|
1
|
Shafat MS, Gnaneswaran B, Bowles KM and
Rushworth SA: The bone marrow microenvironment-Home of the leukemic
blasts. Blood Rev. 31:277–286. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Sarvaiya PJ, Schwartz JR, Hernandez CP,
Rodriguez PC and Vedeckis WV: Role of c-Myb in the survival of pre
B-cell acute lymphoblastic leukemia and leukemogenesis. Am J
Hematol. 87:969–976. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Chokkalingam AP, Metayer C, Scelo G, Chang
JS, Schiffman J, Urayama KY, Ma X, Hansen HM, Feusner JH, Barcellos
LF, et al: Fetal growth and body size genes and risk of childhood
acute lymphoblastic leukemia. Cancer Causes Control. 23:1577–1585.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Liu YF, Wang BY, Zhang WN, Huang JY, Li
BS, Zhang M, Jiang L, Li JF, Wang MJ, Dai YJ, et al: Genomic
profiling of adult and pediatric B-cell acute lymphoblastic
leukemia. EBioMedicine. 8:173–183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Consolaro F, Basso G, Ghaem-Magami S, Lam
EW and Viola G: FOXM1 is overexpressed in B-acute lymphoblastic
leukemia (B-ALL) and its inhibition sensitizes B-ALL cells to
chemotherapeutic drugs. Int J Oncol. 47:1230–1240. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang Z, Zhu S, Zhang G and Liu S:
Inhibition of autophagy enhances the anticancer activity of
bortezomib in B-cell acute lymphoblastic leukemia cells. Am J
Cancer Res. 5:639–650. 2015.PubMed/NCBI
|
|
7
|
Tran TH, Harris MH, Nguyen JV, Blonquist
TM, Stevenson KE, Stonerock E, Asselin BL, Athale UH, Clavell LA,
Cole PD, et al: Prognostic impact of kinase-activating fusions and
IKZF1 deletions in pediatric high-risk B-lineage acute
lymphoblastic leukemia. Blood Adv. 2:529–533. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhou Y, You MJ, Young KH, Lin P, Lu G,
Medeiros LJ and Bueso-Ramos CE: Advances in the molecular
pathobiology of B-lymphoblastic leukemia. Hum Pathol. 43:1347–1362.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Zuckerman T and Rowe JM: Pathogenesis and
prognostication in acute lymphoblastic leukemia. F1000Prime Rep.
6:592014. View
Article : Google Scholar : PubMed/NCBI
|
|
10
|
Bowman RL, Busque L and Levine RL: Clonal
hematopoiesis and evolution to hematopoietic malignancies. Cell
Stem Cell. 22:157–170. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Morales-Sánchez A and Fuentes-Panana EM:
Infectious etiology of childhood acute lymphoblastic leukemia,
hypotheses and evidence. In: Clinical Epidemiology of Acute
Lymphoblastic Leukemia: From the Molecules to the Clinic.
Mejia-Arangure JM: InTech Rijeka; Croatia: pp. 19–39. 2013
|
|
12
|
Schindler JW, Van Buren D, Foudi A, Krejci
O, Qin J, Orkin SH and Hock H: TEL-AML1 corrupts hematopoietic stem
cells to persist in the bone marrow and initiate leukemia. Cell
Stem Cell. 5:43–53. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ford AM, Bennett CA, Price CM, Bruin MC,
Van Wering ER and Greaves M: Fetal origins of the TEL-AML1 fusion
gene in identical twins with leukemia. Proc Natl Acad Sci USA.
95:4584–4588. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sabaawy HE, Azuma M, Embree LJ, Tsai HJ,
Starost MF and Hickstein DD: TEL-AML1 transgenic zebrafish model of
precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci
USA. 103:15166–15171. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Jan M and Majeti R: Clonal evolution of
acute leukemia genomes. Oncogene. 32:135–140. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
El Fakih R, Jabbour E, Ravandi F,
Hassanein M, Anjum F, Ahmed S and Kantarjian H: Current paradigms
in the management of Philadelphia chromosome positive acute
lymphoblastic leukemia in adults. Am J Hematol. 93:286–295. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Thomas DA, Faderl S, Cortes J, O'Brien S,
Giles FJ, Kornblau SM, Garcia-Manero G, Keating MJ, Andreeff M,
Jeha S, et al: Treatment of Philadelphia chromosome-positive acute
lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood.
