Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
June-2020 Volume 19 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2020 Volume 19 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review)

  • Authors:
    • Mitsuo Sato
  • View Affiliations / Copyright

    Affiliations: Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi 461‑8673, Japan
    Copyright: © Sato et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3617-3626
    |
    Published online on: April 3, 2020
       https://doi.org/10.3892/ol.2020.11512
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

During malignant progression to overt cancer cells, normal cells accumulate multiple genetic and non‑genetic changes, which result in the acquisition of various oncogenic properties, such as uncontrolled proliferation, drug resistance, invasiveness, anoikis‑resistance, the ability to bypass oncogene‑induced senescence and cancer stemness. To identify potential novel drug targets contributing to these malignant phenotypes, researchers have performed large‑scale genomic screening using various in vitro and in vivo screening models and identified numerous promising cancer drug target genes. However, there are issues with these identified genes, such as low reproducibility between different datasets. In the present study, the recent advances in the functional screening for identification of cancer drug target genes are summarized, and current issues and future perspectives are discussed.
View Figures

Figure 1

View References

1 

Armitage P and Doll R: The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer. 8:1–12. 1954. View Article : Google Scholar : PubMed/NCBI

2 

Vogelstein B and Kinzler KW: The multistep nature of cancer. Trends Genet. 9:138–141. 1993. View Article : Google Scholar : PubMed/NCBI

3 

Chaffer CL and Weinberg RA: How does multistep tumorigenesis really proceed? Cancer Discov. 5:22–24. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehár J, Kryukov GV, Sonkin D, et al: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 483:603–607. 2012. View Article : Google Scholar : PubMed/NCBI

5 

Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A, Colaprico A, Wendl MC, Kim J, Reardon B, et al: Comprehensive characterization of cancer driver genes and mutations. Cell. 173:371–385 e18. 2018. View Article : Google Scholar : PubMed/NCBI

6 

Garraway LA and Lander ES: Lessons from the cancer genome. Cell. 153:17–37. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Seshadri R, Matthews C, Dobrovic A and Horsfall DJ: The significance of oncogene amplification in primary breast cancer. Int J Cancer. 43:270–272. 1989. View Article : Google Scholar : PubMed/NCBI

8 

Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, et al: Mutations of the BRAF gene in human cancer. Nature. 417:949–954. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI

10 

Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI

11 

Hirsch FR, Scagliotti GV, Mulshine JL, Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current therapies and new targeted treatments. Lancet. 389:299–311. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Sato M, Shames DS, Gazdar AF and Minna JD: A translational view of the molecular pathogenesis of lung cancer. J Thorac Oncol. 2:327–343. 2007. View Article : Google Scholar : PubMed/NCBI

13 

Murugan AK, Grieco M and Tsuchida N: RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol. 59:23–35. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Ryan MB and Corcoran RB: Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 15:709–720. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Govindan R, Fakih M, Price T, Falchook G, Desai J, Kuo J, Strickler J, Krauss J, Li B, Denlinger C, et al: OA02.02 Phase 1 study of safety, tolerability, PK and efficacy of AMG 510, a novel KRASG12C inhibitor, evaluated in NSCLC. J Thorac Oncol. 14 (Suppl):S2082019. View Article : Google Scholar

16 

Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D, Gaida K, Holt T, Knutson CG, Koppada N, et al: The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 575:217–223. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Nagel R, Semenova EA and Berns A: Drugging the addict: Non-oncogene addiction as a target for cancer therapy. EMBO Rep. 17:1516–1531. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Dai C, Whitesell L, Rogers AB and Lindquist S: Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 130:1005–1018. 2007. View Article : Google Scholar : PubMed/NCBI

20 

McDonald ER III, de Weck A, Schlabach MR, Billy E, Mavrakis KJ, Hoffman GR, Belur D, Castelletti D, Frias E, Gampa K, et al: Project DRIVE: A compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 170:577–592 e10. 2017. View Article : Google Scholar : PubMed/NCBI

21 

Schuster A, Erasimus H, Fritah S, Nazarov PV, van Dyck E, Niclou SP and Golebiewska A: RNAi/CRISPR Screens: From a pool to a valid hit. Trends Biotechnol. 37:38–55. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ, Zhao Z, Smogorzewska A, Sowa ME, Ang XL, et al: Cancer proliferation gene discovery through functional genomics. Science. 319:620–624. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Silva JM, Marran K, Parker JS, Silva J, Golding M, Schlabach MR, Elledge SJ, Hannon GJ and Chang K: Profiling essential genes in human mammary cells by multiplex RNAi screening. Science. 319:617–620. 2008. View Article : Google Scholar : PubMed/NCBI

