasure for biomarker discovery in cutaneous melanoma. Adv Clin
Chem. 58:89–140. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Mukherji B: Immunology of melanoma. Clin
Dermatol. 31:156–165. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dummer R, Hauschild A, Lindenblatt N,
Pentheroudakis G and Keilholz U: Cutaneous melanoma: ESMO clinical
practice guidelines for diagnosis, treatment and follow-up. Ann
Oncol. 26:126–132. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Turcu G, Nedelcu RI, Ion DA, Brînzea A,
Cioplea MD, Jilaveanu LB and Zurac SA: CEACAM1: Expression and role
in melanocyte transformation. Disease Markers. 2016:94063192016.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Coit DG, Thompson JA, Algazi A, Andtbacka
R, Bichakjian CK, Carson WE, Daniels GA, DiMaio D, Ernstoff M,
Fields RC, et al: Melanoma, Version 2.2016, NCCN Clinical Practice
Guidelines in Oncology. J Natl Compr Canc Netw. 14:450–473. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Nedelcu RI, Zurac SA, Brînzea A, Cioplea
MD, Turcu G, Popescu R and Ion DA: Morphological features of
melanocytic tumors with depigmented halo: review of the literature
and personal results. Rom J Morphol Embryol. 56:659–663.
2015.PubMed/NCBI
|
|
9
|
Clemente CG, Mihm Jr MC, Bufalino R,
Zurrida S, Collini P and Cascinelli N: Prognostic value of tumor
infiltrating lymphocytes in the vertical growth phase of primary
cutaneous melanoma. Cancer. 77:1303–1310. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Clark WH, Elder DE, Guerry D, Braitman LE,
Trock BJ, Schultz D, Synnestvedt M and Halpern AC: Model predicting
survival in stage I melanoma based on tumor progression. J Natl
Cancer Inst Dec. 81:1893–1904. 1989. View Article : Google Scholar
|
|
11
|
Lee N, Zakka LR, Mihm MC and Schatton T:
Tumour-infiltrating lymphocytes in melanoma prognosis and cancer
immunotherapy. Pathology. 48:177–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Busam KJ, Antonescu CR, Marghoob AA, Nehal
KS, Sachs DL, Shia J and Berwick M: Histologic classification of
tumor-infiltrating lymphocytes in primary cutaneous malignant
melanoma: A study of interobserver agreement. Am J Clin Pathol.
115:856–860. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Spatz A, Batist G and Eggermont AM: The
biology behind prognostic factors of cutaneous melanoma. Curr Opin
Oncol. 22:163–168. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Tuthill RJ, Unger JM, Liu PY, Flaherty LE
and Sondak VK: Risk assessment in localized primary cutaneous
melanoma: A southwest oncology group study evaluating nine factors
and a test of the Clark logistic regression prediction model. Am J
Clin Pathol. 118:504–511. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Elder DE, Guerry D, Vanhorn M, Hurwitz S,
Zehngebot L, Goldman LI, LaRossa D, Hamilton R, Bondi EE and Clark
WH Jr: The role of lymph node dissection for clinical stage I
malignant melanoma of intermediate thickness (1.51–3.99 mm).
