|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Calvayrac O, Pradines A, Pons E, Mazieres
J and Guibert N: Molecular biomarkers for lung adenocarcinoma. Eur
Respir J. 49:16017342017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Hyman DM, Puzanov I, Subbiah V, Faris JE,
Chau I, Blay JY, Wolf J, Raje NS, Diamond EL, Hollebecque A, et al:
Vemurafenib in multiple nonmelanoma cancers with BRAF V600
mutations. N Engl J Med. 373:726–736. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Pao W, Miller V, Zakowski M, Doherty J,
Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al:
EGF receptor gene mutations are common in lung cancers from ‘never
smokers’ and are associated with sensitivity of tumors to gefitinib
and erlotinib. Proc Natl Acad Sci USA. 101:13306–13311. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Walter AO, Sjin RT, Haringsma HJ, Ohashi
K, Sun J, Lee K, Dubrovskiy A, Labenski M, Zhu Z, Wang Z, et al:
Discovery of a mutant-selective covalent inhibitor of EGFR that
overcomes T790M-mediated resistance in NSCLC. Cancer Discov.
3:1404–1415. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dugay F, Llamas-Gutierrez F, Gournay M,
Medane S, Mazet F, Chiforeanu DC, Becker E, Lamy R, Léna H,
Rioux-Leclercq N, et al: Clinicopathological characteristics of
ROS1- and RET-rearranged NSCLC in caucasian patients. Data from a
cohort of 713 non-squamous NSCLC lacking
KRAS/EGFR/HER2/BRAF/PIK3CA/ALK alterations. Oncotarget.
8:53336–53351. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Doseeva V, Colpitts T, Gao G, Woodcock J
and Knezevic V: Performance of a multiplexed dual analyte
immunoassay for the early detection of non-small cell lung cancer.
J Transl Med. 13:552015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Plaks V, Koopman CD and Werb Z: Cancer.
Circulating tumor cells. Science. 341:1186–1188. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rocco G, Pennazza G, Santonico M, Longo F,
Rocco R, Crucitti P and Antonelli Incalzi R: Breathprinting and
early diagnosis of lung cancer. J Thorac Oncol. 13:883–894. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
van der Schee MP, Paff T, Brinkman P, van
Aalderen WMC, Haarman EG and Sterk PJ: Breathomics in lung disease.
Chest. 147:224–231. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Chang JE, Lee DS, Ban SW, Oh J, Jung MY,
Kim SH, Parka S, Persaude K and Jheon S: Analysis of volatile
organic compounds in exhaled breath for lung cancer diagnosis using
a sensor system. Sensors Actuators B Chem. 255:800–807. 2018.
View Article : Google Scholar
|
|
12
|
Chae YK and Oh MS: Detection of minimal
residual disease using ctDNA in lung cancer: Current evidence and
future directions. J Thorac Oncol. 14:16–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Hou JM, Krebs M, Ward T, Sloane R, Priest
L, Hughes A, Clack G, Ranson M, Blackhall F and Dive C: Circulating
tumor cells as a window on metastasis biology in lung cancer. Am J
Pathol. 178:989–996. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ma S, Wang W, Xia B, Zhang S, Yuan H,
Jiang H, Meng W, Zheng X and Wang X: Multiplexed serum biomarkers
for the detection of lung cancer. EBioMedicine. 11:210–218. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Haick H, Broza YY, Mochalski P, Ruzsanyi V
and Amann A: Assessment, origin, and implementation of breath
volatile cancer markers. Chem Soc Rev. 43:1423–1449. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Fiala C and Diamandis EP: Circulating
tumor DNA for personalized lung cancer monitoring. BMC Med.
15:1572017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Diehl F, Schmidt K, Choti MA, Romans K,
Goodman S, Li M, Thornton K, Agrawal N, Sokoll L, Szabo SA, et al:
Circulating mutant DNA to assess tumor dynamics. Nat Med.