24 

Cheung HW, Cowley GS, Weir BA, Boehm JS, Rusin S, Scott JA, East A, Ali LD, Lizotte PH, Wong TC, et al: Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer. Proc Natl Acad Sci USA. 108:12372–12377. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Cowley GS, Weir BA, Vazquez F, Tamayo P, Scott JA, Rusin S, East-Seletsky A, Ali LD, Gerath WF, Pantel SE, et al: Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies. Sci Data. 1:1400352014. View Article : Google Scholar : PubMed/NCBI

26 

Marcotte R, Brown KR, Suarez F, Sayad A, Karamboulas K, Krzyzanowski PM, Sircoulomb F, Medrano M, Fedyshyn Y, Koh JLY, et al: Essential gene profiles in breast, pancreatic, and ovarian cancer cells. Cancer Discov. 2:172–189. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F: Genome engineering using the CRISPR-Cas9 system. Nat Protoc. 8:2281–2308. 2013. View Article : Google Scholar : PubMed/NCBI

28 

Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG and Zhang F: Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 343:84–87. 2014. View Article : Google Scholar : PubMed/NCBI

29 

Wang T, Wei JJ, Sabatini DM and Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343:80–84. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Kakumu T, Sato M, Goto D, Kato T, Yogo N, Hase T, Morise M, Fukui T, Yokoi K, Sekido Y, et al: Identification of proteasomal catalytic subunit PSMA6 as a therapeutic target for lung cancer. Cancer Sci. 108:732–743. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Tanaka I, Sato M, Kato T, Goto D, Kakumu T, Miyazawa A, Yogo N, Hase T, Morise M, Sekido Y, et al: eIF2β, a subunit of translation-initiation factor EIF2, is a potential therapeutic target for non-small cell lung cancer. Cancer Sci. 109:1843–1852. 2018. View Article : Google Scholar : PubMed/NCBI

32 

O'Neil NJ, Bailey ML and Hieter P: Synthetic lethality and cancer. Nat Rev Genet. 18:613–623. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Hsu TY, Simon LM, Neill NJ, Marcotte R, Sayad A, Bland CS, Echeverria GV, Sun T, Kurley SJ, Tyagi S, et al: The spliceosome is a therapeutic vulnerability in MYC-driven cancer. Nature. 525:384–388. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Kumar MS, Hancock DC, Molina-Arcas M, Steckel M, East P, Diefenbacher M, Armenteros-Monterroso E, Lassailly F, Matthews N, Nye E, et al: The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell. 149:642–655. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF, Wong KK and Elledge SJ: A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell. 137:835–848. 2009. View Article : Google Scholar : PubMed/NCBI

36 

Scholl C, Fröhling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY, Silver SJ, Tamayo P, Wadlow RC, Ramaswamy S, et al: Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell. 137:821–834. 2009. View Article : Google Scholar : PubMed/NCBI

37 

Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, Schinzel AC, Sandy P, Meylan E, Scholl C, et al: Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 462:108–112. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Wang Y, Ngo VN, Marani M, Yang Y, Wright G, Staudt LM and Downward J: Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene. 29:4658–4670. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Costa-Cabral S, Brough R, Konde A, Aarts M, Campbell J, Marinari E, Riffell J, Bardelli A, Torrance C, Lord CJ and Ashworth A: CDK1 is a synthetic lethal target for KRAS mutant tumours. PLoS One. 11:e01490992016. View Article : Google Scholar : PubMed/NCBI

40 

Downward J: RAS synthetic lethal screens revisited: Still seeking the elusive prize? Clin Cancer Res. 21:1802–1809. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Babij C, Zhang Y, Kurzeja RJ, Munzli A, Shehabeldin A, Fernando M, Quon K, Kassner PD, Ruefli-Brasse AA, Watson VJ, et al: STK33 kinase activity is nonessential in KRAS-dependent cancer cells. Cancer Res. 71:5818–5826. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Fröhling S and Scholl C: STK33 kinase is not essential in KRAS-dependent cells-letter. Cancer Res. 71:7716author reply 7717. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Forbes SA, Beare D, Boutselakis H, Bamford S, Bindal N, Tate J, Cole CG, Ward S, Dawson E, Ponting L, et al: COSMIC: Somatic cancer genetics at high-resolution. Nucleic Acids Res. 45D:D777–D783. 2017. View Article : Google Scholar

