Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Endocrine disruptors from the environment affecting breast cancer (Review)

  • Authors:
    • Gloria M. Calaf
    • Richard Ponce‑Cusi
    • Francisco Aguayo
    • Juan P. Muñoz
    • Tammy C. Bleak
  • View Affiliations / Copyright

    Affiliations: Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile, Programa de Virología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile
    Copyright: © Calaf et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 19-32
    |
    Published online on: April 22, 2020
       https://doi.org/10.3892/ol.2020.11566
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Evaluation of carcinogenic substances from the environment is a challenge for scientists. Recently, a novel approach based on 10 key characteristics of human carcinogens classified by the International Agency for Research on Cancer (IARC) has emerged. Carcinogenesis depends on different mechanisms and factors, including genetic, infectious (bacteria, viruses) and environmental (chemicals) factors. Endocrine disruptors are exogenous chemicals that can interfere and impair the function of the endocrine system due to their interaction with estrogen receptors or their estrogen signaling pathways inducing adverse effects in the normal mammary development, originating cancer. They are heterogeneous chemicals and include numerous synthetic substances used worldwide in agriculture, industry and consumer products. The most common are plasticizers, such as bisphenol A (BPA), pesticides, such as dichlorodiphenyltrichloroethane, and polychlorinated biphenyls (PCBs). Xenoestrogens appear to serve an important role in the increased incidence of breast cancer in the United States and numerous other countries. Several studies have demonstrated the role of organochlorine xenoestrogens in breast cancer. Therefore, the overall cumulative exposure of women to estrogens results in an increased risk for this type of cancer. Factors like lifestyle and diet also serve a role in the increased incidence of this disease. The aim of the present study was to analyze these chemical compounds based on the key characteristics given by the IARC, with a special focus on breast cancer, to establish whether these compounds are carcinogens, and to create a model for future analysis of other endocrine disruptors.
View Figures
View References

1 

Thomas D: Gene-environment-wide association studies: Emerging approaches. Nat Rev Genet. 11:259–272. 2010. View Article : Google Scholar : PubMed/NCBI

2 

Guyton KZ, Rieswijk L, Wang A, Chiu WA and Smith MT: Key characteristics approach to carcinogenic hazard identification. Chem Res Toxicol. 31:1290–1292. 2018. View Article : Google Scholar : PubMed/NCBI

3 

IARC: Some organophosphate insecticides and herbicides. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, . IARC Monographs. 112:4642017.

4 

IARC: Table I, . Key characteristics of carcinogens. Journal 1-5. 2014.

5 

Diamanti-Kandarakis E, Palioura E, Kandarakis SA and Koutsilieris M: The impact of endocrine disruptors on endocrine targets. Horm Metab Res. 42:543–552. 2010. View Article : Google Scholar : PubMed/NCBI

6 

Crews D and McLachlan JA: Epigenetics, evolution, endocrine disruption, health, and disease. Endocrinology. 147 (Suppl 6):S4–S10. 2006. View Article : Google Scholar : PubMed/NCBI

7 

Macon MB and Fenton SE: Endocrine disruptors and the breast: Early life effects and later life disease. J Mammary Gland Biol Neoplasia. 18:43–61. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT and Gore AC: Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr Rev. 30:293–342. 2009. View Article : Google Scholar : PubMed/NCBI

9 

Roy JR, Chakraborty S and Chakraborty TR: Estrogen-like endocrine disrupting chemicals affecting puberty in humans - a review. Med Sci Monit. 15:RA137–RA145. 2009.PubMed/NCBI

10 

Davis DL, Bradlow HL, Wolff M, Woodruff T, Hoel DG and Anton-Culver H: Medical hypothesis: Xenoestrogens as preventable causes of breast cancer. Environ Health Perspect. 101:372–377. 1993. View Article : Google Scholar : PubMed/NCBI

11 

Davis DL and Bradlow HL: Can environmental estrogens cause breast cancer? Sci Am. 273:167–172. 1995.PubMed/NCBI

12 

Hulka BS, Liu ET and Lininger RA: Steroid hormones and risk of breast cancer. Cancer. 74 (Suppl 3):S1111–S1124. 1994. View Article : Google Scholar

13 

Safe SH: Environmental and dietary estrogens and human health: Is there a problem? Environ Health Perspect. 103:346–351. 1995. View Article : Google Scholar : PubMed/NCBI

14 

Anway MD and Skinner MK: Epigenetic transgenerational actions of endocrine disruptors. Endocrinology. 147 (Suppl 6):S43–S49. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Anway MD and Skinner MK: Transgenerational effects of the endocrine disruptor vinclozolin on the prostate transcriptome and adult onset disease. Prostate. 68:517–529. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Anway MD, Cupp AS, Uzumcu M and Skinner MK: Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 308:1466–1469. 2005. View Article : Google Scholar : PubMed/NCBI

17 

Christiansen S, Scholze M, Axelstad M, Boberg J, Kortenkamp A and Hass U: Combined exposure to anti-androgens causes markedly increased frequencies of hypospadias in the rat. Int J Androl. 31:241–248. 2008. View Article : Google Scholar : PubMed/NCBI

18 

Shono T, Suita S, Kai H and Yamaguchi Y: Short-time exposure to vinclozolin in utero induces testicular maldescent associated with a spinal nucleus alteration of the genitofemoral nerve in rats. J Pediatr Surg. 39:217–219; discussion 217-219. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Monosson E, Kelce WR, Lambright C, Ostby J and Gray LE Jr: Peripubertal exposure to the antiandrogenic fungicide, vinclozolin, delays puberty, inhibits the development of androgen-dependent tissues, and alters androgen receptor function in the male rat. Toxicol Ind Health. 15:65–79. 1999. View Article : Google Scholar : PubMed/NCBI

20 

Schug TT, Janesick A, Blumberg B and Heindel JJ: Endocrine disrupting chemicals and disease susceptibility. J Steroid Biochem Mol Biol. 127:204–215. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Staples CA, Dorn PB, Klecka GM, O'Block ST and Harris LR: A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere. 36:2149–2173. 1998. View Article : Google Scholar : PubMed/NCBI