14:985–990. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Abbosh C, Birkbak NJ, Wilson GA,
Jamal-Hanjani M, Constantin T, Salari R, Le Quesne J, Moore DA,
Veeriah S, Rosenthal R, et al: Corrigendum: Phylogenetic ctDNA
analysis depicts early-stage lung cancer evolution. Nature.
554:2642018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cohen JD, Li L, Wang Y, Thoburn C, Afsari
B, Danilova L, Douville C, Javed AA, Wong F, Mattox A, et al:
Detection and localization of surgically resectable cancers with a
multi-analyte blood test. Science. 359:926–930. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Ehrlich M: DNA hypomethylation in cancer
cells. Epigenomics. 1:239–259. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ooki A, Maleki Z, Tsay JJ, Goparaju C,
Brait M, Turaga N, Nam HS, Rom WN, Pass HI, Sidransky D, et al: A
Panel of novel detection and prognostic methylated DNA markers in
primary non-small cell lung cancer and serum DNA. Clin Cancer Res.
23:7141–7152. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wielscher M, Vierlinger K, Kegler U,
Ziesche R, Gsur A and Weinhausel A: Diagnostic performance of
plasma DNA methylation profiles in lung cancer, pulmonary fibrosis
and COPD. EBioMedicine. 2:929–936. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ilse P, Biesterfeld S, Pomjanski N, Wrobel
C and Schramm M: Analysis of SHOX2 methylation as an aid to
cytology in lung cancer diagnosis. Cancer Genomics Proteomics.
11:251–258. 2014.PubMed/NCBI
|
|
24
|
Zhao QT, Guo T, Wang HE, Zhang XP, Zhang
H, Wang ZK, Yuan Z and Duan GC: Diagnostic value of SHOX2 DNA
methylation in lung cancer: A meta-analysis. Onco Targets Ther.
8:3433–3439. 2015.PubMed/NCBI
|
|
25
|
Lu Y, Li S, Zhu S, Gong Y, Shi J and Xu L:
Methylated DNA/RNA in body fluids as biomarkers for lung cancer.
Biol Proced Online. 19:22017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hernandez HG, Tse MY, Pang SC, Arboleda H
and Forero DA: Optimizing methodologies for PCR-based DNA
methylation analysis. Biotechniques. 55:181–197. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Huang ZH, Hu Y, Hua D, Wu YY, Song MX and
Cheng ZH: Quantitative analysis of multiple methylated genes in
plasma for the diagnosis and prognosis of hepatocellular carcinoma.
Exp Mol Pathol. 91:702–707. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen B, Li H, Zeng X, Yang P, Liu X, Zhao
X and Liang S: Roles of microRNA on cancer cell metabolism. J
Transl Med. 10:2282012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Yanaihara N, Caplen N, Bowman E, Seike M,
Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et
al: Unique microRNA molecular profiles in lung cancer diagnosis and
prognosis. Cancer Cell. 9:189–198. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim H, Yang JM, Jin Y, Jheon S, Kim K, Lee
CT, Chung JH and Paik JH: MicroRNA expression profiles and
clinicopathological implications in lung adenocarcinoma according
to EGFR, KRAS, and ALK status. Oncotarget. 8:8484–8498.
2017.PubMed/NCBI
|
|
31
|
Li D, Wei Y, Wang D, Gao H and Liu K:
MicroRNA-26b suppresses the metastasis of non-small cell lung
cancer by targeting MIEN1 via NF-KB/MMP-9/VEGF pathways. Biochem
Biophys Res Commun. 472:465–470. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dacic S, Kelly L, Shuai Y and Nikiforova
MN: MiRNA expression profiling of lung adenocarcinomas: Correlation
with mutational status. Mod Pathol. 23:1577–1582. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lu S, Kong H, Hou Y, Ge D, Huang W, Ou J,
Yang D, Zhang L, Wu G, Song Y, et al: Two plasma microRNA panels
for diagnosis and subtype discrimination of lung cancer. Lung
Cancer. 123:44–51. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Leng Q, Lin Y and Jiang F, Lee CJ, Zhan M,
Fang H, Wang Y and Jiang F: A plasma miRNA signature for lung
cancer early detection. Oncotarget. 8:111902–111911. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Arab A, Karimipoor M, Irani S, Kiani A,
Zeinali S, Tafsiri E and Sheikhy K: Potential circulating miRNA
signature for early detection of NSCLC. Cancer Genet.
