Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
May-2020 Volume 19 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2020 Volume 19 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells

  • Authors:
    • Zheng‑Yang Chen
    • Nan Jiang
    • Song Guo
    • Bin‑Bin Li
    • Jia‑Qi Yang
    • Shao‑Bin Chai
    • Hong‑Feng Yan
    • Pei‑Ming Sun
    • Tao Zhang
    • Hong‑Wei Sun
    • He‑Ming Yang
    • Jin‑Lian Zhou
    • Yan Cui
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, The People's Liberation Army 306th Hospital of Peking University Teaching Hospital, Beijing 100101, P.R. China, Department of General Surgery, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China, Department of Pathology, The People's Liberation Army 306th Hospital, Beijing 100101, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3439-3450
    |
    Published online on: March 10, 2020
       https://doi.org/10.3892/ol.2020.11451
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The understanding into the pathogenesis and treatment of gastric cancer has improved in recent years; however, a number of limitations have delayed the development of effective treatment. Cancer cells can undergo glycolysis and inhibit oxidative phosphorylation in the presence of oxygen (Warburg effect). Previous studies have demonstrated that a rotary cell culture system (RCCS) can induce glycolytic metabolism. In addition, the potential of regulating cancer cells by targeting their metabolites has led to the rapid development of metabolomics. In the present study, human HGC‑27 gastric cancer cells were cultured in a RCCS bioreactor, simulating weightlessness. Subsequently, liquid chromatography‑mass spectrometry was used to examine the effects of simulated microgravity (SMG) on the metabolism of HGC‑27 cells. A total of 67 differentially regulated metabolites were identified, including upregulated and downregulated metabolites. Compared with the normal gravity group, phosphatidyl ethanolamine, phosphatidyl choline, arachidonic acid and sphinganine were significantly upregulated in SMG conditions, whereas sphingomyelin, phosphatidyl serine, phosphatidic acid, L‑proline, creatine, pantothenic acid, oxidized glutathione, adenosine diphosphate and adenosine triphosphate were significantly downregulated. The Human Metabolome Database compound analysis revealed that lipids and lipid‑like metabolites were primarily affected in an SMG environment in the present study. Overall, the findings of the present study may aid our understanding of gastric cancer by identifying the underlying mechanisms of metabolism of the disease under SMG.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Fedotov AA, Akulov SA and Akulova AS: Alterations in cardiovascular system under artificially simulated microgravity: Preliminary study. Conf Proc IEEE Eng Med Biol Soc. 2016:204–206. 2016.PubMed/NCBI

2 

Atomi Y: Gravitational Effects on human physiology. Subcell Biochem. 72:627–59. 2015. View Article : Google Scholar : PubMed/NCBI

3 

Hughes-Fulford M: Changes in gene expression and signal transduction in microgravity. J Gravit Physiol. 8:P1–4. 2001.PubMed/NCBI

4 

Ulbrich C, Wehland M, Pietsch J, Aleshcheva G, Wise P, van Loon J, Magnusson N, Infanger M, Grosse J, Eilles C, et al: The impact of simulated and real microgravity on bone cells and mesenchymal stem cells. Biomed Res Int. 2014:9285072014. View Article : Google Scholar : PubMed/NCBI

5 

Riwaldt S, Bauer J, Wehland M, Slumstrup L, Kopp S, Warnke E, Dittrich A, Magnusson NE, Pietsch J, Corydon TJ, et al: Pathways regulating spheroid formation of human follicular thyroid cancer cells under simulated microgravity conditions: A genetic approach. Int J Mol Sci. 17:5282016. View Article : Google Scholar : PubMed/NCBI

6 

Svejgaard B, Wehland M, Ma X, Kopp S, Sahana J, Warnke E, Aleshcheva G, Hemmersbach R, Hauslage J, Grosse J, et al: Common effects on cancer cells exerted by a randompositioning machine and a 2D clinostat. PLoS One. 10:e01351572015. View Article : Google Scholar : PubMed/NCBI