22 

Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J and Needham LL: Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 113:391–395. 2005. View Article : Google Scholar : PubMed/NCBI

23 

Sengupta S, Obiorah I, Maximov PY, Curpan R and Jordan VC: Molecular mechanism of action of bisphenol and bisphenol A mediated by oestrogen receptor alpha in growth and apoptosis of breast cancer cells. Br J Pharmacol. 169:167–178. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Mlynarcikova A, Macho L and Fickova M: Bisphenol A alone or in combination with estradiol modulates cell cycle- and apoptosis-related proteins and genes in MCF7 cells. Endocr Regul. 47:189–199. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Katchy A, Pinto C, Jonsson P, Nguyen-Vu T, Pandelova M, Riu A, Schramm KW, Samarov D, Gustafsson JÅ, Bondesson M and Williams C: Coexposure to phytoestrogens and bisphenol A mimics estrogenic effects in an additive manner. Toxicol Sci. 138:21–35. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Keri RA, Ho SM, Hunt PA, Knudsen KE, Soto AM and Prins GS: An evaluation of evidence for the carcinogenic activity of bisphenol A. Reprod Toxicol. 24:240–252. 2007. View Article : Google Scholar : PubMed/NCBI

27 

Lamartiniere CA, Jenkins S, Betancourt AM, Wang J and Russo J: Exposure to the endocrine disruptor bisphenol A alters susceptibility for mammary cancer. Horm Mol Biol Clin Investig. 5:45–52. 2011.PubMed/NCBI

28 

Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C and Soto AM: In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod. 65:1215–1223. 2001. View Article : Google Scholar : PubMed/NCBI

29 

Weber Lozada K and Keri RA: Bisphenol A increases mammary cancer risk in two distinct mouse models of breast cancer. Biol Reprod. 85:490–497. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Qin XY, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, Yoshinaga J and Sone H: Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther. 13:296–306. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Buterin T, Koch C and Naegeli H: Convergent transcriptional profiles induced by endogenous estrogen and distinct xenoestrogens in breast cancer cells. Carcinogenesis. 27:1567–1578. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Moral R, Wang R, Russo IH, Lamartiniere CA, Pereira J and Russo J: Effect of prenatal exposure to the endocrine disruptor bisphenol A on mammary gland morphology and gene expression signature. J Endocrinol. 196:101–112. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Ptak A, Wrobel A and Gregoraszczuk EL: Effect of bisphenol-A on the expression of selected genes involved in cell cycle and apoptosis in the OVCAR-3 cell line. Toxicol Lett. 202:30–35. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Shafei A, Ramzy MM, Hegazy AI, Husseny AK, El-Hadary UG, Taha MM and Mosa AA: The molecular mechanisms of action of the endocrine disrupting chemical bisphenol A in the development of cancer. Gene. 647:235–243. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Muñoz-de-Toro M, Markey CM, Wadia PR, Luque EH, Rubin BS, Sonnenschein C and Soto AM: Perinatal exposure to bisphenol-A alters peripubertal mammary gland development in mice. Endocrinology. 146:4138–4147. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Russo J, Tait L and Russo IH: Susceptibility of the mammary gland to carcinogenesis. III. The cell of origin of rat mammary carcinoma. Am J Pathol. 113:50–66. 1983.PubMed/NCBI

37 

Hilakivi-Clarke L, Cho E, deAssis S, Olivo S, Ealley E, Bouker KB, Welch JN, Khan G, Clarke R and Cabanes A: Maternal and prepubertal diet, mammary development and breast cancer risk. J Nutr. 131 (Suppl):S154–S157. 2001. View Article : Google Scholar

38 

Birnbaum LS and Fenton SE: Cancer and developmental exposure to endocrine disruptors. Environ Health Perspect. 111:389–394. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Russo J and Russo IH: Influence of differentiation and cell kinetics on the susceptibility of the rat mammary gland to carcinogenesis. Cancer Res. 40:2677–2687. 1980.PubMed/NCBI

40 

Tay LK and Russo J: Formation and removal of 7,12-dimethylbenz[a]anthracene-nucleic acid adducts in rat mammary epithelial cells with different susceptibility to carcinogenesis. Carcinogenesis. 2:1327–1333. 1981. View Article : Google Scholar : PubMed/NCBI

41 

Russo IH, Koszalka M and Russo J: Comparative study of the influence of pregnancy and hormonal treatment on mammary carcinogenesis. Br J Cancer. 64:481–484. 1991. View Article : Google Scholar : PubMed/NCBI

42 

Thordarson G, Jin E, Guzman RC, Swanson SM, Nandi S and Talamantes F: Refractoriness to mammary tumorigenesis in parous rats: Is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis. 16:2847–2853. 1995. View Article : Google Scholar : PubMed/NCBI

43 

Sivaraman L and Medina D: Hormone-induced protection against breast cancer. J Mammary Gland Biol Neoplasia. 7:77–92. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Yang J, Yoshizawa K, Nandi S and Tsubura A: Protective effects of pregnancy and lactation against N-methyl-N-nitrosourea-induced mammary carcinomas in female Lewis rats. Carcinogenesis. 20:623–628. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Nandi S, Guzman RC, Thordarson G and Rajkumar L: Estrogen can prevent breast cancer by mimicking the protective effect of pregnancy. Hormonal Carcinogenesis IV. Li JJ, Li SA and Llombart-Bosch A: Springer; New York, NY: pp. 153–165. 2005, View Article : Google Scholar

46 

Hu YF, Russo IH, Zalipsky U, Lynch HT and Russo J: Environmental chemical carcinogens induce transformation of breast epithelial cells from women with familial history of breast cancer. Vitro Cell Dev Biol Anim. 33:495–498. 1997. View Article : Google Scholar

47 

Boylan ES and Calhoon RE: Mammary tumorigenesis in the rat following prenatal exposure to diethylstilbestrol and postnatal treatment with 7,12-dimethylbenz[a]anthracene. J Toxicol Environ Health. 5:1059–1071. 1979. View Article : Google Scholar : PubMed/NCBI

48 

Lamartiniere CA and Holland MB: Neonatal diethylstilbestrol prevents spontaneously developing mammary tumors. Hormonal Carcinogenesis. 308. 1992.