Cancer. 56:413–418. 1985. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Hussein MR, Elsers DA, Fadel SA and Omar
AE: Immunohistological characterisation of tumour infiltrating
lymphocytes in melanocytic skin lesions. J Clin Pathol. 59:316–324.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Shurin MR, Shurin G V, Lokshin A and
Ferris RL: Intratumoral cytokines/chemokines/growth factors and
tumor infiltrating dendritic cells: friends or enemies? Cancer
Metast Rev. 25:333–356. 2006. View Article : Google Scholar
|
|
18
|
Mantovani A, Allavena P, Sica A and
Balkwill F: Cancer-related inflammation. Nature. 454:436–444. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Van Der Bruggen P, Zhang Y, Chaux P,
Stroobant V, Panichelli C, Schultz ES, Chapiro J, Van Den Eynde BJ,
Brasseur F and Boon T: Tumor-specific shared antigenic peptides
recognized by human T-cells. Immunol Rev. 188:51–64. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gerlinger M, Rowan AJ, Horswell S, Larkin
J, Endesfelder D, Gronroos E, Martinez P, Matthews N, Stewart A,
Tarpey P, et al: Intratumor heterogeneity and branched evolution
revealed by multiegion sequencing. N Engl J Med. 366:883–892. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Durrant L and Ramage J: Development of
cancer vaccines to activate cytotoxic T lymphocytes. Expert Opin
Biol Ther. 5:555–563. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ferrone S and Marincola FM: Loss of HLA
class I antigens by melanoma cells: molecular mechanisms,
functional significance and clinical relevance. Immunol Today.
16:487–494. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kageshita T, Hirai S, Ono T, Hicklin DJ
and Ferrone S: Downregulation of HLA class I antigen-processing
molecules in malignant melanoma. Am J Pathol. 154:745–754. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Al-Batran SE, Rafiyan MR, Atmaca A,
Neumann A, Karbach J, Bender A, Weidmann E, Altmannsberger HM,
Knuth A, et al: Intratumoral T-cell infiltrates and MHC class I
expression in patients with stage IV melanoma. Cancer Res.
65:3937–3941. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Clancy T and Hovig E: Profiling networks
of distinct immune-cells in tumors. BMC Bioinformatics. 17:1–15.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schiavoni G, Gabriele L and Mattei F: The
tumor microenvironment: a pitch for multiple players. Front Oncol.
3:2013.doi: 10.3389/fonc.2013.00090. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Tel J, Anguille S, Waterborg CEJ, Smits
EL, Figdor CG and de Vries IJM: Tumoricidal activity of human
dendritic cells. Trends Immunol. 35:38–46. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ladányi A: Prognostic and predictive
significance of immune cells infiltrating cutaneous melanoma.
Pigment Cell Melanoma Res. 28:490–500. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Vitale M, Cantoni C, Pietra G, Mingari MC
and Moretta L: Effect of tumor cells and tumor microenvironment on
NK-cell function. Eur J Immunol. 44:1582–1592. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Muenst S, Läubli H, Soysal SD, Zippelius
A, Tzankov A and Hoeller S: The immune system and cancer evasion
strategies: Therapeutic concepts. J Intern Med. 279:541–562. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Enk AH, Jonuleit H, Saloga J and Knop J:
Dendritic cells as mediators of tumor-induced tolerance in
metastatic melanoma. Int J Cancer. 73:309–316. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fainaru O, Almog N, Yung CW, Nakai K,
Montoya-Zavala M, Abdollahi A, D'Amato R and Ingber DE: Tumor
growth and angiogenesis are dependent on the presence of immature
dendritic cells. FASEB J. 24:1411–1418. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Da Cunha A, Michelin MA and Murta EF:
Pattern response of dendritic cells in the tumor microenvironment
and breast cancer. World J Clin Oncol. 5:495–502. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kobayashi M, Suzuki K, Yashi M, Yuzawa M,
Takayashiki N and Morita T: Tumor infiltrating dendritic cells
predict treatment response to immmunotherapy in patients with
metastatic renal cell carcinoma. Anticancer Res. 27:1137–1141.