7 

Sahana J, Nassef MZ, Wehland M, Kopp S, Krüger M, Corydon TJ, Infanger M, Bauer J and Grimm D: Decreased E-cadherin in MCF-7 human breast cancer cells forming multicellular spheroids exposed to simulated microgravity. Proteomics. 18:e18000152018. View Article : Google Scholar : PubMed/NCBI

8 

Vidyasekar P, Shyamsunder P, Arun R, Santhakumar R, Kapadia NK, Kumar R and Verma RS: Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and MicroRNA gene networks. PLoS One. 10:e01359582015. View Article : Google Scholar : PubMed/NCBI

9 

Dietz C, Infanger M, Romswinkel A, Strube F and Kraus A: Apoptosis induction and alteration of cell adherence in human lung cancer cells under simulated microgravity. Int J Mol Sci. 20(pii): E36012019. View Article : Google Scholar : PubMed/NCBI

10 

Kim YJ, Jeong AJ, Kim M, Lee C, Ye SK and Kim S: Time-averaged simulated microgravity (taSMG) inhibits proliferation of lymphoma cells, L-540 and HDLM-2, using a 3D clinostat. Biomed Eng Online. 16:482017. View Article : Google Scholar : PubMed/NCBI

11 

Warburg O: On respiratory impairment in cancer cells. Science. 124:269–272. 1956.PubMed/NCBI

12 

Nath S and Villadsen J: Oxidative phosphorylation revisited. Biotechnol Bioeng. 112:429–437. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–74. 2011. View Article : Google Scholar : PubMed/NCBI

14 

Hu JD, Tang HQ, Zhang Q, Fan J, Hong J, Gu JZ and Chen JL: Prediction of gastric cancer metastasis through urinary metabolomics investigation using GC/MS. World J Gastroenterol. 17:727–734. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Chen JL, Tang HQ, Hu JD, Fan J, Hong J and Gu JZ: Metabolomics of gastric cancer metastasis detected by gas chromatography and mass spectrometry. World J Gastroenterol. 16:5874–5880. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis. Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Koukourakis MI, Pitiakoudis M, Giatromanolaki A, Tsarouha A, Polychronidis A, Sivridis E and Simopoulos C: Oxygen and glucose consumption in gastrointestinal adenocarcinomas: Correlation with markers of hypoxia, acidity and anaerobic glycolysis. Cancer Sci. 97:1056–1060. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Pedersen PL, Mathupala S, Rempel A, Geschwind JF and Ko YH: A key player in the growth and survival of many cancers and an ideal prospect for therapeutic intervention. Biochim Biophys Acta. 1555:14–20. 2002. View Article : Google Scholar : PubMed/NCBI

19 

Tech K, Tikunov AP, Farooq H, Morrissy AS, Meidinger J, Fish T, Green SC, Liu H, Li Y, Mungall AJ, et al: Pyruvate kinase inhibits proliferation during postnatal cerebellar neurogenesis and suppresses medulloblastoma formation. Cancer Res. 77:3217–3230. 2017. View Article : Google Scholar : PubMed/NCBI

20 

An J, Zhang Y, He J, Zang Z, Zhou Z, Pei X, Zheng X, Zhang W, Yang H and Li S: Lactate dehydrogenase A promotes the invasion and proliferation of pituitary adenoma. Sci Rep. 7:47342017. View Article : Google Scholar : PubMed/NCBI