49 

Shellabarger CJ and Soo VA: Effects of neonatally administered sex steroids on 7,12-dimethylbenz(a)anthracene-induced mammary neoplasia in rats. Cancer Res. 33:1567–1569. 1973.PubMed/NCBI

50 

Nagasawa H, Yanai R, Shodono M, Nakamura T and Tanabe Y: Effect of neonatally administered estrogen or prolactin on normal and neoplastic mammary growth and serum estradiol-17 beta level in rats. Cancer Res. 34:2643–2646. 1974.PubMed/NCBI

51 

FDA, . Bisphenol A (BPA): Use in food contact application. https://www.fda.gov/food/food-additives-petitions/bisphenol-bpa-use-food-contact-applicationJuly. 2019

52 

Kovacic P: How safe is bisphenol A? Fundamentals of toxicity: Metabolism, electron transfer and oxidative stress. Med Hypotheses. 75:1–4. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM and Wahl GM: c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: A mechanism for oncogene-induced genetic instability. Mol Cell. 9:1031–1044. 2002. View Article : Google Scholar : PubMed/NCBI

54 

Pfeifer D, Chung YM and Hu MC: Effects of low-dose bisphenol A on DNA damage and proliferation of breast cells: The role of c-Myc. Environ Health Perspect. 123:1271–1279. 2015. View Article : Google Scholar : PubMed/NCBI

55 

Olsen CM, Meussen-Elholm ET, Samuelsen M, Holme JA and Hongslo JK: Effects of the environmental oestrogens bisphenol A, tetrachlorobisphenol A, tetrabromobisphenol A, 4-hydroxybiphenyl and 4,4′-dihydroxybiphenyl on oestrogen receptor binding, cell proliferation and regulation of oestrogen sensitive proteins in the human breast cancer cell line MCF-7. Pharmacol Toxicol. 92:180–188. 2003. View Article : Google Scholar : PubMed/NCBI

56 

Liu Y, Qu K, Hai Y and Zhao C: Bisphenol A (BPA) binding on full-length architectures of estrogen receptor. J Cell Biochem. 119:6784–6794. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Kim JY, Choi HG, Lee HM, Lee GA, Hwang KA and Choi KC: Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells. J Biomed Res. 31:358–369. 2017.PubMed/NCBI

58 

Routledge EJ, White R, Parker MG and Sumpter JP: Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem. 275:35986–35993. 2000. View Article : Google Scholar : PubMed/NCBI

59 

Matthews JB, Twomey K and Zacharewski TR: In vitro and in vivo interactions of bisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptors alpha and beta. Chem Res Toxicol. 14:149–157. 2001. View Article : Google Scholar : PubMed/NCBI

60 

Singh M, McGinley JN and Thompson HJ: A comparison of the histopathology of premalignant and malignant mammary gland lesions induced in sexually immature rats with those occurring in the human. Lab Invest. 80:221–231. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Murray TJ, Maffini MV, Ucci AA, Sonnenschein C and Soto AM: Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol. 23:383–390. 2007. View Article : Google Scholar : PubMed/NCBI

62 

Rochester JR: Bisphenol A and human health: A review of the literature. Reprod Toxicol. 42:132–155. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Rogers JA, Metz L and Yong VW: Review: Endocrine disrupting chemicals and immune responses: A focus on bisphenol-A and its potential mechanisms. Mol Immunol. 53:421–430. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Liao SL, Tsai MH, Lai SH, Yao TC, Hua MC, Yeh KW, Chiang CH, Huang SY and Huang JL: Prenatal exposure to bisphenol-A is associated with Toll-like receptor-induced cytokine suppression in neonates. Pediatr Res. 79:438–444. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Parker LC, Prince LR and Sabroe I: Translational mini-review series on Toll-like receptors: Networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol. 147:199–207. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Deblois G and Giguère V: Functional and physiological genomics of estrogen-related receptors (ERRs) in health and disease. Biochim Biophys Acta. 1812:1032–1040. 2011. View Article : Google Scholar : PubMed/NCBI

67 

Salem ML: Estrogen, a double-edged sword: Modulation of TH1- and TH2-mediated inflammations by differential regulation of TH1/TH2 cytokine production. Curr Drug Targets Inflamm Allergy. 3:97–104. 2004. View Article : Google Scholar : PubMed/NCBI

68 

Xu J, Huang G and Guo TL: Developmental bisphenol A exposure modulates immune-related diseases. Toxics. 4:E232016. View Article : Google Scholar : PubMed/NCBI

69 

Picard D: Molecular mechanisms of cross-talk between growth factors and nuclear receptor signaling. Pure App Chem. 75:1743–1756. 2003. View Article : Google Scholar

70 

Saavedra HI, Fukasawa K, Conn CW and Stambrook PJ: MAPK mediates RAS-induced chromosome instability. J Biol Chem. 274:38083–38090. 1999. View Article : Google Scholar : PubMed/NCBI

71 

Li X, Zhang S and Safe S: Activation of kinase pathways in MCF-7 cells by 17beta-estradiol and structurally diverse estrogenic compounds. J Steroid Biochem Mol Biol. 98:122–132. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Ho SM, Tang WY, Belmonte de Frausto J and Prins GS: Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res. 66:5624–5632. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Prins GS, Tang WY, Belmonte J and Ho SM: Developmental exposure to bisphenol A increases prostate cancer susceptibility in adult rats: Epigenetic mode of action is implicated. Fertil Steril. 89 (Suppl 2):e412008. View Article : Google Scholar : PubMed/NCBI

74 

Weng YI, Hsu PY, Liyanarachchi S, Liu J, Deatherage DE, Huang YW, Zuo T, Rodriguez B, Lin CH, Cheng AL and Huang TH: Epigenetic influences of low-dose bisphenol A in primary human breast epithelial cells. Toxicol Appl Pharmacol. 248:111–121. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Xin F, Susiarjo M and Bartolomei MS: Multigenerational and transgenerational effects of endocrine disrupting chemicals: A role for altered epigenetic regulation? Semin Cell Dev Biol. 43:66–75. 2015. View Article : Google Scholar : PubMed/NCBI