2007.PubMed/NCBI
|
|
35
|
Simonetti O, Goteri G, Lucarini G, Rubini
C, Stramazzotti D, Lo Muzio L, Biagini D and Offidani A: In
melanoma changes of immature and mature dendritic cell expression
correlate with tumor thickness:an immunohistochemical study. Int J
Immunopathol Pharmacol. 20:325–333. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
El Marsafy S, Bagot M, Bensussan A and
Mauviel A: Dendritic cells in the skin-potential use for melanoma
treatment. Pigment Cell Melanoma Res. 22:30–41. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Lotze MT: Getting to the source: dendritic
cells as therapeutic reagents for the treatment of patients with
cancer. Ann Surg. 226:1–5. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Boddupalli CS, Bar N, Kadaveru K,
Krauthammer M, Pornputtapong N, Mai Z, Ariyan S, Narayan D, Kluger
H, Deng Y, et al: Interlesional diversity of T-cell receptors in
melanoma with immune checkpoints enriched in tissue-resident memory
T-cells. JCI Insight. 1:e889552016.doi: 10.1172/jci.insight.88955.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pedoeem A, Azoulay-Alfaguter I, Strazza M,
Silverman GJ and Mor A: Programmed death-1 pathway in cancer and
autoimmunity. Clin Immunol. 153:145–152. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ochsenbein AF, Klenerman P, Karrer U,
Ludewig B, Pericin M, Hengartner H and Zinkernagel RM: Immune
surveillance against a solid tumor fails because of immunological
ignorance. Proc Natl Acad Sci. 96:2233–2238. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Inman B, Frigola X, Dong H and Kwon E:
Costimulation, coinhibition and cancer. Curr Cancer Drug Targets.
7:15–30. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Mapara MY and Sykes M: Tolerance and
Cancer: Mechanisms of tumor evasion and strategies for breaking
tolerance. J Clin Oncol. 22:1136–1151. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ancuceanu R and Neagu M: Immune based
therapy for melanoma. Indian J Med Res. 143:135–144. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Munn DH and Mellor AL: Indoleamine
2,3-dioxygenase and tumor-induced tolerance. J Clin Invest.
117:1147–1154. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ochoa AC, Zea AH, Hernandez C and
Rodriguez PC: Arginase, prostaglandins, and myeloid-derived
suppressor cells in renal cell carcinoma. Clin Cancer Res.
13:721–726. 2007. View Article : Google Scholar
|
|
47
|
Becht E, Goc J, Germain C, Giraldo NA,
Dieu-Nosjean MC, Sautès-Fridman C and Fridman WH: Shaping of an
effective immune microenvironment to and by cancer cells. Cancer
Immunol Immunother. 63:991–997. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rosenberg S, Packard B, Aebersold P,
Solomon D, Topalian S, Toy S, Simon P, Lotze MT, Yang JC, Seipp CA,
et al: Use of tumor-infiltrating lymphocytes and interleukin-2 in
the immunotherapy of patients with metastatic melanoma. A
preliminary report. N Engl J Med. 319:1676–1680. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Cohen PJ, Lotze MT, Roberts JR, Rosenberg
SA and Jaffe ES: The immunopathology of sequential tumor biopsies
in patients treated with interleukin-2. Correlation of response
with T-cell infiltration and HLA-DR expression. Am J Pathol.
129:208–216. 1987.PubMed/NCBI
|
|
50
|
Savage P, Leventhal DS and Malchow S:
Shaping the repertoire of tumor-infiltrating effector and
regulatory T-cells. Immunol Rev. 259:245–258. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Rosenberg SA and Restifo NP: Adoptive cell
transfer as personalized immunotherapy for human cancer. Science.
348:62–68. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Fridman WH, Remark R, Goc J, Giraldo NA,
Becht E, Hammond SA, Damotte D, Dieu-Nosjean MC and Sautès-Fridman
C: The immune microenvironment: A major player in human cancers.
Int Arch Allergy Immunol. 164:13–26. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Schlapbach C, Shafighi M, Kiermeir D,
Hüsler R and Hunger RE: High expression of FOXP3 in primary
melanoma is associated with tumour progression. Br J Dermatol.
170:103–109. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Giraldo NA, Becht E, Remark R, Damotte D,
Sautès-Fridman C and Fridman WH: The immune contexture of primary
and metastatic human tumours. Curr Opin Immunol. 27:8–15. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kiraz Y, Baran Y and Nalbant A: T-cells in
tumor microenvironment. Tumor Biol. 37:39–45. 2016. View Article : Google Scholar
|
|
56
|
Yang ZZ and Ansell SM: The tumor
microenvironment in follicular lymphoma. Clin Adv Hematol Oncol.
