Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 20 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review)

  • Authors:
    • Fang‑Liang Huang
    • En‑Chih Liao
    • Chia‑Ling Li
    • Chung‑Yang Yen
    • Sheng‑Jie Yu
  • View Affiliations / Copyright

    Affiliations: Children's Medical Center, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C., Department of Medicine, Mackay Medical College, Sanzhi, New Taipei 252, Taiwan, R.O.C., Department of Dermatology, Taichung Veterans General Hospital, Xitun, Taichung 40705, Taiwan, R.O.C., Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Zuoying, Kaohsiung 813, Taiwan, R.O.C.
    Copyright: © Huang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 448-454
    |
    Published online on: May 4, 2020
       https://doi.org/10.3892/ol.2020.11583
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

B‑cell acute lymphoblastic lymphoma (B‑ALL) is a disease found mainly in children and in young adults. B‑ALL is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. In the United States, ~4,000 of these patients are diagnosed each year, accounting for ~30% of childhood cancer types. The tumorigenesis of the disease involves a number of abnormal gene expressions (including TEL‑AML1, BCR‑ABL‑1, RAS and PI3K) leading to dysregulated cell cycle. Risk factors of B‑ALL are the history of parvovirus B 19 infection, high birth weight and exposure to environmental toxins. These risk factors can induce abnormal DNA methylation and DNA damages. Treatment procedures are divided into three phases: Induction, consolidation and maintenance. The goal of treatment is complete remission without relapses. Apart from traditional treatments, newly developed approaches include gene targeting therapy, with the aim of wiping out leukemic cells through the inhibition of mitogen‑activated protein kinases and via c‑Myb inhibition enhancing sensitivity to chemotherapy. To evaluate the efficacy of ongoing treatments, several indicators are currently used. The indicators include the expression levels of microRNAs (miRs) miR‑146a, miR‑155, miR‑181a and miR‑195, and soluble interleukin 2 receptor. Multiple drug resistance and levels of glutathione reductase can affect treatment efficacy through the increased efflux of anti‑cancer drugs and weakening the effect of chemotherapy through the reduction of intracellular reactive oxygen species. The present review appraised recent studies on B‑ALL regarding its pathogenesis, risk factors, treatments, treatment evaluation and causes of disease relapse. Understanding the mechanisms of B‑ALL initiation and causes of treatment failure can help physicians improve disease management and reduce relapses.
View Figures

Figure 1

View References

1 

Shafat MS, Gnaneswaran B, Bowles KM and Rushworth SA: The bone marrow microenvironment-Home of the leukemic blasts. Blood Rev. 31:277–286. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Sarvaiya PJ, Schwartz JR, Hernandez CP, Rodriguez PC and Vedeckis WV: Role of c-Myb in the survival of pre B-cell acute lymphoblastic leukemia and leukemogenesis. Am J Hematol. 87:969–976. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Chokkalingam AP, Metayer C, Scelo G, Chang JS, Schiffman J, Urayama KY, Ma X, Hansen HM, Feusner JH, Barcellos LF, et al: Fetal growth and body size genes and risk of childhood acute lymphoblastic leukemia. Cancer Causes Control. 23:1577–1585. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Liu YF, Wang BY, Zhang WN, Huang JY, Li BS, Zhang M, Jiang L, Li JF, Wang MJ, Dai YJ, et al: Genomic profiling of adult and pediatric B-cell acute lymphoblastic leukemia. EBioMedicine. 8:173–183. 2016. View Article : Google Scholar : PubMed/NCBI

5 

Consolaro F, Basso G, Ghaem-Magami S, Lam EW and Viola G: FOXM1 is overexpressed in B-acute lymphoblastic leukemia (B-ALL) and its inhibition sensitizes B-ALL cells to chemotherapeutic drugs. Int J Oncol. 47:1230–1240. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Wang Z, Zhu S, Zhang G and Liu S: Inhibition of autophagy enhances the anticancer activity of bortezomib in B-cell acute lymphoblastic leukemia cells. Am J Cancer Res. 5:639–650. 2015.PubMed/NCBI

7 

Tran TH, Harris MH, Nguyen JV, Blonquist TM, Stevenson KE, Stonerock E, Asselin BL, Athale UH, Clavell LA, Cole PD, et al: Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia. Blood Adv. 2:529–533. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Zhou Y, You MJ, Young KH, Lin P, Lu G, Medeiros LJ and Bueso-Ramos CE: Advances in the molecular pathobiology of B-lymphoblastic leukemia. Hum Pathol. 43:1347–1362. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Zuckerman T and Rowe JM: Pathogenesis and prognostication in acute lymphoblastic leukemia. F1000Prime Rep. 6:592014. View Article : Google Scholar : PubMed/NCBI