76 

Kundakovic M and Champagne FA: Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun. 25:1084–1093. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Mileva G, Baker SL, Konkle AT and Bielajew C: Bisphenol-A: epigenetic reprogramming and effects on reproduction and behavior. Int J Environ Res Public Health. 11:7537–7561. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Morgan HD, Sutherland HG, Martin DI and Whitelaw E: Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 23:314–318. 1999. View Article : Google Scholar : PubMed/NCBI

79 

Dolinoy DC, Huang D and Jirtle RL: Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA. 104:13056–13061. 2007. View Article : Google Scholar : PubMed/NCBI

80 

Doherty LF, Bromer JG, Zhou Y, Aldad TS and Taylor HS: In utero exposure to diethylstilbestrol (DES) or bisphenol-A (BPA) increases EZH2 expression in the mammary gland: An epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer. 1:146–155. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Dhimolea E, Wadia PR, Murray TJ, Settles ML, Treitman JD, Sonnenschein C, Shioda T and Soto AM: Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PLoS One. 9:e998002014. View Article : Google Scholar : PubMed/NCBI

82 

Loft S, Fischer-Nielsen A, Jeding IB, Vistisen K and Poulsen HE: 8-Hydroxydeoxyguanosine as a urinary biomarker of oxidative DNA damage. J Toxicol Environ Health. 40:391–404. 1993. View Article : Google Scholar : PubMed/NCBI

83 

Kasai H: Analysis of a form of oxidative DNA damage, 8-hydroxy-2′-deoxyguanosine, as a marker of cellular oxidative stress during carcinogenesis. Mutat Res. 387:147–163. 1997. View Article : Google Scholar : PubMed/NCBI

84 

Sabu A and Jain N: Bisphenol A induced oxidative stress and the biochemical profile: An in vitro approach. European J Biotechnol Biosci. 6:21–24. 2018.

85 

Acconcia F, Pallottini V and Marino M: Molecular Mechanisms of Action of BPA. Dose Response. 13:15593258156105822015. View Article : Google Scholar : PubMed/NCBI

86 

Li L, Wang Q, Zhang Y, Niu Y, Yao X and Liu H: The molecular mechanism of bisphenol A (BPA) as an endocrine disruptor by interacting with nuclear receptors: Insights from molecular dynamics (MD) simulations. PLoS One. 10:e01203302015. View Article : Google Scholar : PubMed/NCBI

87 

Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Shioda T, Soto AM, vom Saal FS, Welshons WV, et al: Hormones and endocrine-disrupting chemicals: Low-dose effects and nonmonotonic dose responses. Endocr Rev. 33:378–455. 2012. View Article : Google Scholar : PubMed/NCBI

88 

ATSDR, . Toxicological profile for DDT, DDE, and DDD. https://www.atsdr.cdc.gov/ToxProfiles/tp.asp?id=81&tid=20September. 2018

89 

CDC, . Dichlorodiphenyltrichloroethane (DDT). https://www.cdc.gov/biomonitoring/DDT_FactSheet.htmlJuly. 2018

90 

Wolff MS: Half-lives of organochlorines (OCs) in humans. Arch Environ Contam Toxicol. 36:5041999. View Article : Google Scholar : PubMed/NCBI

91 

Waliszewski SM, Melo-Santiesteban G, Villalobos-Pietrini R, Gómez-Arroyo S, Amador-Muñoz O, Herrero-Mercado M and Carvajal O: Breast milk excretion Kinetic of b-HCH, pp'DDE and pp'DDT. Bull Environ Contam Toxicol. 83:869–873. 2009. View Article : Google Scholar : PubMed/NCBI

92 

Lim JS, Son HK, Park SK, Jacobs DR Jr and Lee DH: Inverse associations between long-term weight change and serum concentrations of persistent organic pollutants. Int J Obes (Lond). 35:744–747. 2011. View Article : Google Scholar : PubMed/NCBI

93 

Elobeid MA, Padilla MA, Brock DW, Ruden DM and Allison DB: Endocrine disruptors and obesity: An examination of selected persistent organic pollutants in the NHANES 1999–2002 data. Int J Environ Res Public Health. 7:2988–3005. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Everett CJ, Frithsen IL, Diaz VA, Koopman RJ, Simpson WM Jr and Mainous AG III: Association of a polychlorinated dibenzo-p-dioxin, a polychlorinated biphenyl, and DDT with diabetes in the 1999–2002 National Health and Nutrition Examination Survey. Environ Res. 103:413–418. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Beard J; Australian Rural Health Research Collaboration, : DDT and human health. Sci Total Environ. 355:78–89. 2006. View Article : Google Scholar : PubMed/NCBI

96 

Kelce WR, Stone CR, Laws SC, Gray LE, Kemppainen JA and Wilson EM: Persistent DDT metabolite p,p'-DDE is a potent androgen receptor antagonist. Nature. 375:581–585. 1995. View Article : Google Scholar : PubMed/NCBI

97 

Steinmetz R, Young PC, Caperell-Grant A, Gize EA, Madhukar BV, Ben-Jonathan N and Bigsby RM: Novel estrogenic action of the pesticide residue beta-hexachlorocyclohexane in human breast cancer cells. Cancer Res. 56:5403–5409. 1996.PubMed/NCBI

98 

Lemaire G, Mnif W, Mauvais P, Balaguer P and Rahmani R: Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 79:1160–1169. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Pestana D, Teixeira D, Faria A, Domingues V, Monteiro R and Calhau C: Effects of environmental organochlorine pesticides on human breast cancer: Putative involvement on invasive cell ability. Environ Toxicol. 30:168–176. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Fenga C: Occupational exposure and risk of breast cancer. Biomed Rep. 4:282–292. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Lessa JM, Beçak W, Nazareth Rabello M, Pereira CA and Ungaro MT: Cytogenetic study of DDT on human lymphocytes in vitro. Mutat Res. 40:131–138. 1976. View Article : Google Scholar : PubMed/NCBI