216-217:150–158. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Halvorsen AR, Bjaanaes M, LeBlanc M, Holm
AM, Bolstad N, Rubio L, Peñalver JC, Cervera J, Mojarrieta JC,
López-Guerrero JA, et al: A unique set of 6 circulating microRNAs
for early detection of non-small cell lung cancer. Oncotarget.
7:37250–37259. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ma J, Mannoor K, Gao L, Tan A, Guarnera
MA, Zhan M, Shetty A, Stass SA, Xing L and Jiang F:
Characterization of microRNA transcriptome in lung cancer by
next-generation deep sequencing. Mol Oncol. 8:1208–1219. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sozzi G, Boeri M, Rossi M, Verri C,
Suatoni P, Bravi F, Roz L, Conte D, Grassi M, Sverzellati N, et al:
Clinical utility of a plasma-based miRNA signature classifier
within computed tomography lung cancer screening: A correlative
MILD trial study. J Clin Oncol. 32:768–773. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Molina-Vila MA: Liquid biopsy in lung
cancer: Present and future. Transl Lung Cancer Res. 5:452–454.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Han MK, Oh YH, Kang J, Kim YP, Seo S, Kim
J, Park K and Kim HS: Protein profiling in human sera for
identification of potential lung cancer biomarkers using antibody
microarray. Proteomics. 9:5544–5552. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Nolen BM, Lomakin A, Marrangoni A,
Velikokhatnaya L, Prosser D and Lokshin AE: Urinary protein
biomarkers in the early detection of lung cancer. Cancer Prev Res
(Phila). 8:111–119. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Lopez-Sanchez LM, Jurado-Gamez B,
Feu-Collado N, Valverde A, Canas A, Fernandez-Rueda JL, Aranda E
and Rodríguez-Ariza A: Exhaled breath condensate biomarkers for the
early diagnosis of lung cancer using proteomics. Am J Physiol Lung
Cell Mol Physiol. 313:L664–L676. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Jung M, Kim SH, Lee YJ, Hong S, Kang YA,
Kim SK, Chang J, Rha SY, Kim JH, Kim DJ and Cho BC: Prognostic and
predictive value of CEA and CYFRA 21-1 levels in advanced non-small
cell lung cancer patients treated with gefitinib or erlotinib. Exp
Ther Med. 2:685–693. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yanagita K, Nagashio R, Jiang SX, Kuchitsu
Y, Hachimura K, Ichinoe M, Igawa S, Fukuda E, Goshima N, Satoh Y,
et al: Cytoskeleton-Associated protein 4 is a novel serodiagnostic
marker for lung cancer. Am J Pathol. 188:1328–1333. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu
X, Qian L, Zhang Y, Fan L, Cao CX and Xiao H: Systematic comparison
of exosomal proteomes from human saliva and serum for the detection
of lung cancer. Anal Chim Acta. 982:84–95. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Melo SA, Luecke LB, Kahlert C, Fernandez
AF, Gammon ST, Kaye J, LeBleu VS, Mittendorf EA, Weitz J, Rahbari
N, et al: Glypican-1 identifies cancer exosomes and detects early
pancreatic cancer. Nature. 523:177–182. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Chen IH, Xue L, Hsu CC, Paez JS, Pan L,
Andaluz H, Wendt MK, Iliuk AB, Zhu JK and Tao WA: Phosphoproteins
in extracellular vesicles as candidate markers for breast cancer.