44 

Behan FM, Iorio F, Picco G, Gonçalves E, Beaver CM, Migliardi G, Santos R, Rao Y, Sassi F, Pinnelli M, et al: Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens. Nature. 568:511–516. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Chan EM, Shibue T, McFarland JM, Gaeta B, Ghandi M, Dumont N, Gonzalez A, McPartlan JS, Li T, Zhang Y, et al: WRN helicase is a synthetic lethal target in microsatellite unstable cancers. Nature. 568:551–556. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Aggarwal M, Banerjee T, Sommers JA, Iannascoli C, Pichierri P, Shoemaker RH and Brosh RM Jr: Werner syndrome helicase has a critical role in DNA damage responses in the absence of a functional fanconi anemia pathway. Cancer Res. 73:5497–5507. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Holohan C, Van Schaeybroeck S, Longley DB and Johnston PG: Cancer drug resistance: An evolving paradigm. Nat Rev Cancer. 13:714–726. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Gottesman MM, Lavi O, Hall MD and Gillet JP: Toward a better understanding of the complexity of cancer drug resistance. Annu Rev Pharmacol Toxicol. 56:85–102. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Jackson CM, Choi J and Lim M: Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nat Immunol. 20:1100–1109. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M, Minna JD, Michnoff C, Hao W, Roth MG, et al: Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature. 446:815–819. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Lin X, Morgan-Lappe S, Huang X, Li L, Zakula DM, Vernetti LA, Fesik SW and Shen Y: ‘Seed’ analysis of off-target siRNAs reveals an essential role of Mcl-1 in resistance to the small-molecule Bcl-2/Bcl-XL inhibitor ABT-737. Oncogene. 26:3972–3979. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A and Bernards R: Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature. 483:100–103. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Kurata M, Rathe SK, Bailey NJ, Aumann NK, Jones JM, Veldhuijzen GW, Moriarity BS and Largaespada DA: Using genome-wide CRISPR library screening with library resistant DCK to find new sources of Ara-C drug resistance in AML. Sci Rep. 6:361992016. View Article : Google Scholar : PubMed/NCBI

54 

Hou P, Wu C, Wang Y, Qi R, Bhavanasi D, Zuo Z, Dos Santos C, Chen S, Chen Y, Zheng H, et al: A Genome-wide CRISPR screen identifies genes critical for resistance to FLT3 inhibitor AC220. Cancer Res. 77:4402–4413. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Sun W, He B, Yang B, Hu W, Cheng S, Xiao H, Yang Z, Wen X, Zhou L, Xie H, et al: Genome-wide CRISPR screen reveals SGOL1 as a druggable target of sorafenib-treated hepatocellular carcinoma. Lab Invest. 98:734–744. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Sustic T, van Wageningen S, Bosdriesz E, Reid RJD, Dittmar J, Lieftink C, Beijersbergen RL, Wessels LFA, Rothstein R and Bernards R: A role for the unfolded protein response stress sensor ERN1 in regulating the response to MEK inhibitors in KRAS mutant colon cancers. Genome Med. 10:902018. View Article : Google Scholar : PubMed/NCBI

57 

Sharma P and Allison JP: The future of immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Khandelwal N, Breinig M, Speck T, Michels T, Kreutzer C, Sorrentino A, Sharma AK, Umansky L, Conrad H, Poschke I, et al: A high-throughput RNAi screen for detection of immune-checkpoint molecules that mediate tumor resistance to cytotoxic T lymphocytes. EMBO Mol Med. 7:450–463. 2015. View Article : Google Scholar : PubMed/NCBI

59 

Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK, Cam M, Gartner JJ, Jia L, Steinberg SM, Yamamoto TN, et al: Identification of essential genes for cancer immunotherapy. Nature. 548:537–542. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Steeg PS: Targeting metastasis. Nat Rev Cancer. 16:201–218. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Thiery JP, Acloque H, Huang RY and Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell. 139:871–890. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Sato M, Shames DS and Hasegawa Y: Emerging evidence of epithelial-to-mesenchymal transition in lung carcinogenesis. Respirology. 17:1048–1059. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Chaffer CL, San Juan BP, Lim E and Weinberg RA: EMT, cell plasticity and metastasis. Cancer Metastasis Rev. 35:645–654. 2016. View Article : Google Scholar : PubMed/NCBI