102 

Amer SM, Fahmy MA and Donya SM: Cytogenetic effect of some insecticides in mouse spleen. J Appl Toxicol. 16:1–3. 1996. View Article : Google Scholar : PubMed/NCBI

103 

Andersen HR, Andersson AM, Arnold SF, Autrup H, Barfoed M, Beresford NA, Bjerregaard P, Christiansen LB, Gissel B, Hummel R, et al: Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environ Health Perspect. 107 (Suppl 1):S89–S108. 1999. View Article : Google Scholar

104 

Bulger WH and Kupfer D: Estrogenic action of DDT analogs. Am J Ind Med. 4:163–173. 1983. View Article : Google Scholar : PubMed/NCBI

105 

Dees C, Askari M, Foster JS, Ahamed S and Wimalasena J: DDT mimicks estradiol stimulation of breast cancer cells to enter the cell cycle. Mol Carcinog. 18:107–114. 1997. View Article : Google Scholar : PubMed/NCBI

106 

Lin ZX, Kavanagh T, Trosko JE and Chang CC: Inhibition of gap junctional intercellular communication in human teratocarcinoma cells by organochlorine pesticides. Toxicol Appl Pharmacol. 83:10–19. 1986. View Article : Google Scholar : PubMed/NCBI

107 

Scribner JD and Mottet NK: DDT acceleration of mammary gland tumors induced in the male Sprague-Dawley rat by 2-acetamidophenanthrene. Carcinogenesis. 2:1235–1239. 1981. View Article : Google Scholar : PubMed/NCBI

108 

Jaga K: What are the implications of the interaction between DDT and estrogen receptors in the body? Med Hypotheses. 54:18–25. 2000. View Article : Google Scholar : PubMed/NCBI

109 

Anand M, Singh J, Siddiqui MKJ, Taneja A, Patel DK and Mehrotra PK: Organochlorine pesticides in the females suffering from breast cancer and its relation to estrogen receptor status. J Drug Metab Toxicol. 4:1562013.

110 

Dees C, Askari M, Garrett S, Gehrs K, Henley D and Ardies CM: Estrogenic and DNA-damaging activity of Red No. 3 in human breast cancer cells. Environ Health Perspect. 105 (Suppl 3):S625–S632. 1997. View Article : Google Scholar

111 

Dewailly E, Dodin S, Verreault R, Ayotte P, Sauvé L, Morin J and Brisson J: High organochlorine body burden in women with estrogen receptor-positive breast cancer. J Natl Cancer Inst. 86:232–234. 1994. View Article : Google Scholar : PubMed/NCBI

112 

Anderson LF: DDT and breast cancer: The verdict isn't in. J Natl Cancer Inst. 86:576–577. 1994. View Article : Google Scholar : PubMed/NCBI

113 

Krieger N, Wolff MS, Hiatt RA, Rivera M, Vogelman J and Orentreich N: Breast cancer and serum organochlorines: A prospective study among white, black, and Asian women. J Natl Cancer Inst. 86:589–599. 1994. View Article : Google Scholar : PubMed/NCBI

114 

Street JC and Sharma RP: Alteration of induced cellular and humoral immune responses by pesticides and chemicals of environmental concern: Quantitative studies of immunosuppression by DDT, aroclor 1254, carbaryl, carbofuran, and methylparathion. Toxicol Appl Pharmacol. 32:587–602. 1975. View Article : Google Scholar : PubMed/NCBI

115 

Gourounti K and Andreas L: Burden of organochlorine substances as a risk factor of breast cancer. Health Sci J. 3:19–31. 2009.

116 

Vineis P and D'Amore F: The role of occupational exposure and immunodeficiency in B-cell malignancies. Working Group on the Epidemiology of Hematolymphopoietic Malignancies in Italy. Epidemiology. 3:266–270. 1992. View Article : Google Scholar : PubMed/NCBI

117 

Handy DE, Castro R and Loscalzo J: Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation. 123:2145–2156. 2011. View Article : Google Scholar : PubMed/NCBI

118 

Chuang JC and Jones PA: Epigenetics and microRNAs. Pediatr Res. 61:24R–29R. 2007. View Article : Google Scholar : PubMed/NCBI

119 

Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H, Komatsu Y, Maita K and Harada T: Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: Implication of hormesis-like effects. J Toxicol Sci. 34:469–482. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Skinner MK, Manikkam M, Tracey R, Guerrero-Bosagna C, Haque M and Nilsson EE: Ancestral dichlorodiphenyltrichloroethane (DDT) exposure promotes epigenetic transgenerational inheritance of obesity. BMC Med. 11:2282013. View Article : Google Scholar : PubMed/NCBI

121 

Gulyaeva LF, Chanyshev MD, Kolmykov SK, Ushakov DS and Nechkin SS: The effect of xenobiotics on microRNA expression in the rat liver. Biochem Moscow Suppl Ser B. 10:258–263. 2016. View Article : Google Scholar

122 

Parke DV, Ioannides C and Lewis DF: The 1990 pharmaceutical manufacturers association of Canada keynote lecture. The role of the cytochromes P450 in the detoxication and activation of drugs and other chemicals. Can J Physiol Pharmacol. 69:537–549. 1991. View Article : Google Scholar : PubMed/NCBI

123 

Pal R, Ahmed T, Kumar V, Suke SG, Ray A and Banerjee BD: Protective effects of different antioxidants against endosulfan-induced oxidative stress and immunotoxicity in albino rats. Indian J Exp Biol. 47:723–729. 2009.PubMed/NCBI

124 

Iscan M, Coban T, Cok I, Bulbul D, Eke BC and Burgaz S: The organochlorine pesticide residues and antioxidant enzyme activities in human breast tumors: Is there any association? Breast Cancer Res Treat. 72:173–182. 2002. View Article : Google Scholar : PubMed/NCBI