103:4396–4407. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cilloni D and Saglio G: Molecular
pathways: BCR-ABL. Clin Cancer Res. 18:930–937. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ho WC, Pikor L, Gao Y, Elliott BE and
Greer PA: Calpain 2 regulates Akt-FoxO-p27(Kip1) protein signaling
pathway in mammary carcinoma. J Biol Chem. 287:15458–15465. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mantamadiotis T: Towards targeting
PI3K-dependent regulation of gene expression in brain cancer.
Cancers (Basel). 9(pii): E602017. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Schotte D, De Menezes RX, Akbari Moqadam
F, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R and Den
Boer ML: MicroRNA characterize genetic diversity and drug
resistance in pediatric acute lymphoblastic leukemia.
Haematologica. 96:703–711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Deininger MW, Vieira SA, Parada Y, Banerji
L, Lam EW, Peters G, Mahon FX, Köhler T, Goldman JM and Melo JV:
Direct relation between BCR-ABL tyrosine kinase activity and cyclin
D2 expression in lymphoblasts. Cancer Res. 61:8005–8013.
2001.PubMed/NCBI
|
|
23
|
Parada Y, Banerji L, Glassford J, Lea NC,
Collado M, Rivas C, Lewis JL, Gordon MY, Thomas NS and Lam EW:
BCR-ABL and interleukin 3 promote haematopoietic cell proliferation
and survival through modulation of cyclin D2 and p27Kip1
expression. J Biol Chem. 276:23572–23580. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Firtina S, Sayitoglu M, Hatirnaz O,
Erbilgin Y, Oztunc C, Cinar S, Yildiz I, Celkan T, Anak S, Unuvar
A, et al: Evaluation of PAX5 gene in the early stages of leukemic B
cells in the childhood B cell acute lymphoblastic leukemia. Leuk
Res. 36:87–92. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tiacci E, Pileri S, Orleth A, Pacini R,
Tabarrini A, Frenguelli F, Liso A, Diverio D, Lo-Coco F and Falini
B: PAX5 expression in acute leukemias: higher B-lineage specificity
than CD79a and selective association with t(8;21)-acute myelogenous
leukemia. Cancer Res. 64:7399–7404. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Schinnerl D, Fortschegger K, Kauer M,
Marchante JR, Kofler R, Den Boer ML and Strehl S: The role of the
Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic
leukemia. Blood. 125:1282–1291. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Irving J, Matheson E, Minto L, Blair H,
Case M, Halsey C, Swidenbank I, Ponthan F, Kirschner-Schwabe R,
Groeneveld-Krentz S, et al: Ras pathway mutations are prevalent in
relapsed childhood acute lymphoblastic leukemia and confer
sensitivity to MEK inhibition. Blood. 124:3420–3430. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jerchel IS, Hoogkamer AQ, Ariës IM,
Steeghs EMP, Boer JM, Besselink NJM, Boeree A, van de Ven C, de
Groot-Kruseman HA, de Haas V, et al: RAS pathway mutations as a
predictive biomarker for treatment adaptation in pediatric B-cell
precursor acute lymphoblastic leukemia. Leukemia. 32:931–940. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Jones CL, Gearheart CM, Fosmire S,
Delgado-Martin C, Evensen NA, Bride K, Waanders AJ, Pais F, Wang J,
Bhatla T, et al: MAPK signaling cascades mediate distinct
glucocorticoid resistance mechanisms in pediatric leukemia. Blood.
126:2202–2212. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
McCubrey JA, Steelman LS, Chappell WH,
Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M,
Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth,
malignant transformation and drug resistance. Biochim Biophys Acta.
1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zhang J, Wang J, Liu Y, Sidik H, Young KH,
Lodish HF and Fleming MD: Oncogenic Kras-induced leukemogeneis:
Hematopoietic stem cells as the initial target and lineage-specific
progenitors as the potential targets for final leukemic
transformation. Blood. 113:1304–1314. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Shu XO, Perentesis JP, Wen W, Buckley JD,
Boyle E, Ross JA and Robison LL; Children's Oncology Group, :
Parental exposure to medications and hydrocarbons and ras mutations
in children with acute lymphoblastic leukemia: A report from the
Children's Oncology Group. Cancer Epidemiol Biomarkers Prev.