64 

Yilmaz M and Christofori G: EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, Willbanks A and Sarkar S: EMT and tumor metastasis. Clin Transl Med. 4:62015. View Article : Google Scholar : PubMed/NCBI

66 

Pavan S, Meyer-Schaller N, Diepenbruck M, Kalathur RKR, Saxena M and Christofori G: A kinome-wide high-content siRNA screen identifies MEK5-ERK5 signaling as critical for breast cancer cell EMT and metastasis. Oncogene. 37:4197–4213. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Yang J, Fan J, Li Y, Li F, Chen P, Fan Y, Xia X and Wong ST: Genome-wide RNAi screening identifies genes inhibiting the migration of glioblastoma cells. PLoS One. 8:e619152013. View Article : Google Scholar : PubMed/NCBI

68 

Paoli P, Giannoni E and Chiarugi P: Anoikis molecular pathways and its role in cancer progression. Biochim Biophys Acta. 1833:3481–3498. 2013. View Article : Google Scholar : PubMed/NCBI

69 

Taddei ML, Giannoni E, Fiaschi T and Chiarugi P: Anoikis: An emerging hallmark in health and diseases. J Pathol. 226:380–393. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, Sekido Y, Gazdar AF, et al: Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. 296:216–224. 2010. View Article : Google Scholar : PubMed/NCBI

71 

Eskiocak U, Kim SB, Ly P, Roig AI, Biglione S, Komurov K, Cornelius C, Wright WE, White MA and Shay JW: Functional parsing of driver mutations in the colorectal cancer genome reveals numerous suppressors of anchorage-independent growth. Cancer Res. 71:4359–4365. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Wood LD, Parsons DW, Jones S, Lin J, Sjöblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J, et al: The genomic landscapes of human breast and colorectal cancers. Science. 318:1108–1113. 2007. View Article : Google Scholar : PubMed/NCBI

73 

Simpson CD, Hurren R, Kasimer D, MacLean N, Eberhard Y, Ketela T, Moffat J and Schimmer AD: A genome wide shRNA screen identifies α/β hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. Apoptosis. 17:666–678. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Larsson LG: Oncogene- and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol. 21:367–376. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Gorgoulis VG and Halazonetis TD: Oncogene-induced senescence: The bright and dark side of the response. Curr Opin Cell Biol. 22:816–827. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Faget DV, Ren Q and Stewart SA: Unmasking senescence: Context-dependent effects of SASP in cancer. Nat Rev Cancer. 19:439–453. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW: Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 88:593–602. 1997. View Article : Google Scholar : PubMed/NCBI

78 

Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM, Majoor DM, Shay JW, Mooi WJ and Peeper DS: BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 436:720–724. 2005. View Article : Google Scholar : PubMed/NCBI

79 

Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA, Marais R, Wynford-Thomas D and Bennett DC: Cellular senescence in naevi and immortalisation in melanoma: A role for p16? Br J Cancer. 95:496–505. 2006. View Article : Google Scholar : PubMed/NCBI

80 

He S and Sharpless NE: Senescence in health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Vicent S, Chen R, Sayles LC, Lin C, Walker RG, Gillespie AK, Subramanian A, Hinkle G, Yang X, Saif S, et al: Wilms tumor 1 (WT1) regulates KRAS-driven oncogenesis and senescence in mouse and human models. J Clin Invest. 120:3940–3952. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Kaplon J, Hömig-Hölzel C, Gao L, Meissl K, Verdegaal EM, van der Burg SH, van Doorn R and Peeper DS: Near-genomewide RNAi screening for regulators of BRAF(V600E)-induced senescence identifies RASEF, a gene epigenetically silenced in melanoma. Pigment Cell Melanoma Res. 27:640–652. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Tordella L, Khan S, Hohmeyer A, Banito A, Klotz S, Raguz S, Martin N, Dhamarlingam G, Carroll T, González Meljem JM, et al: SWI/SNF regulates a transcriptional program that induces senescence to prevent liver cancer. Genes Dev. 30:2187–2198. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Batlle E and Clevers H: Cancer stem cells revisited. Nat Med. 23:1124–1134. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Nassar D and Blanpain C: Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Wolf J, Dewi DL, Fredebohm J, Müller-Decker K, Flechtenmacher C, Hoheisel JD and Boettcher M: A mammosphere formation RNAi screen reveals that ATG4A promotes a breast cancer stem-like phenotype. Breast Cancer Res. 15:R1092013. View Article : Google Scholar : PubMed/NCBI