125 

Al-Gubory KH: Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development. Reprod Biomed Online. 29:17–31. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Sahoo A, Samanta L and Chainy GB: Mediation of oxidative stress in HCH-induced neurotoxicity in rat. Arch Environ Contam Toxicol. 39:7–12. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Kostka G, Palut D and Wiadrowska B: The effect of permethrin and DDT on the activity of cytochrome P-450 1A and 2B molecular forms in rat liver. Rocz Panstw Zakl Hig. 48:229–237. 1997.(In Polish). PubMed/NCBI

128 

Ames BN, Gold LS and Willett WC: The causes and prevention of cancer. Proc Natl Acad Sci USA. 92:5258–5265. 1995. View Article : Google Scholar : PubMed/NCBI

129 

Canales-Aguirre A, Padilla-Camberos E, Gómez-Pinedo U, Salado-Ponce H, Feria-Velasco A and De Celis R: Genotoxic effect of chronic exposure to DDT on lymphocytes, oral mucosa and breast cells of female rats. Int J Environ Res Public Health. 8:540–553. 2011. View Article : Google Scholar : PubMed/NCBI

130 

Harada T, Takeda M, Kojima S and Tomiyama N: Toxicity and Carcinogenicity of Dichlorodiphenyltrichloroethane (DDT). Toxicol Res. 32:21–33. 2016. View Article : Google Scholar : PubMed/NCBI

131 

Kim JY, Choi CY, Lee KJ, Shin DW, Jung KS, Chung YC, Lee SS, Shin JG and Jeong HG: Induction of inducible nitric oxide synthase and proinflammatory cytokines expression by o,p'-DDT in macrophages. Toxicol Lett. 147:261–269. 2004. View Article : Google Scholar : PubMed/NCBI

132 

Zhang YQ, Mao Z, Zheng YL, Han BP, Chen LT, Li J and Li F: Elevation of inducible nitric oxide synthase and cyclooxygenase-2 expression in the mouse brain after chronic nonylphenol exposure. Int J Mol Sci. 9:1977–1988. 2008. View Article : Google Scholar : PubMed/NCBI

133 

Alegria-Torres JA, Díaz-Barriga F, Gandolfi AJ and Pérez-Maldonado IN: Mechanisms of p,p'-DDE-induced apoptosis in human peripheral blood mononuclear cells. Toxicol In Vitro. 23:1000–1006. 2009. View Article : Google Scholar : PubMed/NCBI

134 

Wolff MS, Toniolo PG, Lee EW, Rivera M and Dubin N: Blood levels of organochlorine residues and risk of breast cancer. J Natl Cancer Inst. 85:648–652. 1993. View Article : Google Scholar : PubMed/NCBI

135 

IARC Working Group on the Evaluation of Carcinogenic Risk to Humans, . DDT, Lindane, and 2,4-D. IARC Monographs. 113:5132018.

136 

EPA, . PCBs: Cancer dose-response assessment and application to environmental mixtures. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NCEA&TIMSType=&count=10000&dirEntryId=12486&searchAll=&showCriteria=2&simpleSearch=0October. 2018

137 

EPA, . Polychlorinated Biphenyls (PCBs). https://www.epa.gov/pcbsJuly. 2018

138 

Ravenscroft J and Schell LM; Akwesasne Task Force on the Environ Int, : Patterns of PCB exposure among Akwesasne adolescents: The role of dietary and inhalation pathways. Environ Int. 121:963–972. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Petreas M, Nelson D, Brown FR, Goldberg D, Hurley S and Reynolds P: High concentrations of polybrominated diphenylethers (PBDEs) in breast adipose tissue of California women. Environ Int. 37:190–197. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Faroon O and Ruiz P: Polychlorinated biphenyls: New evidence from the last decade. Toxicol Ind Health. 32:1825–1847. 2016. View Article : Google Scholar : PubMed/NCBI

141 

Ellsworth RE, Mamula KA, Costantino NS, Deyarmin B, Kostyniak PJ, Chi LH, Shriver CD and Ellsworth DL: Abundance and distribution of polychlorinated biphenyls (PCBs) in breast tissue. Environ Res. 138:291–297. 2015. View Article : Google Scholar : PubMed/NCBI

142 

Zhang J, Huang Y, Wang X, Lin K and Wu K: Environmental polychlorinated biphenyl exposure and breast cancer risk: A meta-analysis of observational studies. PLoS One. 10:e01425132015. View Article : Google Scholar : PubMed/NCBI

143 

Demers A, Ayotte P, Brisson J, Dodin S, Robert J and Dewailly E: Risk and aggressiveness of breast cancer in relation to plasma organochlorine concentrations. Cancer Epidemiol Biomarkers Prev. 9:161–166. 2000.PubMed/NCBI

144 

Ritter R, Scheringer M, MacLeod M, Moeckel C, Jones KC and Hungerbühler K: Intrinsic human elimination half-lives of polychlorinated biphenyls derived from the temporal evolution of cross-sectional biomonitoring data from the United Kingdom. Environ Health Perspect. 119:225–231. 2011. View Article : Google Scholar : PubMed/NCBI

145 

Takeuchi S, Anezaki K and Kojima H: Effects of unintentional PCBs in pigments and chemical products on transcriptional activity via aryl hydrocarbon and nuclear hormone receptors. Environ Pollut. 227:306–313. 2017. View Article : Google Scholar : PubMed/NCBI

146 

Moysich KB, Shields PG, Freudenheim JL, Schisterman EF, Vena JE, Kostyniak P, Greizerstein H, Marshall JR, Graham S and Ambrosone CB: Polychlorinated biphenyls, cytochrome P4501A1 polymorphism, and postmenopausal breast cancer risk. Cancer Epidemiol Biomarkers Prev. 8:41–44. 1999.PubMed/NCBI

147 

Hopf NB, Ruder AM and Succop P: Background levels of polychlorinated biphenyls in the U.S. population. Sci Total Environ. 407:6109–6119. 2009. View Article : Google Scholar : PubMed/NCBI

148 

Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H and Straif K; WHO International Agency for Research on Cancer, : Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol. 14:287–288. 2013. View Article : Google Scholar : PubMed/NCBI