21 

Israelsen WJ and Vander Heiden MG: Pyruvate kinase: Function, regulation and role in cancer. Semin Cell Dev Biol. 43:43–51. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Wu J, Hu L, Chen M, Cao W, Chen H and He T: Pyruvate kinase M2 overexpression and poor prognosis in solid tumors of digestive system: Evidence from 16 cohort studies. Onco Targets Ther. 9:4277–4288. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Jové M, Collado R, Quiles JL, Ramírez-Tortosa MC, Sol J, Ruiz-Sanjuan M, Fernandez M, de la Torre Cabrera C, Ramírez-Tortosa C, Granados-Principal S, et al: A plasma metabolomic signature discloses human breast cancer. Oncotarget. 8:19522–19533. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Pandey R, Caflisch L, Lodi A1, Brenner AJ and Tiziani S: Metabolomic signature of brain cancer. Mol Carcinog. 56:2355–2371. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Navas-Carrillo D, Rodriguez JM, Montoro-García S and Orenes-Piñero E: High-resolution proteomics and metabolomics in thyroid cancer: Deciphering novel biomarkers. Crit Rev Clin Lab Sci. 54:446–457. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Chen L, Yang X, Cui X, Jiang MM, Gui Y, Zhang YN and Luo XD: Adrenomedullin is a key protein mediating rotary cell culture system that induces the effects of simulated microgravity on human breast cancer Cells. Microgravity Sci Technol. 27:417–426. 2015. View Article : Google Scholar

27 

Michaletti A, Gioia M, Tarantino U and Zolla L: Effects of microgravity on osteoblast mitochondria: A proteomic and metabolomics profile. Sci Rep. 7:153762017. View Article : Google Scholar : PubMed/NCBI

28 

Morabito C, Steimberg N, Mazzoleni G, Guarnieri S, Fanò-Illic G and Mariggiò MA: RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures. Biomed Res Int. 2015:7542832015. View Article : Google Scholar : PubMed/NCBI

29 

Longo N, Frigeni M and Pasquali M: Carnitine transport and fatty acid oxidation. Biochim Biophys Acta. 1863:2422–2435. 2016. View Article : Google Scholar : PubMed/NCBI

30 

Pietsch J, Ma X, Wehland M, Aleshcheva G, Schwarzwälder A, Segerer J, Birlem M, Horn A, Bauer J, Infanger M and Grimm D: Spheroid formation of human thyroid cancer cells in an automated culturing system during the Shenzhou-8 Space mission. Biomaterials. 34:7694–705. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Riwaldt S, Pietsch J, Sickmann A, Bauer J, Braun M, Segerer J, Schwarzwälder A, Aleshcheva G, Corydon TJ, Infanger M and Grimm D: Identification of proteins involved in inhibition of spheroid formation under microgravity. Proteomics. 15:2945–2952. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Arun RP, Sivanesan D, Vidyasekar P and Verma RS: PTEN/FOXO3/AKT pathway regulates cell death and mediates morphogenetic differentiation of Colorectal Cancer Cells under Simulated Microgravity. Sci Rep. 7:59522017. View Article : Google Scholar : PubMed/NCBI

33 

Kopp S, Sahana J, Islam T, Petersen AG, Bauer J, Corydon TJ, Schulz H, Saar K, Huebner N, Slumstrup L, et al: The role of NFκB in spheroid formation of human breast cancer cells cultured on the random positioning machine. Sci Rep. 8:9212018. View Article : Google Scholar : PubMed/NCBI

34 

Chen ZY, Guo S, Li BB, Jiang N, Li A, Yan HF, Yang HM, Zhou JL, Li CL and Cui Y: Effect of weightlessness on the 3D structure formation and physiologic function of human cancer cells. Biomed Res Int. 2019:48940832019.PubMed/NCBI

35 

Marín de Mas I, Aguilar E, Jayaraman A, Polat IH, Martín-Bernabé A, Bharat R, Foguet C, Milà E, Papp B, Centelles JJ and Cascante M: Cancer cell metabolism as new targets for novel designed therapies. Future Med Chem. 6:1791–1810. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Zhu M, Jin XW, Wu BY, Nie JL and Li YH: Effects of simulated weightlessness on cellular morphology and biological characteristics of cell lines SGC-7901 and HFE-145. Genet Mol Res. 13:6060–6069. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Espinosa-Jeffrey A, Nguyen K, Kumar S, Toshimasa O, Hirose R, Reue K, Vergnes L, Kinchen J and Vellis J: Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism. J Neurosci Res. 94:1434–1450. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Akagi T and Kimoto T: Human cell line (HGC-27) derived from the metastatic lymph node of gastric cancer. Acta Med Okayama. 30:215–219. 1976.PubMed/NCBI

