|
1
|
Armitage P and Doll R: The age
distribution of cancer and a multi-stage theory of carcinogenesis.
Br J Cancer. 8:1–12. 1954. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vogelstein B and Kinzler KW: The multistep
nature of cancer. Trends Genet. 9:138–141. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chaffer CL and Weinberg RA: How does
multistep tumorigenesis really proceed? Cancer Discov. 5:22–24.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Barretina J, Caponigro G, Stransky N,
Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV,
Sonkin D, et al: The cancer cell line encyclopedia enables
predictive modelling of anticancer drug sensitivity. Nature.
483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bailey MH, Tokheim C, Porta-Pardo E,
Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim
J, Reardon B, et al: Comprehensive characterization of cancer
driver genes and mutations. Cell. 173:371–385 e18. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Garraway LA and Lander ES: Lessons from
the cancer genome. Cell. 153:17–37. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Seshadri R, Matthews C, Dobrovic A and
Horsfall DJ: The significance of oncogene amplification in primary
breast cancer. Int J Cancer. 43:270–272. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Davies H, Bignell GR, Cox C, Stephens P,
Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W,
et al: Mutations of the BRAF gene in human cancer. Nature.
417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lynch TJ, Bell DW, Sordella R,
Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat
SM, Supko JG, Haluska FG, et al: Activating mutations in the
epidermal growth factor receptor underlying responsiveness of
non-small-cell lung cancer to gefitinib. N Engl J Med.
350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Paez JG, Jänne PA, Lee JC, Tracy S,
Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et
al: EGFR mutations in lung cancer: Correlation with clinical
response to gefitinib therapy. Science. 304:1497–1500. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sato M, Shames DS, Gazdar AF and Minna JD:
A translational view of the molecular pathogenesis of lung cancer.
J Thorac Oncol. 2:327–343. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Murugan AK, Grieco M and Tsuchida N: RAS
mutations in human cancers: Roles in precision medicine. Semin
Cancer Biol. 59:23–35. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ryan MB and Corcoran RB: Therapeutic
strategies to target RAS-mutant cancers. Nat Rev Clin Oncol.
15:709–720. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Govindan R, Fakih M, Price T, Falchook G,
Desai J, Kuo J, Strickler J, Krauss J, Li B, Denlinger C, et al:
OA02.02 Phase 1 study of safety, tolerability, PK and efficacy of
AMG 510, a novel KRASG12C inhibitor, evaluated in NSCLC. J Thorac
Oncol. 14 (Suppl):S2082019. View Article : Google Scholar
|
|
16
|
Canon J, Rex K, Saiki AY, Mohr C, Cooke K,
Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al: The
clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity.
Nature. 575:217–223. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Vogelstein B, Papadopoulos N, Velculescu
VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes.
Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nagel R, Semenova EA and Berns A: Drugging
the addict: Non-oncogene addiction as a target for cancer therapy.
EMBO Rep. 17:1516–1531. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Dai C, Whitesell L, Rogers AB and
Lindquist S: Heat shock factor 1 is a powerful multifaceted
modifier of carcinogenesis. Cell. 130:1005–1018. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
McDonald ER III, de Weck A, Schlabach MR,
Billy E, Mavrakis KJ, Hoffman GR, Belur D, Castelletti D, Frias E,
Gampa K, et al: Project DRIVE: A compendium of cancer dependencies
and synthetic lethal relationships uncovered by large-scale, deep
RNAi screening. Cell. 170:577–592 e10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schuster A, Erasimus H, Fritah S, Nazarov
PV, van Dyck E, Niclou SP and Golebiewska A: RNAi/CRISPR Screens:
From a pool to a valid hit. Trends Biotechnol. 37:38–55. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Schlabach MR, Luo J, Solimini NL, Hu G, Xu
Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, et al: Cancer
proliferation gene discovery through functional genomics. Science.
319:620–624. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Silva JM, Marran K, Parker JS, Silva J,
Golding M, Schlabach MR, Elledge SJ, Hannon GJ and Chang K:
Profiling essential genes in human mammary cells by multiplex RNAi
screening. Science. 319:617–620. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cheung HW, Cowley GS, Weir BA, Boehm JS,
Rusin S, Scott JA, East A, Ali LD, Lizotte PH, Wong TC, et al:
Systematic investigation of genetic vulnerabilities across cancer
cell lines reveals lineage-specific dependencies in ovarian cancer.