Proc Natl Acad Sci USA. 114:3175–3180. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Jakobsen KR, Paulsen BS, Baek R, Varming
K, Sorensen BS and Jorgensen MM: Exosomal proteins as potential
diagnostic markers in advanced non-small cell lung carcinoma. J
Extracell Vesicles. 4:266592015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kodadek T: Protein microarrays: Prospects
and problems. Chem Biol. 8:105–115. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chaffer CL and Weinberg RA: A perspective
on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Joosse SA, Gorges TM and Pantel K:
Biology, detection, and clinical implications of circulating tumor
cells. EMBO Mol Med. 7:1–11. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hamilton G and Rath B: Detection of
circulating tumor cells in non-small cell lung cancer. J Thorac
Dis. 8:1024–1028. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tanaka F, Yoneda K, Kondo N, Hashimoto M,
Takuwa T, Matsumoto S, Okumura Y, Rahman S, Tsubota N, Tsujimura T,
et al: Circulating tumor cell as a diagnostic marker in primary
lung cancer. Clin Cancer Res. 15:6980–6986. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sonn CH, Cho JH, Kim JW, Kang MS, Lee J
and Kim J: Detection of circulating tumor cells in patients with
non-small cell lung cancer using a size-based platform. Oncol Lett.
13:2717–2722. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Truini A, Alama A, Dal Bello MG, Coco S,
Vanni I, Rijavec E, Genova C, Barletta G, Biello F and Grossi F:
Clinical applications of circulating tumor cells in lung cancer
patients by cell search system. Front Oncol. 4:2422014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ambrosone CB: Oxidants and antioxidants in
breast cancer. Antioxid Redox Signal. 2:903–917. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Hakim M, Broza YY, Barash O, Peled N,
Phillips M, Amann A and Haick H: Volatile organic compounds of lung
cancer and possible biochemical pathways. Chem Rev. 112:5949–5966.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Filipiak W, Sponring A, Filipiak A, Ager
C, Schubert J, Miekisch W, Amann A and Troppmair J: TD-GC-MS
analysis of volatile metabolites of human lung cancer and normal
cells in vitro. Cancer Epidemiol Biomarkers Prev. 19:182–195. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Buszewski B, Ligor T, Jezierski T,
Wenda-Piesik A, Walczak M and Rudnicka J: Identification of
volatile lung cancer markers by gas chromatography-mass
spectrometry: Comparison with discrimination by canines. Anal
Bioanal Chem. 404:141–146. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rudnicka J, Walczak M, Kowalkowski T,
Jezierski T and Buszewski B: Determination of volatile organic
compounds as potential markers of lung cancer by gas
chromatography-mass spectrometry versus trained dogs. Sensors
Actuators B Chem. 202:615–621. 2014. View Article : Google Scholar
|
|
61
|
Phillips M, Altorki N, Austin JH, Cameron
RB, Cataneo RN, Kloss R, Maxfield RA, Munawar MI, Pass HI, Rashid
A, et al: Detection of lung cancer using weighted digital analysis
of breath biomarkers. Clin Chim Acta. 393:76–84. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Phillips M, Altorki N, Austin JH, Cameron
RB, Cataneo RN, Greenberg J, Kloss R, Maxfield RA, Munawar MI, Pass
HI, et al: Prediction of lung cancer using volatile biomarkers in
breath. Cancer Biomark. 3:95–109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Wang Y, Hu Y, Wang D, Yu K, Wang L, Zou Y,
Zhao C, Zhang X, Wang P and Ying K: The analysis of volatile
organic compounds biomarkers for lung cancer in exhaled breath,
tissues and cell lines. Cancer Biomark. 11:129–137. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Brunner C, Szymczak W, Hollriegl V, Mortl
S, Oelmez H, Bergner A, Huber RM, Hoeschen C and Oeh U:
Discrimination of cancerous and non-cancerous cell lines by
headspace-analysis with PTR-MS. Anal Bioanal Chem. 397:2315–2324.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Brůhová Michalčíková R, Dryahina K and
Španěl P: SIFT-MS quantification of several breath biomarkers of
inflammatory bowel disease, IBD: A detailed study of the ion
chemistry. Int J Mass Spectrom. 396:35–41. 2016. View Article : Google Scholar
|
|
66
|
Li Z, Xu C, Shu J, Yang B and Zou Y:
Doping-assisted low-pressure photoionization mass spectrometry for
the real-time detection of lung cancer-related volatile organic
compounds. Talanta. 165:98–106. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Behera B, Joshi R, Anil Vishnu GK,
Bhalerao S and Pandya HJ: Electronic-nose: A non-invasive
technology for breath analysis of diabetes and lung cancer
patients. J Breath Res. 13:0240012019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Peng G, Tisch U, Adams O, Hakim M, Shehada
N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A and Haick H:
Diagnosing lung cancer in exhaled breath using gold nanoparticles.