39 

Kawakami H, Zaanan A and Sinicrope FA: Microsatellite instability testing and its role in the management of colorectal cancer. Curr Treat Options Oncol. 16:302015. View Article : Google Scholar : PubMed/NCBI

40 

Zalba S and Ten Hagen TL: Cell membrane modulation as adjuvant in cancer therapy. Cancer Treat Rev. 52:48–57. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ and Choi HK: Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget. 7:67111–67128. 2016.PubMed/NCBI

42 

Elvas F, Stroobants S and Wyffels L: Phosphatidylethanolamine targeting for cell death imaging in early treatment response evaluation and disease diagnosis. Apoptosis. 22:971–987. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Iorio E, Ricci A, Bagnoli M, Pisanu ME, Castellano G, Di Vito M, Venturini E, Glunde K, Bhujwalla ZM, Mezzanzanica D, et al: Activation of phosphatidylcholine cycle enzymes in human epithelial ovarian cancer cells. Cancer Res. 70:2126–2135. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Grimm D, Bauer J, Kossmehl P, Shakibaei M, Schöberger J, Pickenhahn H, Schulze-Tanzil G, Vetter R, Eilles C, Paul M and Cogoli A: Simulated microgravity alters differentiation and increases apoptosis in human follicular thyroid carcinoma cells. FASEB J. 16:604–606. 2002. View Article : Google Scholar : PubMed/NCBI

45 

Kossmehl P, Shakibaei M, Cogoli A, Infanger M, Curcio F, Schönberger J, Eilles C, Bauer J, Pickenhahn H, Schulze-Tanzil G, et al: Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology. 144:4172–4179. 2003. View Article : Google Scholar : PubMed/NCBI

46 

Masiello MG, Cucina A, Proietti S, Palombo A, Coluccia P, D'Anselmi F, Dinicola S, Pasqualato A, Morini V and Bizzarri M: Phenotypic switch induced by simulated microgravity on MDA-MB-231 breast cancer cells. Biomed Res Int. 2014:6524342014. View Article : Google Scholar : PubMed/NCBI

47 

Zhao J, Ma H, Wu L, Cao L, Yang Q, Dong H, Wang Z, Ma J and Li Z: The influence of simulated microgravity on proliferation and apoptosis in U251 glioma cells. In Vitro Cell Dev Biol Anim. 53:744–751. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Paulick MG and Bertozzi CR: The glycosylphosphatidylinositol anchor: a complex membrane-anchoring structure for protein. Biochemistry. 47:6991–7000. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Ferguson MA, Homans SW, Dwek RA and Rademacher TW: Glycosyl-phosphatidylinositol moiety that anchors Trypanosoma brucei variant surface glycoprotein to the membrane. Science. 239:753–759. 1988. View Article : Google Scholar : PubMed/NCBI

50 

Ferguson MA: The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci. 112:2799–2809. 1999.PubMed/NCBI

51 

Tsai YH, Liu X and Seeberger PH: Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl. 51:11438–11456. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Chang D, Xu H, Guo Y, Jiang X, Liu Y, Li K, Pan C, Yuan M, Wang J, Li T and Liu C: Simulated microgravity alters the metastatic potential of a human lung adenocarcinoma cell line. In Vitro Cell Dev Biol Anim. 49:170–177. 2019. View Article : Google Scholar

53 

Qian A, Zhang W, Xie L, Weng Y, Yang P, Wang Z, Hu L, Xu HY, Tian ZC and Shang P: Simulated weightlessness alters biological characteristics of human breast cancer cell line MCF-7. Acta Astronautica. 63:947–958. 2008. View Article : Google Scholar