10 

Bowman RL, Busque L and Levine RL: Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 22:157–170. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Morales-Sánchez A and Fuentes-Panana EM: Infectious etiology of childhood acute lymphoblastic leukemia, hypotheses and evidence. In: Clinical Epidemiology of Acute Lymphoblastic Leukemia: From the Molecules to the Clinic. Mejia-Arangure JM: InTech Rijeka; Croatia: pp. 19–39. 2013

12 

Schindler JW, Van Buren D, Foudi A, Krejci O, Qin J, Orkin SH and Hock H: TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell. 5:43–53. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Ford AM, Bennett CA, Price CM, Bruin MC, Van Wering ER and Greaves M: Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA. 95:4584–4588. 1998. View Article : Google Scholar : PubMed/NCBI

14 

Sabaawy HE, Azuma M, Embree LJ, Tsai HJ, Starost MF and Hickstein DD: TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA. 103:15166–15171. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Jan M and Majeti R: Clonal evolution of acute leukemia genomes. Oncogene. 32:135–140. 2013. View Article : Google Scholar : PubMed/NCBI

16 

El Fakih R, Jabbour E, Ravandi F, Hassanein M, Anjum F, Ahmed S and Kantarjian H: Current paradigms in the management of Philadelphia chromosome positive acute lymphoblastic leukemia in adults. Am J Hematol. 93:286–295. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Thomas DA, Faderl S, Cortes J, O'Brien S, Giles FJ, Kornblau SM, Garcia-Manero G, Keating MJ, Andreeff M, Jeha S, et al: Treatment of Philadelphia chromosome-positive acute lymphocytic leukemia with hyper-CVAD and imatinib mesylate. Blood. 103:4396–4407. 2004. View Article : Google Scholar : PubMed/NCBI

18 

Cilloni D and Saglio G: Molecular pathways: BCR-ABL. Clin Cancer Res. 18:930–937. 2012. View Article : Google Scholar : PubMed/NCBI

19 

Ho WC, Pikor L, Gao Y, Elliott BE and Greer PA: Calpain 2 regulates Akt-FoxO-p27(Kip1) protein signaling pathway in mammary carcinoma. J Biol Chem. 287:15458–15465. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Mantamadiotis T: Towards targeting PI3K-dependent regulation of gene expression in brain cancer. Cancers (Basel). 9(pii): E602017. View Article : Google Scholar : PubMed/NCBI

21 

Schotte D, De Menezes RX, Akbari Moqadam F, Khankahdani LM, Lange-Turenhout E, Chen C, Pieters R and Den Boer ML: MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 96:703–711. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Deininger MW, Vieira SA, Parada Y, Banerji L, Lam EW, Peters G, Mahon FX, Köhler T, Goldman JM and Melo JV: Direct relation between BCR-ABL tyrosine kinase activity and cyclin D2 expression in lymphoblasts. Cancer Res. 61:8005–8013. 2001.PubMed/NCBI

23 

Parada Y, Banerji L, Glassford J, Lea NC, Collado M, Rivas C, Lewis JL, Gordon MY, Thomas NS and Lam EW: BCR-ABL and interleukin 3 promote haematopoietic cell proliferation and survival through modulation of cyclin D2 and p27Kip1 expression. J Biol Chem. 276:23572–23580. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Firtina S, Sayitoglu M, Hatirnaz O, Erbilgin Y, Oztunc C, Cinar S, Yildiz I, Celkan T, Anak S, Unuvar A, et al: Evaluation of PAX5 gene in the early stages of leukemic B cells in the childhood B cell acute lymphoblastic leukemia. Leuk Res. 36:87–92. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Tiacci E, Pileri S, Orleth A, Pacini R, Tabarrini A, Frenguelli F, Liso A, Diverio D, Lo-Coco F and Falini B: PAX5 expression in acute leukemias: higher B-lineage specificity than CD79a and selective association with t(8;21)-acute myelogenous leukemia. Cancer Res. 64:7399–7404. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Schinnerl D, Fortschegger K, Kauer M, Marchante JR, Kofler R, Den Boer ML and Strehl S: The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia. Blood. 125:1282–1291. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Irving J, Matheson E, Minto L, Blair H, Case M, Halsey C, Swidenbank I, Ponthan F, Kirschner-Schwabe R, Groeneveld-Krentz S, et al: Ras pathway mutations are prevalent in relapsed childhood acute lymphoblastic leukemia and confer sensitivity to MEK inhibition. Blood. 124:3420–3430. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Jerchel IS, Hoogkamer AQ, Ariës IM, Steeghs EMP, Boer JM, Besselink NJM, Boeree A, van de Ven C, de Groot-Kruseman HA, de Haas V, et al: RAS pathway mutations as a predictive biomarker for treatment adaptation in pediatric B-cell precursor acute lymphoblastic leukemia. Leukemia. 32:931–940. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Jones CL, Gearheart CM, Fosmire S, Delgado-Martin C, Evensen NA, Bride K, Waanders AJ, Pais F, Wang J, Bhatla T, et al: MAPK signaling cascades mediate distinct glucocorticoid resistance mechanisms in pediatric leukemia. Blood. 126:2202–2212. 2015. View Article : Google Scholar : PubMed/NCBI