10:810–818. 2012.PubMed/NCBI
|
|
57
|
Hung K, Hayashi R, Lafond-Walker A,
Lowenstein C, Pardoll D and Levitsky H: The central role of
CD4+ T-cells in the antitumor immune response. J Exp
Med. 188:2357–2368. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pereira MC, Oliveira DT and Kowalski LP:
The role of eosinophils and eosinophil cationic protein in oral
cancer (Review). Arch Oral Biol. 56:353–358. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fridman WH, Pagès F, Sautès-Fridman C and
Galon J: The immune contexture in human tumours: impact on clinical
outcome. Nat Rev Cancer. 12:298–306. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Bailey SR, Nelson MH, Himes RA, Li Z,
Mehrotra S and Paulos CM: Th17 cells in cancer: the ultimate
identity crisis. Front Immunol. 5:1664–3224. 2014. View Article : Google Scholar
|
|
61
|
Nishikawa H and Sakaguchi S: Regulatory
T-cells in cancer immunotherapy. Curr Opin Immunol. 27:1–7. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jiang X and Shapiro DJ: The immune system
and inflammation in breast cancer. Mol Cell Endocrinol.
382:673–682. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Miracco C, Mourmouras V, Biagioli M,
Rubegni P, Mannucci S, Monciatti I, Cosci E, Tosi P and Luzi P:
Utility of tumour-infiltrating CD25+FOXP3+
regulatory T-cell evaluation in predicting local recurrence in
vertical growth phase cutaneous melanoma. Oncol Rep. 18:1115–1122.
2007.PubMed/NCBI
|
|
64
|
Gambichler T, Bindsteiner M, Höxtermann S,
Terras S and Kreuter A: Circulating CD4+ CD25(high)
CD127(low) regulatory T-cells are an independent predictor of
advanced melanoma. Pigment Cell Melanoma Res. 26:280–283. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ma MW, Medicherla RC, Qian M, Vega-Saenz
de Miera E, Friedman EB, Berman RS, Shapiro RL, Pavlick AC, Ott PA,
Bhardwaj N, et al: Immune response in melanoma: an in-depth
analysis of the primary tumor and corresponding sentinel lymph
node. Mod Pathol. 25:1000–1010. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Hillen F, Baeten CIM, Van De Winkel A,
Creytens D, Van Der Schaft DWJ, Winnepenninckx V and Griffioen AW:
Leukocyte infiltration and tumor cell plasticity are parameters of
aggressiveness in primary cutaneous melanoma. Cancer Immunol
Immunother. 57:97–106. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gooden MJM, De Bock GH, Leffers N, Daemen
T and Nijman HW: The prognostic influence of tumour-infiltrating
lymphocytes in cancer: A systematic review with meta-analysis. Br J
Cancer. 105:93–103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Twyman-Saint Victor C, Rech AJ, Maity A,
Rengan R, Pauken KE, Stelekati E, Benci JL, Xu B, Dada H, Odorizzi
PM, et al: Radiation and dual checkpoint blockade activate
non-redundant immune mechanisms in cancer. Nature. 520:373–377.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bruno A, Ferlazzo G, Albini A and Noonan
DM: A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated
natural killer cells in tumor progression and angiogenesis. J Natl
Cancer Inst. 106:dju2002014. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Sungur CM and Murphy WJ: Positive and
negative regulation by NK cells in cancer. Crit Rev Oncog.
19:57–66. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Balsamo M, Vermi W, Parodi M, Pietra G,
Manzini C, Queirolo P, Lonardi S, Augugliaro R, Moretta A,
Facchetti F, et al: Melanoma cells become resistant to
NK-cell-mediated killing when exposed to NK-cell numbers compatible
with NK-cell infiltration in the tumor. Eur J Immunol.