54 

Peng W, Tan S, Xu Y, Wang L, Qiu D, Cheng C, Lin Y, Liu C, Li Z, Li Y, et al: LC-MS/MS metabolome analysis detects the changes in the lipid metabolic profiles of dMMR and pMMR cells. Oncol Rep. 40:1026–1034. 2018.PubMed/NCBI

55 

Toshima K, Nagafuku M, Okazaki T, Kobayashi T and Inokuchi JI: Plasma membrane sphingomyelin modulates thymocyte development by inhibiting TCR-induced apoptosis. Int Immunol. 31:211–223. 2019. View Article : Google Scholar : PubMed/NCBI

56 

Hogan PG: Sphingomyelin, ORAI1 channels, and cellular Ca2+ signaling. J Gen Physiol. 146:195–200. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Matanes F, Twal WO and Hammad SM: Sphingolipids as biomarkers of disease. Adv Exp Med Biol. 1159:109–138. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Kohama T, Olivera A, Edsall L, Nagiec MM, Dickson R and Spiegel S: Molecular cloning and functional characterization of murine sphingosine kinase. J Biol Chem. 273:23722–23728. 1998. View Article : Google Scholar : PubMed/NCBI

59 

Li J, Gray BD, Pak KY and Ng CK: Targeting phosphatidylethanolamine and phosphatidylserine for imaging apoptosis in cancer. Nucl Med Biol. 78:23–30. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Andrieu-Abadie N and Levade T: Sphingomyelin hydrolysis during apoptosis. Biochim Biophys Acta. 1585:126–134. 2002. View Article : Google Scholar : PubMed/NCBI

61 

van der Hoeven D, Cho KJ, Zhou Y, Ma X, Chen W, Naji A, Montufar-Solis D, Zuo Y, Kovar SE, Levental KR, et al: Sphingomyelin metabolism is a regulator of K-Ras function. Mol Cell Biol. 38(pii): e00373–17. 2018.PubMed/NCBI

62 

Fernández-Medarde A and Santos E: Ras in cancer and developmental diseases. Genes Cancer. 2:344–358. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Cacev T, Radosević S, Spaventi R, Pavelić K and Kapitanović S: NF1 gene loss of heterozygosity and expression analysis in sporadic colon cancer. Gut. 54:1129–1135. 2005. View Article : Google Scholar : PubMed/NCBI

64 

Dhomen N and Marais R: New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 17:31–39. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Khoukaz T: Administration of anti-EGFR therapy: A practical review. Semin Oncol Nurs. 22:20–27. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Baek MO, Ahn CB, Cho HJ, Choi JY, Son KH and Yoon MS: Simulated microgravity inhibits C2C12 myogenesis via phospholipase D2-induced Akt/FOXO1 regulation. Sci Rep. 9:149102019. View Article : Google Scholar : PubMed/NCBI

67 

Wang Z, Zhang F, He J, Wu P, Tay LWR, Cai M, Nian W, Weng Y, Qin L, Chang JT, et al: Binding of PLD2-generated phosphatidic acid to KIF5B promotes MT1-MMP surface trafficking and lung metastasis of mouse breast cancer cells. Dev Cell. 43:186–197. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Zeiller C, Mebarek S, Jaafar R, Pirola L, Lagarde M, Prigent AF and Némoz G: Phospholipase D2 regulates endothelial permeability through cytoskeleton reorganization and occludin downregulation. Biochim Biophys Acta. 1793:1236–1249. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Ngo Thai Bich V, Hongu T, Miura Y, Katagiri N, Ohbayashi N, Yamashita-Kanemaru Y, Shibuya A, Funakoshi Y and Kanaho Y: Physiological function of phospholipase D2 in anti-tumor immunity: Regulation of CD8+ T lymphocyte proliferation. Sci Rep. 8:62832018. View Article : Google Scholar : PubMed/NCBI