Proc Natl Acad Sci USA. 108:12372–12377. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cowley GS, Weir BA, Vazquez F, Tamayo P,
Scott JA, Rusin S, East-Seletsky A, Ali LD, Gerath WF, Pantel SE,
et al: Parallel genome-scale loss of function screens in 216 cancer
cell lines for the identification of context-specific genetic
dependencies. Sci Data. 1:1400352014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Marcotte R, Brown KR, Suarez F, Sayad A,
Karamboulas K, Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn
Y, Koh JLY, et al: Essential gene profiles in breast, pancreatic,
and ovarian cancer cells. Cancer Discov. 2:172–189. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ran FA, Hsu PD, Wright J, Agarwala V,
Scott DA and Zhang F: Genome engineering using the CRISPR-Cas9
system. Nat Protoc. 8:2281–2308. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shalem O, Sanjana NE, Hartenian E, Shi X,
Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG and
Zhang F: Genome-scale CRISPR-Cas9 knockout screening in human
cells. Science. 343:84–87. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wang T, Wei JJ, Sabatini DM and Lander ES:
Genetic screens in human cells using the CRISPR-Cas9 system.
Science. 343:80–84. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kakumu T, Sato M, Goto D, Kato T, Yogo N,
Hase T, Morise M, Fukui T, Yokoi K, Sekido Y, et al: Identification
of proteasomal catalytic subunit PSMA6 as a therapeutic target for
lung cancer. Cancer Sci. 108:732–743. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tanaka I, Sato M, Kato T, Goto D, Kakumu
T, Miyazawa A, Yogo N, Hase T, Morise M, Sekido Y, et al: eIF2β, a
subunit of translation-initiation factor EIF2, is a potential
therapeutic target for non-small cell lung cancer. Cancer Sci.
109:1843–1852. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
O'Neil NJ, Bailey ML and Hieter P:
Synthetic lethality and cancer. Nat Rev Genet. 18:613–623. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hsu TY, Simon LM, Neill NJ, Marcotte R,
Sayad A, Bland CS, Echeverria GV, Sun T, Kurley SJ, Tyagi S, et al:
The spliceosome is a therapeutic vulnerability in MYC-driven
cancer. Nature. 525:384–388. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kumar MS, Hancock DC, Molina-Arcas M,
Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E,
Lassailly F, Matthews N, Nye E, et al: The GATA2 transcriptional
network is requisite for RAS oncogene-driven non-small cell lung
cancer. Cell. 149:642–655. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Luo J, Emanuele MJ, Li D, Creighton CJ,
Schlabach MR, Westbrook TF, Wong KK and Elledge SJ: A genome-wide
RNAi screen identifies multiple synthetic lethal interactions with
the Ras oncogene. Cell. 137:835–848. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Scholl C, Fröhling S, Dunn IF, Schinzel
AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S,
et al: Synthetic lethal interaction between oncogenic KRAS
dependency and STK33 suppression in human cancer cells. Cell.
137:821–834. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Barbie DA, Tamayo P, Boehm JS, Kim SY,
Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, et al:
Systematic RNA interference reveals that oncogenic KRAS-driven
cancers require TBK1. Nature. 462:108–112. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Wang Y, Ngo VN, Marani M, Yang Y, Wright
G, Staudt LM and Downward J: Critical role for transcriptional
repressor Snail2 in transformation by oncogenic RAS in colorectal
carcinoma cells. Oncogene. 29:4658–4670. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Costa-Cabral S, Brough R, Konde A, Aarts
M, Campbell J, Marinari E, Riffell J, Bardelli A, Torrance C, Lord
CJ and Ashworth A: CDK1 is a synthetic lethal target for KRAS
mutant tumours. PLoS One. 11:e01490992016. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Downward J: RAS synthetic lethal screens
revisited: Still seeking the elusive prize? Clin Cancer Res.