13:1230–1235. 2004.PubMed/NCBI
|
|
33
|
Al-Kzayer LF, Sakashita K, Al-Jadiry MF,
Al-Hadad SA, Ghali HH, Uyen Le TN, Liu T, Matsuda K, Abdulkadhim
JM, Al-Shujairi TA, et al: Analysis of KRAS and NRAS Gene Mutations
in Arab Asian Children With Acute Leukemia: High Frequency of RAS
Mutations in Acute Lymphoblastic Leukemia. Pediatr Blood Cancer.
62:2157–2161. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Li H, Zeng J and Shen K: PI3K/AKT/mTOR
signaling pathway as a therapeutic target for ovarian cancer. Arch
Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Wu MH, Lee TH, Lee HP, Li TM, Lee IT,
Shieh PC and Tang CH: Kuei-Lu-Er-Xian-Jiao extract enhances BMP-2
production in osteoblasts. Biomedicine (Taipei). 7:22017.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Toosi B, Zaker F, Alikarami F, Kazemi A
and Teremmahi Ardestanii M: VS-5584 as a PI3K/mTOR inhibitor
enhances apoptotic effects of subtoxic dose arsenic trioxide via
inhibition of NF-κB activity in B cell precursor-acute
lymphoblastic leukemia. Biomed Pharmacother. 102:428–437. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Morishita N, Tsukahara H, Chayama K,
Ishida T, Washio K, Miyamura T, Yamashita N, Oda M and Morishima T:
Activation of Akt is associated with poor prognosis and
chemotherapeutic resistance in pediatric B-precursor acute
lymphoblastic leukemia. Pediatr Blood Cancer. 59:83–89. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Sanchez VE, Nichols C, Kim HN, Gang EJ and
Kim YM: Targeting PI3K signaling in acute lymphoblastic leukemia.
Int J Mol Sci. 20(pii): E4122019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang Y, Mallampati S, Sun B, Zhang J, Kim
SB, Lee JS, Gong Y, Cai Z and Sun X: Wnt pathway contributes to the
protection by bone marrow stromal cells of acute lymphoblastic
leukemia cells and is a potential therapeutic target. Cancer Lett.
333:9–17. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Evangelisti C, Cappellini A, Oliveira M,
Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM,
Chiarini F, et al: Phosphatidylinositol 3-kinase inhibition
potentiates glucocorticoid response in B-cell acute lymphoblastic
leukemia. J Cell Physiol. 233:1796–1811. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Silveira AB, Laranjeira AB, Rodrigues GO,
Leal PC, Cardoso BA, Barata JT, Yunes RA, Zanchin NI, Brandalise SR
and Yunes JA: PI3K inhibition synergizes with glucocorticoids but
antagonizes with methotrexate in T-cell acute lymphoblastic
leukemia. Oncotarget. 6:13105–13118. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sánchez-Beato M, Sánchez-Aguilera A and
Piris MA: Cell cycle deregulation in B-cell lymphomas. Blood.