70 

Kandori S, Kojima T, Matsuoka T, Yoshino T, Sugiyama A, Nakamura E, Shimazui T, Funakoshi Y, Kanaho Y and Nishiyama H: Phospholipase D2 promotes disease progression of renal cell carcinoma through the induction of angiogenin. Cancer Sci. 109:1865–1875. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Guo L, Cui C, Zhang K, Wang J, Wang Y, Lu Y, Chen K, Yuan J, Xiao G, Tang B, et al: Kindlin-2 links mechano-environment to proline synthesis and tumor growth. Nat Commun. 10:8452019. View Article : Google Scholar : PubMed/NCBI

72 

Phang JM, Donald SP, Pandhare J and Liu Y: The metabolism of proline, a stress substrate, modulates carcinogenic pathways. Amino Acids. 35:681–690. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Liu W, Wang X, Liu Z, Wang Y, Yin B, Yu P, Duan X, Liao Z, Chen Y, Liu C, et al: SGK1 inhibition induces autophagy-dependent apoptosis via the mTOR-Foxo3a pathway. Br J Cancer. 117:1139–1153. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Wallimann T, Tokarska-Schlattner M and Schlattner U: The creatine kinase system and pleiotropic effects of creatine. Amino Acids. 40:1271–1296. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Campos-Ferraz PL, Gualano B, das Neves W, Andrade IT, Hangai I, Pereira RT, Bezerra RN, Deminice R, Seelaender M and Lancha AH: Exploratory studies of the potential anti-cancer effects of creatine. Amino Acids. 48:1993–2001. 2016. View Article : Google Scholar : PubMed/NCBI

76 

Martin KJ, Chen SF, Clark GM, Degen D, Wajima M, Von Hoff DD and Kaddurah-Daouk R: Evaluation of creatine analogs as a new class of anticancer agents using freshly explanted human tumor cells. J Natl Cancer Inst. 86:608–613. 1994. View Article : Google Scholar : PubMed/NCBI

77 

Miller EE, Evans AE and Cohn M: Inhibition of rate of tumor growth by creatine and cyclocreatine. Proc Natl Acad Sci USA. 90:3304–3308. 1993. View Article : Google Scholar : PubMed/NCBI

78 

Hoppeler H and Fluck M: Plasticity of skeletal muscle mitochondria: Structure and function. Med Sci Sports Exerc. 35:95–104. 2003. View Article : Google Scholar : PubMed/NCBI

79 

Adams SH, Hoppel CL, Lok KH, Zhao L, Wong SW, Minkler PE, Hwang DH, Newman JW and Garvey WT: Plasma acylcarnitine profiles suggest incomplete long-chain fatty acid beta-oxidation and altered tricarboxylic acid cycle activity in type 2 diabetic African-American women. J Nutr. 139:1073–1081. 2009. View Article : Google Scholar : PubMed/NCBI

80 

Chen WW, Freinkman E, Wang T, Birsoy K and Sabatini DM: Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell. 166:1324–1337. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Hutschenreuther A, Birkenmeier G, Bigl M, Krohn K and Birkemeyer C: Glycerophosphoglycerol, Beta-alanine, and pantothenic acid as metabolic companions of glycolytic activity and cell migration in breast cancer cell lines. Metabolites. 3:1084–1101. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Leonardi R and Jackowski S: Biosynthesis of pantothenic acid and coenzyme A. EcoSal Plus. 2:2007. View Article : Google Scholar : PubMed/NCBI

83 

Vurusaner B, Poli G and Basaga H: Tumor suppressor genes and ROS: Complex networks of interactions. Free Radic Biol Med. 52:7–18. 2012. View Article : Google Scholar : PubMed/NCBI

84 

Gomes AR, Brosens JJ and Lam EW: Resist or die: FOXO transcription factors determine the cellular response to chemotherapy. Cell Cycle. 7:3133–3136. 2008. View Article : Google Scholar : PubMed/NCBI