149 

McGovern V: PCBs are endocrine disruptors: Mixture affects reproductive development in female mice. Environ Health Perspect. 114:368–369. 2006. View Article : Google Scholar

150 

Yang O, Kim HL, Weon JI and Seo YR: Endocrine-disrupting chemicals: Review of toxicological mechanisms using molecular pathway analysis. J Cancer Prev. 20:12–24. 2015. View Article : Google Scholar : PubMed/NCBI

151 

Gregoraszczuk EL, Rak A, Ludewig G and Gasinska A: Effects of estradiol, PCB3, and their hydroxylated metabolites on proliferation, cell cycle, and apoptosis of human breast cancer cells. Environ Toxicol Pharmacol. 25:227–233. 2008. View Article : Google Scholar : PubMed/NCBI

152 

Robertson LW and Ludewig G: Polychlorinated Biphenyl (PCB) carcinogenicity with special emphasis on airborne PCBs. Gefahrst Reinhalt Luft. 71:25–32. 2011.PubMed/NCBI

153 

Espandiari P, Glauert HP, Lehmler HJ, Lee EY, Srinivasan C and Robertson LW: Polychlorinated biphenyls as initiators in liver carcinogenesis: Resistant hepatocyte model. Toxicol Appl Pharmacol. 186:55–62. 2003. View Article : Google Scholar : PubMed/NCBI

154 

Parada H Jr, Wolff MS, Engel LS, Eng SM, Khankari NK, Neugut AI, Teitelbaum SL and Gammon MD: Polychlorinated biphenyls and their association with survival following breast cancer. Eur J Cancer. 56:21–30. 2016. View Article : Google Scholar : PubMed/NCBI

155 

Silberhorn EM, Glauert HP and Robertson LW: Carcinogenicity of polyhalogenated biphenyls: PCBs and PBBs. Crit Rev Toxicol. 20:440–496. 1990. View Article : Google Scholar : PubMed/NCBI

156 

McLean MR, Robertson LW and Gupta RC: Detection of PCB adducts by the 32P-postlabeling technique. Chem Res Toxicol. 9:165–171. 1996. View Article : Google Scholar : PubMed/NCBI

157 

Oakley GG, Robertson LW and Gupta RC: Analysis of polychlorinated biphenyl-DNA adducts by 32P-postlabeling. Carcinogenesis. 17:109–114. 1996. View Article : Google Scholar : PubMed/NCBI

158 

Ludewig G and Robertson LW: Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular carcinoma. Cancer Lett. 334:46–55. 2013. View Article : Google Scholar : PubMed/NCBI

159 

Nutter LM, Ngo EO and Abul-Hajj YJ: Characterization of DNA damage induced by 3,4-estrone-o-quinone in human cells. J Biol Chem. 266:16380–16386. 1991.PubMed/NCBI

160 

Knower KC, To SQ, Leung YK, Ho SM and Clyne CD: Endocrine disruption of the epigenome: A breast cancer link. Endocr Relat Cancer. 21:T33–T55. 2014. View Article : Google Scholar : PubMed/NCBI

161 

Casati L, Sendra R, Colciago A, Negri-Cesi P, Berdasco M, Esteller M and Celotti F: Polychlorinated biphenyls affect histone modification pattern in early development of rats: A role for androgen receptor-dependent modulation? Epigenomics. 4:101–112. 2012. View Article : Google Scholar : PubMed/NCBI

162 

Desaulniers D, Xiao GH, Lian H, Feng YL, Zhu J, Nakai J and Bowers WJ: Effects of mixtures of polychlorinated biphenyls, methylmercury, and organochlorine pesticides on hepatic DNA methylation in prepubertal female Sprague-Dawley rats. Int J Toxicol. 28:294–307. 2009. View Article : Google Scholar : PubMed/NCBI

163 

Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J, Schotta G, Bonaldi T, Haydon C, Ropero S, Petrie K, et al: Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet. 37:391–400. 2005. View Article : Google Scholar : PubMed/NCBI

164 

Kim KY, Kim DS, Lee SK, Lee IK, Kang JH, Chang YS, Jacobs DR, Steffes M and Lee DH: Association of low-dose exposure to persistent organic pollutants with global DNA hypomethylation in healthy Koreans. Environ Health Perspect. 118:370–374. 2010. View Article : Google Scholar : PubMed/NCBI

165 

Srinivasan A, Lehmler HJ, Robertson LW and Ludewig G: Production of DNA strand breaks in vitro and reactive oxygen species in vitro and in HL-60 cells by PCB metabolites. Toxicol Sci. 60:92–102. 2001. View Article : Google Scholar : PubMed/NCBI

166 

Dreiem A, Rykken S, Lehmler HJ, Robertson LW and Fonnum F: Hydroxylated polychlorinated biphenyls increase reactive oxygen species formation and induce cell death in cultured cerebellar granule cells. Toxicol Appl Pharmacol. 240:306–313. 2009. View Article : Google Scholar : PubMed/NCBI

167 

Liehr JG and Roy D: Free radical generation by redox cycling of estrogens. Free Radic Biol Med. 8:415–423. 1990. View Article : Google Scholar : PubMed/NCBI

168 

Han X and Liehr JG: DNA single-strand breaks in kidneys of Syrian hamsters treated with steroidal estrogens: Hormone-induced free radical damage preceding renal malignancy. Carcinogenesis. 15:997–1000. 1994. View Article : Google Scholar : PubMed/NCBI

169 

Liu S, Li S and Du Y: Polychlorinated biphenyls (PCBs) enhance metastatic properties of breast cancer cells by activating Rho-associated kinase (ROCK). PLoS One. 5:e112722010. View Article : Google Scholar : PubMed/NCBI

170 

Nutter LM, Wu YY, Ngo EO, Sierra EE, Gutierrez PL and Abul-Hajj YJ: An o-quinone form of estrogen produces free radicals in human breast cancer cells: Correlation with DNA damage. Chem Res Toxicol. 7:23–28. 1994. View Article : Google Scholar : PubMed/NCBI

171 

Han X and Liehr JG: Microsome-mediated 8-hydroxylation of guanine bases of DNA by steroid estrogens: Correlation of DNA damage by free radicals with metabolic activation to quinones. Carcinogenesis. 16:2571–2574. 1995. View Article : Google Scholar : PubMed/NCBI

172 

Han X and Liehr JG: 8-Hydroxylation of guanine bases in kidney and liver DNA of hamsters treated with estradiol: Role of free radicals in estrogen-induced carcinogenesis. Cancer Res. 54:5515–5517. 1994.PubMed/NCBI

173 

Lin CH and Lin P: Induction of imbalances in gene expression, oxidative DNA damage, and cell toxicity by a planar (PCB126) and a non-planar (PCB153) polychlorinated biphenyl congeners in human breast carcinoma cell lines. AACR. 65:280–281. 2005.