101:1220–1235. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Huang MM and Zhu J: The regulation of
normal and leukemic hematopoietic stem cells by niches. Cancer
Microenviron. 5:295–305. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yang Y, Xue K, Li Z, Zheng W, Dong W, Song
J, Sun S, Ma T and Li W: c-Myc regulates the CDK1/cyclin B1
dependentG2/M cell cycle progression by histone H4 acetylation in
Raji cells. Int J Mol Med. 41:3366–3378. 2018.PubMed/NCBI
|
|
45
|
Ren Y, Bi C, Zhao X, Lwin T, Wang C, Yuan
J, Silva AS, Shah BD, Fang B, Li T, et al: PLK1 stabilizes a
MYC-dependent kinase network in aggressive B cell lymphomas. J Clin
Invest. 128:5517–5530. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Slack GW and Gascoyne RD: MYC and
aggressive B-cell lymphomas. Adv Anat Pathol. 18:219–228. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Du W, Zhou Y, Pike S and Pang Q: NPM
phosphorylation stimulates Cdk1, overrides G2/M checkpoint and
increases leukemic blasts in mice. Carcinogenesis. 31:302–310.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Rahmani M, Talebi M, Hagh MF, Feizi AAH
and Solali S: Aberrant DNA methylation of key genes and Acute
Lymphoblastic Leukemia. Biomed Pharmacother. 97:1493–1500. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vasconcelos GM, Christensen BC, Houseman
EA, Xiao J, Marsit CJ, Wiencke JK, Zheng S, Karagas MR, Nelson HH,
Wrensch MR, et al: History of Parvovirus B19 infection is
associated with a DNA methylation signature in childhood acute
lymphoblastic leukemia. Epigenetics. 6:1436–1443. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Timms JA, Relton CL, Rankin J, Strathdee G
and McKay JA: DNA methylation as a potential mediator of
environmental risks in the development of childhood acute
lymphoblastic leukemia. Epigenomics. 8:519–536. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Milne E, Laurvick CL, Blair E, Bower C and
de Klerk N: Fetal growth and acute childhood leukemia: Looking
beyond birth weight. Am J Epidemiol. 166:151–159. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Groves FD, Watkins BT, Roberts DJ, Tucker
TC, Shen T and Flood TJ: Birth weight and risk of childhood acute
lymphoblastic leukemia in arizona, Illinois, and kentucky. South
Med J. 111:579–584. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Robison LL, Codd M, Gunderson P, Neglia
JP, Smithson WA and King FL: Birth weight as a risk factor for
childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol.
4:63–72. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Hellström A, Ley D, Hansen-Pupp I,
Hallberg B, Ramenghi LA, Löfqvist C, Smith LE and Hard AL: Role of
insulinlike growth factor 1 in fetal development and in the early
postnatal life of premature infants. Am J Perinatol. 33:1067–1071.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Stratikopoulos E, Szabolcs M, Dragatsis I,
Klinakis A and Efstratiadis A: The hormonal action of IGF1 in
postnatal mouse growth. Proc Natl Acad Sci USA. 105:19378–19383.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Khalade A, Jaakkola MS, Pukkala E and
Jaakkola JJ: Exposure to benzene at work and the risk of leukemia:
A systematic review and meta-analysis. Environ Health. 9:312010.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xie Z, Zhang Y, Guliaev AB, Shen H, Hang
B, Singer B and Wang Z: The p-benzoquinone DNA adducts derived from
benzene are highly mutagenic. DNA Repair (Amst). 4:1399–1409. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mansell E, Zareian N, Malouf C, Kapeni C,
Brown N, Badie C, Baird D, Lane J, Ottersbach K, Blair A and Case
CP: DNA damage signalling from the placenta to foetal blood as a
potential mechanism for childhood leukaemia initiation. Sci Rep.
9:43702019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zhou Y, Zhang S, Li Z, Zhu J, Bi Y, Bai Y
and Wang H: Maternal benzene exposure during pregnancy and risk of
childhood acute lymphoblastic leukemia: A meta-analysis of
epidemiologic studies. PLoS One. 9:e1104662014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Cooper SL and Brown PA: Treatment of
pediatric acute lymphoblastic leukemia. Pediatr Clin North Am.
62:61–73. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Pui CH, Campana D, Pei D, Bowman WP,
Sandlund JT, Kaste SC, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu
M, et al: Treating childhood acute lymphoblastic leukemia without
cranial irradiation. N Engl J Med. 360:2730–2741. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Tsurusawa M, Shimomura Y, Asami K, Kikuta
A, Watanabe A, Horikoshi Y, Matsushita T, Kanegane H, Ohta S, Iwai
A, et al: Long-term results of the Japanese childhood cancer and
leukemia study group studies 811, 841, 874 and 911 on childhood
acute lymphoblastic leukemia. Leukemia. 24:335–344. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Pui CH, Pei D, Sandlund JT, Ribeiro RC,
Rubnitz JE, Raimondi SC, Onciu M, Campana D, Kun LE, Jeha S, et al:
Long-term results of St Jude total therapy studies 11, 12, 13A,
13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia.