21:1802–1809. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Babij C, Zhang Y, Kurzeja RJ, Munzli A,
Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA,
Watson VJ, et al: STK33 kinase activity is nonessential in
KRAS-dependent cancer cells. Cancer Res. 71:5818–5826. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Fröhling S and Scholl C: STK33 kinase is
not essential in KRAS-dependent cells-letter. Cancer Res.
71:7716author reply 7717. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Forbes SA, Beare D, Boutselakis H, Bamford
S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al:
COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids
Res. 45D:D777–D783. 2017. View Article : Google Scholar
|
|
44
|
Behan FM, Iorio F, Picco G, Gonçalves E,
Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, et
al: Prioritization of cancer therapeutic targets using CRISPR-Cas9
screens. Nature. 568:511–516. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chan EM, Shibue T, McFarland JM, Gaeta B,
Ghandi M, Dumont N, Gonzalez A, McPartlan JS, Li T, Zhang Y, et al:
WRN helicase is a synthetic lethal target in microsatellite
unstable cancers. Nature. 568:551–556. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Aggarwal M, Banerjee T, Sommers JA,
Iannascoli C, Pichierri P, Shoemaker RH and Brosh RM Jr: Werner
syndrome helicase has a critical role in DNA damage responses in
the absence of a functional fanconi anemia pathway. Cancer Res.
73:5497–5507. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Holohan C, Van Schaeybroeck S, Longley DB
and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat
Rev Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gottesman MM, Lavi O, Hall MD and Gillet
JP: Toward a better understanding of the complexity of cancer drug
resistance. Annu Rev Pharmacol Toxicol. 56:85–102. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Jackson CM, Choi J and Lim M: Mechanisms
of immunotherapy resistance: Lessons from glioblastoma. Nat
Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Whitehurst AW, Bodemann BO, Cardenas J,
Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth
MG, et al: Synthetic lethal screen identification of
chemosensitizer loci in cancer cells. Nature. 446:815–819. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lin X, Morgan-Lappe S, Huang X, Li L,
Zakula DM, Vernetti LA, Fesik SW and Shen Y: ‘Seed’ analysis of
off-target siRNAs reveals an essential role of Mcl-1 in resistance
to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737. Oncogene.
26:3972–3979. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Prahallad A, Sun C, Huang S, Di
Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A
and Bernards R: Unresponsiveness of colon cancer to BRAF(V600E)
inhibition through feedback activation of EGFR. Nature.
483:100–103. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Kurata M, Rathe SK, Bailey NJ, Aumann NK,
Jones JM, Veldhuijzen GW, Moriarity BS and Largaespada DA: Using
genome-wide CRISPR library screening with library resistant DCK to
find new sources of Ara-C drug resistance in AML. Sci Rep.
6:361992016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hou P, Wu C, Wang Y, Qi R, Bhavanasi D,
Zuo Z, Dos Santos C, Chen S, Chen Y, Zheng H, et al: A Genome-wide
CRISPR screen identifies genes critical for resistance to FLT3
inhibitor AC220. Cancer Res. 77:4402–4413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Sun W, He B, Yang B, Hu W, Cheng S, Xiao
H, Yang Z, Wen X, Zhou L, Xie H, et al: Genome-wide CRISPR screen
reveals SGOL1 as a druggable target of sorafenib-treated
hepatocellular carcinoma. Lab Invest. 98:734–744. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Sustic T, van Wageningen S, Bosdriesz E,
Reid RJD, Dittmar J, Lieftink C, Beijersbergen RL, Wessels LFA,
Rothstein R and Bernards R: A role for the unfolded protein
response stress sensor ERN1 in regulating the response to MEK
inhibitors in KRAS mutant colon cancers. Genome Med. 10:902018.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sharma P and Allison JP: The future of
immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Khandelwal N, Breinig M, Speck T, Michels
T, Kreutzer C, Sorrentino A, Sharma AK, Umansky L, Conrad H,
Poschke I, et al: A high-throughput RNAi screen for detection of
immune-checkpoint molecules that mediate tumor resistance to
cytotoxic T lymphocytes. EMBO Mol Med. 7:450–463. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Patel SJ, Sanjana NE, Kishton RJ,
Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM,
Yamamoto TN, et al: Identification of essential genes for cancer
immunotherapy. Nature. 548:537–542. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Steeg PS: Targeting metastasis. Nat Rev
Cancer. 16:201–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Thiery JP, Acloque H, Huang RY and Nieto
MA: Epithelial-mesenchymal transitions in development and disease.
Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Sato M, Shames DS and Hasegawa Y: Emerging
evidence of epithelial-to-mesenchymal transition in lung
carcinogenesis. Respirology. 17:1048–1059. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chaffer CL, San Juan BP, Lim E and
Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis
Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Yilmaz M and Christofori G: EMT, the
cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev.
28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Heerboth S, Housman G, Leary M, Longacre
M, Byler S, Lapinska K, Willbanks A and Sarkar S: EMT and tumor
metastasis. Clin Transl Med. 4:62015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Pavan S, Meyer-Schaller N, Diepenbruck M,
Kalathur RKR, Saxena M and Christofori G: A kinome-wide
high-content siRNA screen identifies MEK5-ERK5 signaling as
critical for breast cancer cell EMT and metastasis. Oncogene.
37:4197–4213. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yang J, Fan J, Li Y, Li F, Chen P, Fan Y,
Xia X and Wong ST: Genome-wide RNAi screening identifies genes
inhibiting the migration of glioblastoma cells. PLoS One.
8:e619152013. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Paoli P, Giannoni E and Chiarugi P:
Anoikis molecular pathways and its role in cancer progression.
Biochim Biophys Acta. 1833:3481–3498. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Taddei ML, Giannoni E, Fiaschi T and
Chiarugi P: Anoikis: An emerging hallmark in health and diseases. J
Pathol. 226:380–393. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Takeyama Y, Sato M, Horio M, Hase T,
Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, Sekido Y, Gazdar
AF, et al: Knockdown of ZEB1, a master epithelial-to-mesenchymal
transition (EMT) gene, suppresses anchorage-independent cell growth
of lung cancer cells. Cancer Lett. 296:216–224. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Eskiocak U, Kim SB, Ly P, Roig AI,
Biglione S, Komurov K, Cornelius C, Wright WE, White MA and Shay
JW: Functional parsing of driver mutations in the colorectal cancer
genome reveals numerous suppressors of anchorage-independent
growth. Cancer Res. 71:4359–4365. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Wood LD, Parsons DW, Jones S, Lin J,
Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al: The
genomic landscapes of human breast and colorectal cancers. Science.
318:1108–1113. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Simpson CD, Hurren R, Kasimer D, MacLean
N, Eberhard Y, Ketela T, Moffat J and Schimmer AD: A genome wide
shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4)
as a novel regulator of anoikis resistance. Apoptosis. 17:666–678.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Larsson LG: Oncogene- and tumor suppressor
gene-mediated suppression of cellular senescence. Semin Cancer
Biol. 21:367–376. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gorgoulis VG and Halazonetis TD:
Oncogene-induced senescence: The bright and dark side of the
response. Curr Opin Cell Biol. 22:816–827. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Faget DV, Ren Q and Stewart SA: Unmasking
senescence: Context-dependent effects of SASP in cancer. Nat Rev
Cancer. 19:439–453. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Serrano M, Lin AW, McCurrach ME, Beach D
and Lowe SW: Oncogenic ras provokes premature cell senescence
associated with accumulation of p53 and p16INK4a. Cell. 88:593–602.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Michaloglou C, Vredeveld LC, Soengas MS,
Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi
WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle
arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gray-Schopfer VC, Cheong SC, Chong H, Chow
J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D and Bennett
DC: Cellular senescence in naevi and immortalisation in melanoma: A
role for p16? Br J Cancer. 95:496–505. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
He S and Sharpless NE: Senescence in
health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vicent S, Chen R, Sayles LC, Lin C, Walker
RG, Gillespie AK, Subramanian A, Hinkle G, Yang X, Saif S, et al:
Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and
senescence in mouse and human models. J Clin Invest. 120:3940–3952.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kaplon J, Hömig-Hölzel C, Gao L, Meissl K,
Verdegaal EM, van der Burg SH, van Doorn R and Peeper DS:
Near-genomewide RNAi screening for regulators of
BRAF(V600E)-induced senescence identifies RASEF, a gene
epigenetically silenced in melanoma. Pigment Cell Melanoma Res.