174 

Kimbrough RD: Human health effects of polychlorinated biphenyls (PCBs) and polybrominated biphenyls (PBBs). Annu Rev Pharmacol Toxicol. 27:87–111. 1987. View Article : Google Scholar : PubMed/NCBI

175 

Selgrade MK: Immunotoxicity: The risk is real. Toxicol Sci. 100:328–332. 2007. View Article : Google Scholar : PubMed/NCBI

176 

Ward MH, Colt JS, Metayer C, Gunier RB, Lubin J, Crouse V, Nishioka MG, Reynolds P and Buffler PA: Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ Health Perspect. 117:1007–1013. 2009. View Article : Google Scholar : PubMed/NCBI

177 

Gupta P, Thompson BL, Wahlang B, Jordan CT, Zach Hilt J, Hennig B and Dziubla T: The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: A potential target for antioxidant nanotherapeutics. Drug Deliv Transl Res. 8:740–759. 2018. View Article : Google Scholar : PubMed/NCBI

178 

Petriello MC, Hoffman JB, Vsevolozhskaya O, Morris AJ and Hennig B: Dioxin-like PCB 126 increases intestinal inflammation and disrupts gut microbiota and metabolic homeostasis. Environ Pollut. 242:1022–1032. 2018. View Article : Google Scholar : PubMed/NCBI

179 

Coxon T, Goldstein L and Odhiambo BK: Analysis of spatial distribution of trace metals, PCB, and PAH and their potential impact on human health in Virginian Counties and independent cities, USA. Environ Geochem Health. 41:783–801. 2019. View Article : Google Scholar : PubMed/NCBI

180 

IARC, . Polychlorinated biphenyls and polybrominated biphenyls. Journal Volume. 107:5102016.

181 

Safe SH: Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther. 67:247–281. 1995. View Article : Google Scholar : PubMed/NCBI

182 

Falck F Jr, Ricci A Jr, Wolff MS, Godbold J and Deckers P: Pesticides and polychlorinated biphenyl residues in human breast lipids and their relation to breast cancer. Arch Environ Health. 47:143–146. 1992.PubMed/NCBI

183 

Soto AM and Sonnenschein C: Environmental causes of cancer: Endocrine disruptors as carcinogens. Nat Rev Endocrinol. 6:363–370. 2010. View Article : Google Scholar : PubMed/NCBI

184 

Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J and Zoeller RT: EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 36:E1–E150. 2015. View Article : Google Scholar : PubMed/NCBI

185 

Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, Myers JP, Shioda T, Soto AM, vom Saal FS, et al: Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reprod Toxicol. 38:1–15. 2013. View Article : Google Scholar : PubMed/NCBI

186 

Huang B, Chen F, Shen Y, Qian K, Wang Y, Sun C, Zhao X, Cui B, Gao F, Zeng Z and Cui H: Advances in targeted pesticides with environmentally responsive controlled release by nanotechnology. Nanomaterials (Basel). 8:E1022018. View Article : Google Scholar : PubMed/NCBI

187 

Peters R, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, et al: Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol. 54:155–164. 2016. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Calaf GM, Ponce‑Cusi R, Aguayo F, Muñoz JP and Bleak TC: Endocrine disruptors from the environment affecting breast cancer (Review). Oncol Lett 20: 19-32, 2020.
APA
Calaf, G.M., Ponce‑Cusi, R., Aguayo, F., Muñoz, J.P., & Bleak, T.C. (2020). Endocrine disruptors from the environment affecting breast cancer (Review). Oncology Letters, 20, 19-32. https://doi.org/10.3892/ol.2020.11566
MLA
Calaf, G. M., Ponce‑Cusi, R., Aguayo, F., Muñoz, J. P., Bleak, T. C."Endocrine disruptors from the environment affecting breast cancer (Review)". Oncology Letters 20.1 (2020): 19-32.
Chicago
Calaf, G. M., Ponce‑Cusi, R., Aguayo, F., Muñoz, J. P., Bleak, T. C."Endocrine disruptors from the environment affecting breast cancer (Review)". Oncology Letters 20, no. 1 (2020): 19-32. https://doi.org/10.3892/ol.2020.11566
Copy and paste a formatted citation
x
Spandidos Publications style
Calaf GM, Ponce‑Cusi R, Aguayo F, Muñoz JP and Bleak TC: Endocrine disruptors from the environment affecting breast cancer (Review). Oncol Lett 20: 19-32, 2020.
APA
Calaf, G.M., Ponce‑Cusi, R., Aguayo, F., Muñoz, J.P., & Bleak, T.C. (2020). Endocrine disruptors from the environment affecting breast cancer (Review). Oncology Letters, 20, 19-32. https://doi.org/10.3892/ol.2020.11566
MLA
Calaf, G. M., Ponce‑Cusi, R., Aguayo, F., Muñoz, J. P., Bleak, T. C."Endocrine disruptors from the environment affecting breast cancer (Review)". Oncology Letters 20.1 (2020): 19-32.
Chicago
Calaf, G. M., Ponce‑Cusi, R., Aguayo, F., Muñoz, J. P., Bleak, T. C."Endocrine disruptors from the environment affecting breast cancer (Review)". Oncology Letters 20, no. 1 (2020): 19-32. https://doi.org/10.3892/ol.2020.11566
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team