85 

Hou YQ, Yao Y, Bao YL, Song ZB, Yang C, Gao XL, Zhang WJ, Sun LG, Yu CL, Huang YX, et al: Juglanthraquinone C induces intracellular ROS increase and apoptosis by activating the Akt/Foxo signal pathway in HCC cells. Oxid Med Cell Longev. 2016:49416232016. View Article : Google Scholar : PubMed/NCBI

86 

Maiese K, Chong ZZ, Hou J and Shang YC: Erythropoietin and oxidative stress. Curr Neurovasc Res. 5:125–142. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Nakamura T and Sakamoto K: Forkhead transcription factor FOXO subfamily is essential for reactive oxygen species-induced apoptosis. Mol Cell Endocrinol. 281:47–55. 2008. View Article : Google Scholar : PubMed/NCBI

88 

Barthélémy C, Henderson CE and Pettmann B: Foxo3a induces motoneuron death through the Fas pathway in cooperation with JNK. BMC Neurosci. 5(48)2004.

89 

Maiese K, Chong ZZ, Li F and Shang YC: Erythropoietin: Elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol. 85:194–213. 2008. View Article : Google Scholar : PubMed/NCBI

90 

Nowak K, Killmer K, Gessner C and Lutz W: E2F-1 regulates expression of FOXO1 and FOXO3a. Biochim Biophys Acta. 1769:244–252. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Liu Y, Ao X, Ding W, Ponnusamy M, Wu W, Hao X, Yu W, Wang Y, Li P and Wang J: Critical role of FOXO3a in carcinogenesis. Mol Cancer. 17:1042018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen ZY, Jiang N, Guo S, Li BB, Yang JQ, Chai SB, Yan HF, Sun PM, Zhang T, Sun HW, Sun HW, et al: Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells. Oncol Lett 19: 3439-3450, 2020.
APA
Chen, Z., Jiang, N., Guo, S., Li, B., Yang, J., Chai, S. ... Cui, Y. (2020). Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells. Oncology Letters, 19, 3439-3450. https://doi.org/10.3892/ol.2020.11451
MLA
Chen, Z., Jiang, N., Guo, S., Li, B., Yang, J., Chai, S., Yan, H., Sun, P., Zhang, T., Sun, H., Yang, H., Zhou, J., Cui, Y."Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells". Oncology Letters 19.5 (2020): 3439-3450.
Chicago
Chen, Z., Jiang, N., Guo, S., Li, B., Yang, J., Chai, S., Yan, H., Sun, P., Zhang, T., Sun, H., Yang, H., Zhou, J., Cui, Y."Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells". Oncology Letters 19, no. 5 (2020): 3439-3450. https://doi.org/10.3892/ol.2020.11451
Copy and paste a formatted citation
x
Spandidos Publications style
Chen ZY, Jiang N, Guo S, Li BB, Yang JQ, Chai SB, Yan HF, Sun PM, Zhang T, Sun HW, Sun HW, et al: Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells. Oncol Lett 19: 3439-3450, 2020.
APA
Chen, Z., Jiang, N., Guo, S., Li, B., Yang, J., Chai, S. ... Cui, Y. (2020). Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells. Oncology Letters, 19, 3439-3450. https://doi.org/10.3892/ol.2020.11451
MLA
Chen, Z., Jiang, N., Guo, S., Li, B., Yang, J., Chai, S., Yan, H., Sun, P., Zhang, T., Sun, H., Yang, H., Zhou, J., Cui, Y."Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells". Oncology Letters 19.5 (2020): 3439-3450.
Chicago
Chen, Z., Jiang, N., Guo, S., Li, B., Yang, J., Chai, S., Yan, H., Sun, P., Zhang, T., Sun, H., Yang, H., Zhou, J., Cui, Y."Effect of simulated microgravity on metabolism of HGC‑27 gastric cancer cells". Oncology Letters 19, no. 5 (2020): 3439-3450. https://doi.org/10.3892/ol.2020.11451
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team