27:640–652. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tordella L, Khan S, Hohmeyer A, Banito A,
Klotz S, Raguz S, Martin N, Dhamarlingam G, Carroll T, González
Meljem JM, et al: SWI/SNF regulates a transcriptional program that
induces senescence to prevent liver cancer. Genes Dev.
30:2187–2198. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Batlle E and Clevers H: Cancer stem cells
revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Nassar D and Blanpain C: Cancer stem
cells: Basic concepts and therapeutic implications. Annu Rev
Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wolf J, Dewi DL, Fredebohm J,
Müller-Decker K, Flechtenmacher C, Hoheisel JD and Boettcher M: A
mammosphere formation RNAi screen reveals that ATG4A promotes a
breast cancer stem-like phenotype. Breast Cancer Res. 15:R1092013.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Paulsen RD, Soni DV, Wollman R, Hahn AT,
Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero
DE, et al: A genome-wide siRNA screen reveals diverse cellular
processes and pathways that mediate genome stability. Mol Cell.
35:228–239. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Gargiulo G, Serresi M, Cesaroni M, Hulsman
D and van Lohuizen M: In vivo shRNA screens in solid tumors. Nat
Protoc. 9:2880–2902. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Singh M, Venugopal C, Tokar T, Brown KR,
McFarlane N, Bakhshinyan D, Vijayakumar T, Manoranjan B, Mahendram
S, Vora P, et al: RNAi screen identifies essential regulators of
human brain metastasis-initiating cells. Acta Neuropathol.
134:923–940. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lin L, Chamberlain L, Pak ML, Nagarajan A,
Gupta R, Zhu LJ, Wright CM, Fong KM, Wajapeyee N and Green MR: A
large-scale RNAi-based mouse tumorigenesis screen identifies new
lung cancer tumor suppressors that repress FGFR signaling. Cancer
Discov. 4:1168–1181. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Iorns E, Ward TM, Dean S, Jegg A, Thomas
D, Murugaesu N, Sims D, Mitsopoulos C, Fenwick K, Kozarewa I, et
al: Whole genome in vivo RNAi screening identifies the leukemia
inhibitory factor receptor as a novel breast tumor suppressor.
Breast Cancer Res Treat. 135:79–91. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Elbashir SM, Harborth J, Lendeckel W,
Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs
mediate RNA interference in cultured mammalian cells. Nature.
411:494–498. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wang H, La Russa M and Qi LS: CRISPR/Cas9
in genome editing and beyond. Annu Rev Biochem. 85:227–264. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nyga A, Cheema U and Loizidou M: 3D tumour
models: Novel in vitro approaches to cancer studies. J Cell Commun
Signal. 5:239–248. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Hidalgo M, Amant F, Biankin AV, Budinská
E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo
GM, et al: Patient-derived xenograft models: An emerging platform
for translational cancer research. Cancer Discov. 4:998–1013. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bartz SR, Zhang Z, Burchard J, Imakura M,
Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, et al:
Small interfering RNA screens reveal enhanced cisplatin
cytotoxicity in tumor cells having both BRCA network and TP53
disruptions. Mol Cell Biol. 26:9377–9386. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lam LT, Davis RE, Ngo VN, Lenz G, Wright
G, Xu W, Zhao H, Yu X, Dang L and Staudt LM: Compensatory IKKalpha
activation of classical NF-kappaB signaling during IKKbeta
inhibition identified by an RNA interference sensitization screen.