Nat Nanotechnol. 4:669–673. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Kort S, Brusse-Keizer M, Schouwink JH,
Gerritsen JW and Van dPJ: Detection of non-small cell lung cancer
by an electronic nose. Eur Respir J. 50 (Suppl 61):PA20322017.
|
|
70
|
Gasparri R, Santonico M, Valentini C,
Sedda G, Borri A, Petrella F, Maisonneuve P, Pennazza G, D'Amico A,
Di Natale C, et al: Volatile signature for the early diagnosis of
lung cancer. J Breath Res. 10:0160072016. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Shehada N, Cancilla JC, Torrecilla JS,
Pariente ES, Bronstrup G, Christiansen S, Johnson DW, Leja M,
Davies MP, Liran O, et al: Silicon nanowire sensors enable
diagnosis of patients via exhaled breath. ACS Nano. 10:7047–7057.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Handa H, Usuba A, Maddula S, Baumbach JI,
Mineshita M and Miyazawa T: Exhaled breath analysis for lung cancer
detection using ion mobility spectrometry. PLoS One. 9:e1145552014.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhong X, Li D, Du W, Yan M, Wang Y, Huo D
and Hou C: Rapid recognition of volatile organic compounds with
colorimetric sensor arrays for lung cancer screening. Anal Bioanal
Chem. 410:3671–3681. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Queralto N, Berliner AN, Goldsmith B,
Martino R, Rhodes P and Lim SH: Detecting cancer by breath volatile
organic compound analysis: A review of array-based sensors. J
Breath Res. 8:0271122014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Aravanis AM, Lee M and Klausner RD:
Next-Generation sequencing of circulating tumor DNA for early
cancer detection. Cell. 168:571–574. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Wang J, Han X and Sun Y: DNA methylation
signatures in circulating cell-free DNA as biomarkers for the early
detection of cancer. Sci China Life Sci. 60:356–362. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Iqbal MA, Arora S, Prakasam G, Calin GA
and Syed MA: MicroRNA in lung cancer: Role, mechanisms, pathways
and therapeutic relevance. Mol Aspects Med. 70:3–20. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Keller A, Leidinger P, Gislefoss R, Haugen
A, Langseth H, Staehler P, Lenhof HP and Meese E: Stable serum
miRNA profiles as potential tool for non-invasive lung cancer
diagnosis. RNA Biol. 8:506–516. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Li A, Zhang T, Zheng M, Liu Y and Chen Z:
Exosomal proteins as potential markers of tumor diagnosis. J
Hematol Oncol. 10:1752017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Harouaka R, Kang Z, Zheng SY and Cao L:
Circulating tumor cells: Advances in isolation and analysis, and
challenges for clinical applications. Pharmacol Ther. 141:209–221.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Cabel L, Proudhon C, Gortais H, Loirat D,
Coussy F, Pierga JY and Bidard FC: Circulating tumor cells:
Clinical validity and utility. Int J Clin Oncol. 22:421–430. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hofman P: Liquid biopsy and therapeutic
targets: Present and future issues in thoracic oncology. Cancers
(Basel). 9:E1542017. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tsui DW and Berger MF: Profiling non-small
cell lung cancer: From tumor to blood. Clin Cancer Res. 22:790–792.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Sundaresan TK, Sequist LV, Heymach JV,