24:371–382. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Jabbour EJ, Faderl S and Kantarjian HM:
Adult acute lymphoblastic leukemia. Mayo Clin Proc. 80:1517–1527.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Winter SS, Holdsworth MT, Devidas M,
Raisch DW, Chauvenet A, Ravindranath Y, Ducore JM and Amylon MD:
Antimetabolite-based therapy in childhood T-cell acute
lymphoblastic leukemia: A report of POG study 9296. Pediatr Blood
Cancer. 46:179–186. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Seymour JF, Grigg AP, Szer J and Fox RM:
Cisplatin, fludarabine, and cytarabine: A novel, pharmacologically
designed salvage therapy for patients with refractory,
histologically aggressive or mantle cell non-Hodgkin's lymphoma.
Cancer. 94:585–593. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Kato M and Manabe A: Treatment and biology
of pediatric acute lymphoblastic leukemia. Pediatr Int. 60:4–12.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Narayanan S and Shami PJ: Treatment of
acute lymphoblastic leukemia in adults. Crit Rev Oncol Hematol.
81:94–102. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Terwilliger T and Abdul-Hay M: Acute
lymphoblastic leukemia: A comprehensive review and 2017 update.
Blood Cancer J. 7:e5772017. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Baraz R, Cisterne A, Saunders PO, Hewson
J, Thien M, Weiss J, Basnett J, Bradstock KF and Bendall LJ: mTOR
inhibition by everolimus in childhood acute lymphoblastic leukemia
induces caspase-independent cell death. PLoS One. 9:e1024942014.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Singh SK, Banerjee S, Acosta EP, Lillard
JW and Singh R: Resveratrol induces cell cycle arrest and apoptosis
with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and
p27KIP1 pathway. Oncotarget. 8:17216–17228. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Ge J, Liu Y, Li Q, Guo X, Gu L, Ma ZG and
Zhu YP: Resveratrol induces apoptosis and autophagy in T-cell acute
lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating
p38-MAPK. Biomed Environ Sci. 26:902–911. 2013.PubMed/NCBI
|
|
73
|
Cai Y, Xia Q, Su Q, Luo R, Sun Y, Shi Y
and Jiang W: mTOR inhibitor RAD001 (Everolimus) induces apoptotic,
not autophagic cell death, in human nasopharyngeal carcinoma cells.
Int J Mol Med. 31:904–912. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ciombor KK and Bekaii-Saab T: Selumetinib
for the treatment of cancer. Expert Opin Investig Drugs.
24:111–123. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kerstjens M, Driessen EM, Willekes M,
Pinhancos SS, Schneider P, Pieters R and Stam RW: MEK inhibition is
a promising therapeutic strategy for MLL-rearranged infant acute
lymphoblastic leukemia patients carrying RAS mutations. Oncotarget.
8:14835–14846. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Piya S, Andreeff M and Borthakur G:
Targeting autophagy to overcome chemoresistance in acute
myleogenous leukemia. Autophagy. 13:214–215. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Takahashi H, Inoue J, Sakaguchi K, Takagi
M, Mizutani S and Inazawa J: Autophagy is required for cell
survival under L-asparaginase-induced metabolic stress in acute
lymphoblastic leukemia cells. Oncogene. 36:4267–4276. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Takahashi H, Inoue J, Sakaguchi K, Takagi
M, Mizutani S and Inazawa J: Autophagy inhibition sensitizes acute
lymphoblastic leukemia cells to L-asparaginase. Blood. 126:3772.
2015. View Article : Google Scholar
|
|
79
|
Sakura H, Kanei-Ishii C, Nagase T,
Nakagoshi H, Gonda TJ and Ishii S: Delineation of three functional
domains of the transcriptional activator encoded by the c-myb
protooncogene. Proc Natl Acad Sci USA. 86:5758–5762. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Tanaka Y, Nomura T and Ishii S: Two
regions in c-myb proto-oncogene product negatively regulating its
DNA-binding activity. FEBS Lett. 413:162–168. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou Y and Ness SA: Myb proteins: Angels
and demons in normal and transformed cells. Front Biosci (Landmark
Ed). 16:1109–1131. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lv M, Wang Y, Wu W, Yang S, Zhu H, Hu B,
Chen Y, Shi C, Zhang Y, Mu Q and Ouyang G: CMyc inhibitor 10058F4
increases the efficacy of dexamethasone on acute lymphoblastic
leukaemia cells. Mol Med Rep. 18:421–428. 2018.PubMed/NCBI
|
|
83
|
Liu X, Xu Y, Han L and Yi Y: Reassessing
the Potential of Myb-targeted Anti-cancer Therapy. J Cancer.