Proc Natl Acad Sci USA. 105:20798–20803. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Xu Y, Karlsson A and Johansson M:
Identification of genes associated to 2′,2′-difluorodeoxycytidine
resistance in HeLa cells with a lentiviral short-hairpin RNA
library. Biochem Pharmacol. 82:210–215. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Guerreiro AS, Fattet S, Kulesza DW, Atamer
A, Elsing AN, Shalaby T, Jackson SP, Schoenwaelder SM, Grotzer MA,
Delattre O and Arcaro A: A sensitized RNA interference screen
identifies a novel role for the PI3K p110γ isoform in
medulloblastoma cell proliferation and chemoresistance. Mol Cancer
Res. 9:925–935. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu-Sullivan N, Zhang J, Bakleh A,
Marchica J, Li J, Siolas D, Laquerre S, Degenhardt YY, Wooster R,
Chang K, et al: Pooled shRNA screen for sensitizers to inhibition
of the mitotic regulator polo-like kinase (PLK1). Oncotarget.
2:1254–1264. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Fredebohm J, Wolf J, Hoheisel JD and
Boettcher M: Depletion of RAD17 sensitizes pancreatic cancer cells
to gemcitabine. J Cell Sci. 126:3380–3389. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Milosevic N, Kühnemuth B, Mühlberg L,
Ripka S, Griesmann H, Lölkes C, Buchholz M, Aust D, Pilarsky C,
Krug S, et al: Synthetic lethality screen identifies RPS6KA2 as
modifier of epidermal growth factor receptor activity in pancreatic
cancer. Neoplasia. 15:1354–1362. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Wetterskog D, Shiu KK, Chong I, Meijer T,
Mackay A, Lambros M, Cunningham D, Reis-Filho JS, Lord CJ and
Ashworth A: Identification of novel determinants of resistance to
lapatinib in ERBB2-amplified cancers. Oncogene. 33:966–976. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
MacKay C, Carroll E, Ibrahim AFM, Garg A,
Inman GJ, Hay RT and Alpi AF: E3 ubiquitin ligase HOIP attenuates
apoptotic cell death induced by cisplatin. Cancer Res.
74:2246–2257. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Maruyama Y, Miyazaki T, Ikeda K, Okumura
T, Sato W, Horie-Inoue K, Okamoto K, Takeda S and Inoue S: Short
hairpin RNA library-based functional screening identified ribosomal
protein L31 that modulates prostate cancer cell growth via p53
pathway. PLoS One. 9:e1087432014. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Sudo M, Mori S, Madan V, Yang H, Leong G
and Koeffler HP: Short-hairpin RNA library: Identification of
therapeutic partners for gefitinib-resistant non-small cell lung
cancer. Oncotarget. 6:814–824. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Prahallad A, Heynen GJ, Germano G, Willems
SM, Evers B, Vecchione L, Gambino V, Lieftink C, Beijersbergen RL,
Di Nicolantonio F, et al: PTPN11 is a central node in intrinsic and
acquired resistance to targeted cancer drugs. Cell Rep.
12:1978–1985. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Kobayashi H, Nishimura H, Matsumoto K and
Yoshida M: Identification of the determinants of 2-deoxyglucose
sensitivity in cancer cells by shRNA library screening. Biochem
Biophys Res Commun. 467:121–127. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yamaguchi K, Iglesias-Bartolomé R, Wang Z,
Callejas-Valera JL, Amornphimoltham P, Molinolo AA, Cohen EE,
Califano JA, Lippman SM, Luo J and Gutkind JS: A
synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting
pro-apoptotic switch in PIK3CA+ oral cancers. Oncotarget.
7:10696–10709. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yamanoi K, Matsumura N, Murphy SK, Baba T,
Abiko K, Hamanishi J, Yamaguchi K, Koshiyama M, Konishi I and
Mandai M: Suppression of ABHD2, identified through a functional
genomics screen, causes anoikis resistance, chemoresistance and
poor prognosis in ovarian cancer. Oncotarget. 7:47620–47636. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Combes E, Andrade AF, Tosi D, Michaud HA,
Coquel F, Garambois V, Desigaud D, Jarlier M, Coquelle A, Pasero P,
et al: Inhibition of ataxia-telangiectasia mutated and RAD3-related
(ATR) overcomes oxaliplatin resistance and promotes antitumor
immunity in colorectal cancer. Cancer Res. 79:2933–2946. 2019.
View Article : Google Scholar : PubMed/NCBI
|