Riely GJ, Janne PA, Koch WH, Sullivan JP, Fox DB, Maher R,
Muzikansky A, et al: Detection of T790M, the acquired resistance
EGFR mutation, by tumor biopsy versus noninvasive blood-based
analyses. Clin Cancer Res. 22:1103–1110. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Midha A, Dearden S and McCormack R: EGFR
mutation incidence in non-small-cell lung cancer of adenocarcinoma
histology: A systematic review and global map by ethnicity
(mutMapII). Am J Cancer Res. 5:2892–2911. 2015.PubMed/NCBI
|
|
86
|
Liang W, Wu X, Fang W, Zhao Y, Yang Y, Hu
Z, Xue C, Zhang J, Zhang J, Ma Y, et al: Network meta-analysis of
erlotinib, gefitinib, afatinib and icotinib in patients with
advanced non-small-cell lung cancer harboring EGFR mutations. PLoS
One. 9:e852452014. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Brandao EP, Pantarotto MG and Cruz M: A
novel EGFR mutation in exon 18 with high sensitivity to EGFR TKI
treatment with reduced dose. J Thorac Oncol. 7:e322012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kobayashi Y, Togashi Y, Yatabe Y, Mizuuchi
H, Jangchul P, Kondo C, Shimoji M, Sato K, Suda K, Tomizawa K, et
al: EGFR exon 18 mutations in lung cancer: Molecular predictors of
augmented sensitivity to afatinib or neratinib as compared with
first- or third-generation TKIs. Clin Cancer Res. 21:5305–5313.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang J, Wang B, Chu H and Yao Y: Intrinsic
resistance to EGFR tyrosine kinase inhibitors in advanced
non-small-cell lung cancer with activating EGFR mutations. Onco
Targets Ther. 9:3711–3726. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lindeman NI, Cagle PT, Beasley MB, Chitale
DA, Dacic S, Giaccone G, Jenkins RB, Kwiatkowski DJ, Saldivar JS,
Squire J, et al: Molecular testing guideline for selection of lung
cancer patients for EGFR and ALK tyrosine kinase inhibitors:
Guideline from the college of American pathologists, international
association for the study of lung cancer, and association for
molecular pathology. J Thorac Oncol. 8:823–859. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tan CS, Kumarakulasinghe NB, Huang YQ, Ang
YLE, Choo JR, Goh BC and Soo RA: Third generation EGFR TKIs:
Current data and future directions. Mol Cancer. 17:292018.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Karachaliou N, Molina-Vila MA and Rosell
R: The impact of rare EGFR mutations on the treatment response of
patients with non-small cell lung cancer. Expert Rev Respir Med.
9:241–244. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Noh KW, Lee MS, Lee SE, Song JY, Shin HT,
Kim YJ, Oh DY, Jung K, Sung M, Kim M, et al: Molecular breakdown: A
comprehensive view of anaplastic lymphoma kinase (ALK)-rearranged
non-small cell lung cancer. J Pathol. 243:307–319. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Vendrell JA, Taviaux S, Beganton B,
Godreuil S, Audran P, Grand D, Clermont E, Serre I, Szablewski V,
Coopman P, et al: Detection of known and novel ALK fusion
transcripts in lung cancer patients using next-generation
sequencing approaches. Sci Rep. 7:125102017. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Hofman P: ALK status assessment with
liquid biopsies of lung cancer patients. Cancers (Basel).