87 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

88 

Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC, Guan A, Hesley JA, Miller SC, Cromwell EF, Solow-Cordero DE, et al: A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol Cell. 35:228–239. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Gargiulo G, Serresi M, Cesaroni M, Hulsman D and van Lohuizen M: In vivo shRNA screens in solid tumors. Nat Protoc. 9:2880–2902. 2014. View Article : Google Scholar : PubMed/NCBI

90 

Singh M, Venugopal C, Tokar T, Brown KR, McFarlane N, Bakhshinyan D, Vijayakumar T, Manoranjan B, Mahendram S, Vora P, et al: RNAi screen identifies essential regulators of human brain metastasis-initiating cells. Acta Neuropathol. 134:923–940. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Lin L, Chamberlain L, Pak ML, Nagarajan A, Gupta R, Zhu LJ, Wright CM, Fong KM, Wajapeyee N and Green MR: A large-scale RNAi-based mouse tumorigenesis screen identifies new lung cancer tumor suppressors that repress FGFR signaling. Cancer Discov. 4:1168–1181. 2014. View Article : Google Scholar : PubMed/NCBI

92 

Iorns E, Ward TM, Dean S, Jegg A, Thomas D, Murugaesu N, Sims D, Mitsopoulos C, Fenwick K, Kozarewa I, et al: Whole genome in vivo RNAi screening identifies the leukemia inhibitory factor receptor as a novel breast tumor suppressor. Breast Cancer Res Treat. 135:79–91. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K and Tuschl T: Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 411:494–498. 2001. View Article : Google Scholar : PubMed/NCBI

94 

Wang H, La Russa M and Qi LS: CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem. 85:227–264. 2016. View Article : Google Scholar : PubMed/NCBI

95 

Nyga A, Cheema U and Loizidou M: 3D tumour models: Novel in vitro approaches to cancer studies. J Cell Commun Signal. 5:239–248. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Mælandsmo GM, et al: Patient-derived xenograft models: An emerging platform for translational cancer research. Cancer Discov. 4:998–1013. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Bartz SR, Zhang Z, Burchard J, Imakura M, Martin M, Palmieri A, Needham R, Guo J, Gordon M, Chung N, et al: Small interfering RNA screens reveal enhanced cisplatin cytotoxicity in tumor cells having both BRCA network and TP53 disruptions. Mol Cell Biol. 26:9377–9386. 2006. View Article : Google Scholar : PubMed/NCBI

98 

Lam LT, Davis RE, Ngo VN, Lenz G, Wright G, Xu W, Zhao H, Yu X, Dang L and Staudt LM: Compensatory IKKalpha activation of classical NF-kappaB signaling during IKKbeta inhibition identified by an RNA interference sensitization screen. Proc Natl Acad Sci USA. 105:20798–20803. 2008. View Article : Google Scholar : PubMed/NCBI

99 

Xu Y, Karlsson A and Johansson M: Identification of genes associated to 2′,2′-difluorodeoxycytidine resistance in HeLa cells with a lentiviral short-hairpin RNA library. Biochem Pharmacol. 82:210–215. 2011. View Article : Google Scholar : PubMed/NCBI

100 

Guerreiro AS, Fattet S, Kulesza DW, Atamer A, Elsing AN, Shalaby T, Jackson SP, Schoenwaelder SM, Grotzer MA, Delattre O and Arcaro A: A sensitized RNA interference screen identifies a novel role for the PI3K p110γ isoform in medulloblastoma cell proliferation and chemoresistance. Mol Cancer Res. 9:925–935. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Liu-Sullivan N, Zhang J, Bakleh A, Marchica J, Li J, Siolas D, Laquerre S, Degenhardt YY, Wooster R, Chang K, et al: Pooled shRNA screen for sensitizers to inhibition of the mitotic regulator polo-like kinase (PLK1). Oncotarget. 2:1254–1264. 2011. View Article : Google Scholar : PubMed/NCBI