9:1259–1266. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mitra P: Transcription regulation of MYB:
A potential and novel therapeutic target in cancer. Ann Transl Med.
6:4432018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Grobbelaar C and Ford AM: The Role of
MicroRNA in paediatric acute lymphoblastic leukaemia: Challenges
for diagnosis and therapy. J Oncol. 2019:89414712019. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Nakase K, Kita K, Miwa H, Nishii K,
Shikami M, Tanaka I, Tsutani H, Ueda T, Nasu K, Kyo T, et al:
Clinical and prognostic significance of cytokine receptor
expression in adult acute lymphoblastic leukemia: Interleukin-2
receptor alpha-chain predicts a poor prognosis. Leukemia.
21:326–332. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Duyu M, Durmaz B, Gunduz C, Vergin C,
Yilmaz Karapinar D, Aksoylar S, Kavakli K, Cetingul N, Irken G,
Yaman Y, et al: Prospective evaluation of whole genome microRNA
expression profiling in childhood acute lymphoblastic leukemia.
Biomed Res Int. 2014:9675852014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yoshida N, Oda M, Kuroda Y, Katayama Y,
Okikawa Y, Masunari T, Fujiwara M, Nishisaka T, Sasaki N, Sadahira
Y, et al: Clinical significance of sIL-2R levels in B-cell
lymphomas. PLoS One. 8:e787302013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Nakase K, Kita K, Kyo T, Tsuji K and
Katayama N: High serum levels of soluble interleukin-2 receptor in
acute myeloid leukemia: Correlation with poor prognosis and CD4
expression on blast cells. Cancer Epidemiol. 36:e306–e309. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li B, Brady SW, Ma X, Shen S, Zhang Y, Li
Y, Szlachta K, Dong L, Liu Y, Yang F, et al: Therapy-induced
mutations drive the genomic landscape of relapsed acute
lymphoblastic leukemia. Blood. 135:41–55. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tomiyasu H, Watanabe M, Sugita K,
Goto-Koshino Y, Fujino Y, Ohno K, Sugano S and Tsujimoto H:
Regulations of ABCB1 and ABCG2 expression through MAPK pathways in
acute lymphoblastic leukemia cell lines. Anticancer Res.
33:5317–5323. 2013.PubMed/NCBI
|
|
92
|
Xie J, Jin B, Li DW, Shen B, Cong N, Zhang
TZ and Dong P: ABCG2 regulated by MAPK pathways is associated with
cancer progression in laryngeal squamous cell carcinoma. Am J
Cancer Res. 4:698–709. 2014.PubMed/NCBI
|
|
93
|
El Azreq MA, Naci D and Aoudjit F:
Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1
transporter in an ERK/MAPK-dependent manner. Mol Biol Cell.
23:3473–3484. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Kourti M, Vavatsi N, Gombakis N, Sidi V,
Tzimagiorgis G, Papageorgiou T, Koliouskas D and Athanassiadou F:
Expression of multidrug resistance 1 (MDR1), multidrug
resistance-related protein 1 (MRP1), lung resistance protein (LRP),
and breast cancer resistance protein (BCRP) genes and clinical
outcome in childhood acute lymphoblastic leukemia. Int J Hematol.
86:166–173. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Baudis M, Prima V, Tung YH and Hunger SP:
ABCB1 over-expression and drug-efflux in acute lymphoblastic
leukemia cell lines with t(17;19) and E2A-HLF expression. Pediatr
Blood Cancer. 47:757–764. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zhang K, Mack P and Wong KP:
Glutathione-related mechanisms in cellular resistance to anticancer
drugs. Int J Oncol. 12:871–882. 1998.PubMed/NCBI
|
|
97
|
Tsai SY, Sun NK, Lu HP, Cheng ML and Chao
CC: Involvement of reactive oxygen species in multidrug resistance
of a vincristine-selected lymphoblastoma. Cancer Sci. 98:1206–1214.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhu Z, Du S, Du Y, Ren J, Ying G and Yan
Z: Glutathione reductase mediates drug resistance in glioblastoma
cells by regulating redox homeostasis. J Neurochem. 144:93–104.
2018. View Article : Google Scholar : PubMed/NCBI
|