9:E1062017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Pailler E, Oulhen M, Borget I, Remon J,
Ross K, Auger N, Billiot F, Ngo Camus M, Commo F, Lindsay CR, et
al: Circulating tumor cells with aberrant ALK copy number predict
progression-free survival during crizotinib treatment in
ALK-rearranged non-small cell lung cancer patients. Cancer Res.
77:2222–2230. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Passaro A, Lazzari C, Karachaliou N,
Spitaleri G, Pochesci A, Catania C, Rosell R and de Marinis F:
Personalized treatment in advanced ALK-positive non-small cell lung
cancer: From bench to clinical practice. Onco Targets Ther.
9:6361–6376. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Peters S, Camidge DR, Shaw AT, Gadgeel S,
Ahn JS, Kim DW, Ou SI, Pérol M, Dziadziuszko R, Rosell R, et al:
Alectinib versus crizotinib in untreated ALK-Positive
non-small-cell lung cancer. N Engl J Med. 377:829–838. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shen L and Ji HF: Ceritinib in
ALK-rearranged non-small-cell lung cancer. N Engl J Med.
370:25372014. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Waqar SN and Morgensztern D: Lorlatinib: A
new-generation drug for ALK-positive NSCLC. Lancet Oncol.
19:1555–1557. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kim RN, Choi YL, Lee MS, Lira ME, Mao M,
Mann D, Stahl J, Licon A, Choi SJ, Van Vrancken M, et al:
SEC31A-ALK fusion gene in lung adenocarcinoma. Cancer Res Treat.
48:398–402. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Barlesi F, Mazieres J, Merlio JP,
Debieuvre D, Mosser J, Lena H, Ouafik L, Besse B, Rouquette I,
Westeel V, et al: Routine molecular profiling of patients with
advanced non-small-cell lung cancer: Results of a 1-year nationwide
programme of the French cooperative thoracic intergroup (IFCT).
Lancet. 387:1415–1426. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sanchez-Torres JM, Viteri S, Molina MA and
Rosell R: BRAF mutant non-small cell lung cancer and treatment with
BRAF inhibitors. Transl Lung Cancer Res. 2:244–250. 2013.PubMed/NCBI
|
|
104
|
Planchard D, Groen HJM, Kim TM, Rigas JR,
Souquet PJ, Baik CS, Bariesi F, Mazières J, Quoix EA, Curtis CM, et
al: Interim results of a phase II study of the BRAF inhibitor
(BRAFi) dabrafenib (D) in combination with the MEK inhibitor
trametinib (T) in patients (pts) with BRAF V600E mutated (mut)
metastatic non-small cell lung cancer (NSCLC). J Clin Oncol. 33 (15
Suppl):S80062015. View Article : Google Scholar
|
|
105
|
Planchard D, Besse B, Groen HJM, Souquet
PJ, Quoix E, Baik CS, Barlesi F, Kim TM, Mazieres J, Novello S, et
al: Dabrafenib plus trametinib in patients with previously treated
BRAF(V600E)-mutant metastatic non-small cell lung cancer: An
open-label, multicentre phase 2 trial. Lancet Oncol. 17:984–993.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chuang JC, Stehr H, Liang Y, Das M, Huang
J, Diehn M, Wakelee HA and Neal JW: ERBB2-Mutated metastatic
non-small cell lung cancer: Response and resistance to targeted
therapies. J Thorac Oncol. 12:833–842. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Salgia R: MET in lung cancer: Biomarker
selection based on scientific rationale. Mol Cancer Ther.
16:555–565. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Gainor JF and Shaw AT: Novel targets in
non-small cell lung cancer: ROS1 and RET fusions. Oncologist.