42:1833–1842. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ladányi A, Kiss J, Mohos A, Somlai B,
Liszkay G, Gilde K, Fejös Z, Gaudi I, Dobos J and Tímár J:
Prognostic impact of B-cell density in cutaneous melanoma. Cancer
Immunol Immunother. 60:1729–1738. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Bosisio FM, Wilmott JS, Volders N, Mercier
M, Wouters J, Stas M, Blokx WA, Massi D, Thompson JF, Scolyer RA,
et al: Plasma cells in primary melanoma. Prognostic significance
and possible role of IgA. Mod Pathol. 29:347–358. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Allavena P, Sica A, Solinas G, Porta C and
Mantovani A: The inflammatory micro-environment in tumor
progression: The role of tumor-associated macrophages. Crit Rev
Oncol/Hematol. 66:1–9. 2008. View Article : Google Scholar
|
|
75
|
Sica A, Schioppa T, Mantovani A and
Allavena P: Tumour-associated macrophages are a distinct M2
polarised population promoting tumour progression: Potential
targets of anti-cancer therapy. Eur J Cancer. 42:717–727. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Storr SJ, Safuan S, Mitra A, Elliott F,
Walker C, Vasko MJ, Ho B, Cook M, Mohammed RA, Patel PM, et al:
Objective assessment of blood and lymphatic vessel invasion and
association with macrophage infiltration in cutaneous melanoma. Mod
Pathol. 25:493–504. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mittal D, Gubin MM, Schreiber RD and Smyth
MJ: New insights into cancer immunoediting and its three component
phases - elimination, equilibrium and escape. Curr Opin Immunol.
27:16–25. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Koebel CM, Vermi W, Swann JB, Zerafa N,
Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity
maintains occult cancer in an equilibrium state. Nature.
450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Khong HT, Wang QJ and Rosenberg SA:
Identification of multiple antigens recognized by
tumor-infiltrating lymphocytes from a single patient: tumor escape
by antigen loss and loss of MHC expression. J Immunother.
27:184–190. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Maeurer MJ, Gollin SM, Martin D, Swaney W,
Bryant J, Castelli C, Robbins P, Parmiani G, Storkus WJ and Lotze
MT: Tumor escape from immune recognition: lethal recurrent melanoma
in a patient associated with downregulation of the peptide
transporter protein TAP-1 and loss of expression of the
immunodominant MART-1/Melan-A antigen. J Clin Invest. 98:1633–1641.
1996. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wherry EJ: T-cell exhaustion. Nat Immunol.
12:492–499. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Schatton T, Schütte U, Frank NY, Zhan Q,
Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF and
Frank MH: Modulation of T-cell activation by malignant melanoma
initiating cells. Cancer Res. 70:697–708. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Solana R, Casado JG, Delgado E, DelaRosa
O, Marín J, Durán E, Pawelec G and Tarazona R: Lymphocyte
activation in response to melanoma: interaction of NK-associated
receptors and their ligands. Cancer Immunol Immunother. 56:101–109.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Jandus C, Bioley G, Speiser DE and Romero
P: Selective accumulation of differentiated FOXP3+
CD4+ T-cells in metastatic tumor lesions from melanoma
patients compared to peripheral blood. Cancer Immunol Immunother.
57:1795–1805. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Gorelik L and Flavell RA: Immune-mediated
eradication of tumors through the blockade of transforming growth
factor-β signaling in T-cells. Nat Med. 7:1118–1122. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Nicolaou A, Estdale SE, Tsatmali M,
Herrero DP and Thody AJ: Prostaglandin production by melanocytic
cells and the effect of α-melanocyte stimulating hormone. FEBS
Lett. 570:223–226. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hirano F, Kaneko K, Tamura H, Dong H, Wang
S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, et al: Blockade of
B7-H1 and PD-1 by monoclonal antibodies potentiates cancer
therapeutic immunity. Cancer Res. 65:1089–1096. 2005.PubMed/NCBI
|