102 

Fredebohm J, Wolf J, Hoheisel JD and Boettcher M: Depletion of RAD17 sensitizes pancreatic cancer cells to gemcitabine. J Cell Sci. 126:3380–3389. 2013. View Article : Google Scholar : PubMed/NCBI

103 

Milosevic N, Kühnemuth B, Mühlberg L, Ripka S, Griesmann H, Lölkes C, Buchholz M, Aust D, Pilarsky C, Krug S, et al: Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia. 15:1354–1362. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Wetterskog D, Shiu KK, Chong I, Meijer T, Mackay A, Lambros M, Cunningham D, Reis-Filho JS, Lord CJ and Ashworth A: Identification of novel determinants of resistance to lapatinib in ERBB2-amplified cancers. Oncogene. 33:966–976. 2014. View Article : Google Scholar : PubMed/NCBI

105 

MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT and Alpi AF: E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res. 74:2246–2257. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Maruyama Y, Miyazaki T, Ikeda K, Okumura T, Sato W, Horie-Inoue K, Okamoto K, Takeda S and Inoue S: Short hairpin RNA library-based functional screening identified ribosomal protein L31 that modulates prostate cancer cell growth via p53 pathway. PLoS One. 9:e1087432014. View Article : Google Scholar : PubMed/NCBI

107 

Sudo M, Mori S, Madan V, Yang H, Leong G and Koeffler HP: Short-hairpin RNA library: Identification of therapeutic partners for gefitinib-resistant non-small cell lung cancer. Oncotarget. 6:814–824. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Prahallad A, Heynen GJ, Germano G, Willems SM, Evers B, Vecchione L, Gambino V, Lieftink C, Beijersbergen RL, Di Nicolantonio F, et al: PTPN11 is a central node in intrinsic and acquired resistance to targeted cancer drugs. Cell Rep. 12:1978–1985. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Kobayashi H, Nishimura H, Matsumoto K and Yoshida M: Identification of the determinants of 2-deoxyglucose sensitivity in cancer cells by shRNA library screening. Biochem Biophys Res Commun. 467:121–127. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Yamaguchi K, Iglesias-Bartolomé R, Wang Z, Callejas-Valera JL, Amornphimoltham P, Molinolo AA, Cohen EE, Califano JA, Lippman SM, Luo J and Gutkind JS: A synthetic-lethality RNAi screen reveals an ERK-mTOR co-targeting pro-apoptotic switch in PIK3CA+ oral cancers. Oncotarget. 7:10696–10709. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Yamanoi K, Matsumura N, Murphy SK, Baba T, Abiko K, Hamanishi J, Yamaguchi K, Koshiyama M, Konishi I and Mandai M: Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. Oncotarget. 7:47620–47636. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Combes E, Andrade AF, Tosi D, Michaud HA, Coquel F, Garambois V, Desigaud D, Jarlier M, Coquelle A, Pasero P, et al: Inhibition of ataxia-telangiectasia mutated and RAD3-related (ATR) overcomes oxaliplatin resistance and promotes antitumor immunity in colorectal cancer. Cancer Res. 79:2933–2946. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sato M: Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review). Oncol Lett 19: 3617-3626, 2020.
APA
Sato, M. (2020). Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review). Oncology Letters, 19, 3617-3626. https://doi.org/10.3892/ol.2020.11512
MLA
Sato, M."Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review)". Oncology Letters 19.6 (2020): 3617-3626.
Chicago
Sato, M."Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review)". Oncology Letters 19, no. 6 (2020): 3617-3626. https://doi.org/10.3892/ol.2020.11512
Copy and paste a formatted citation
x
Spandidos Publications style
Sato M: Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review). Oncol Lett 19: 3617-3626, 2020.
APA
Sato, M. (2020). Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review). Oncology Letters, 19, 3617-3626. https://doi.org/10.3892/ol.2020.11512
MLA
Sato, M."Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review)". Oncology Letters 19.6 (2020): 3617-3626.
Chicago
Sato, M."Phenotypic screening using large‑scale genomic libraries to identify drug targets for the treatment of cancer (Review)". Oncology Letters 19, no. 6 (2020): 3617-3626. https://doi.org/10.3892/ol.2020.11512
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team