18:865–875. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mochalski P, King J, Haas M, Unterkofler
K, Amann A and Mayer G: Blood and breath profiles of volatile
organic compounds in patients with end-stage renal disease. BMC
Nephrol. 15:432014. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Terelius Y and Ingelman-Sundberg M:
Metabolism of n-pentane by ethanol-inducible cytochrome P-450 in
liver microsomes and reconstituted membranes. Eur J Biochem.
161:303–308. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Kohlmuller D and Kochen W: Is n-pentane
really an index of lipid peroxidation in humans and animals? A
methodological reevaluation. Anal Biochem. 210:268–276. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Risby TH and Sehnert SS: Clinical
application of breath biomarkers of oxidative stress status. Free
Radic Biol Med. 27:1182–1192. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Marchitti SA, Brocker C, Stagos D and
Vasiliou V: Non-P450 aldehyde oxidizing enzymes: The aldehyde
dehydrogenase superfamily. Expert Opin Drug Metab Toxicol.
4:697–720. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Rahman I, van Schadewijk AA, Crowther AJ,
Hiemstra PS, Stolk J, MacNee W and De Boer WI: 4-Hydroxy-2-nonenal,
a specific lipid peroxidation product, is elevated in lungs of
patients with chronic obstructive pulmonary disease. Am J Respir
Crit Care Med. 166:490–495. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Vaz AD and Coon MJ: Hydrocarbon formation
in the reductive cleavage of hydroperoxides by cytochrome P-450.
Proc Natl Acad Sci USA. 84:1172–1176. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Branton PJ, McAdam KG, Winter DB, Liu C,
Duke MG and Proctor CJ: Reduction of aldehydes and hydrogen cyanide
yields in mainstream cigarette smoke using an amine functionalised
ion exchange resin. Chem Cent J. 5:152011. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Kang JO, Slater G, Aufses AH Jr and Cohen
G: Production of ethane by rats treated with the colon carcinogen,
1, 2-dimethylhydrazine. Biochem Pharmacol. 37:2967–2971. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Burdock GA: Fenaroli's handbook of flavor
ingredients. CRC Press; 2016, View Article : Google Scholar
|
|
119
|
Smith D, Wang T and Spanel P: On-line,
simultaneous quantification of ethanol, some metabolites and water
vapour in breath following the ingestion of alcohol. Physiol Meas.
23:477–489. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Xu ZQ, Broza YY, Ionsecu R, Tisch U, Ding
L, Liu H, Song Q, Pan YY, Xiong FX, Gu KS, et al: A
nanomaterial-based breath test for distinguishing gastric cancer
from benign gastric conditions. Br J Cancer. 108:941–950. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Eckel RH: Lipoprotein lipase A
multifunctional enzyme relevant to common metabolic diseases. New
Engl J Med. 320:1060–1068. 1989.PubMed/NCBI
|
|
122
|
Jia Z, Zhang H, Ong CN, Patra A, Lu Y, Lim
CT and Venkatesan T: Detection of lung cancer: Concomitant volatile
organic compounds and metabolomic profiling of six cancer cell
lines of different histological origins. ACS Omega. 3:5131–5140.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Peled N, Barash O, Tisch U, Ionescu R,
Broza YY, Ilouze M, Mattei J, Bunn PA Jr, Hirsch FR and Haick H:
Volatile fingerprints of cancer specific genetic mutations.
Nanomedicine. 9:758–766. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Yang B, Zhang H, Shu J, Ma P, Zhang P,
Huang J, Li Z and Xu C: Vacuum-ultraviolet-excited and
CH2Cl2/H2O-amplified
ionization-coupled mass spectrometry for oxygenated organics
analysis. Anal Chem. 90:1301–1308. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Huang J, Yang B, Shu J, Zhang Z, Li Z and
Jiang K: Kinetic understanding of the ultrahigh ionization
efficiencies (up to 28%) of excited-state
CH2Cl2-induced associative ionization: A case
study with nitro compounds. Anal Chem. 91:5605–5612. 2019.
View Article : Google Scholar : PubMed/NCBI
|