30 

McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F, Lehmann B, Terrian DM, Milella M, Tafuri A, et al: Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 1773:1263–1284. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Zhang J, Wang J, Liu Y, Sidik H, Young KH, Lodish HF and Fleming MD: Oncogenic Kras-induced leukemogeneis: Hematopoietic stem cells as the initial target and lineage-specific progenitors as the potential targets for final leukemic transformation. Blood. 113:1304–1314. 2009. View Article : Google Scholar : PubMed/NCBI

32 

Shu XO, Perentesis JP, Wen W, Buckley JD, Boyle E, Ross JA and Robison LL; Children's Oncology Group, : Parental exposure to medications and hydrocarbons and ras mutations in children with acute lymphoblastic leukemia: A report from the Children's Oncology Group. Cancer Epidemiol Biomarkers Prev. 13:1230–1235. 2004.PubMed/NCBI

33 

Al-Kzayer LF, Sakashita K, Al-Jadiry MF, Al-Hadad SA, Ghali HH, Uyen Le TN, Liu T, Matsuda K, Abdulkadhim JM, Al-Shujairi TA, et al: Analysis of KRAS and NRAS Gene Mutations in Arab Asian Children With Acute Leukemia: High Frequency of RAS Mutations in Acute Lymphoblastic Leukemia. Pediatr Blood Cancer. 62:2157–2161. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Li H, Zeng J and Shen K: PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Wu MH, Lee TH, Lee HP, Li TM, Lee IT, Shieh PC and Tang CH: Kuei-Lu-Er-Xian-Jiao extract enhances BMP-2 production in osteoblasts. Biomedicine (Taipei). 7:22017. View Article : Google Scholar : PubMed/NCBI

36 

Toosi B, Zaker F, Alikarami F, Kazemi A and Teremmahi Ardestanii M: VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-κB activity in B cell precursor-acute lymphoblastic leukemia. Biomed Pharmacother. 102:428–437. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Morishita N, Tsukahara H, Chayama K, Ishida T, Washio K, Miyamura T, Yamashita N, Oda M and Morishima T: Activation of Akt is associated with poor prognosis and chemotherapeutic resistance in pediatric B-precursor acute lymphoblastic leukemia. Pediatr Blood Cancer. 59:83–89. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Sanchez VE, Nichols C, Kim HN, Gang EJ and Kim YM: Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci. 20(pii): E4122019. View Article : Google Scholar : PubMed/NCBI

39 

Yang Y, Mallampati S, Sun B, Zhang J, Kim SB, Lee JS, Gong Y, Cai Z and Sun X: Wnt pathway contributes to the protection by bone marrow stromal cells of acute lymphoblastic leukemia cells and is a potential therapeutic target. Cancer Lett. 333:9–17. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Evangelisti C, Cappellini A, Oliveira M, Fragoso R, Barata JT, Bertaina A, Locatelli F, Simioni C, Neri LM, Chiarini F, et al: Phosphatidylinositol 3-kinase inhibition potentiates glucocorticoid response in B-cell acute lymphoblastic leukemia. J Cell Physiol. 233:1796–1811. 2018. View Article : Google Scholar : PubMed/NCBI

41 

Silveira AB, Laranjeira AB, Rodrigues GO, Leal PC, Cardoso BA, Barata JT, Yunes RA, Zanchin NI, Brandalise SR and Yunes JA: PI3K inhibition synergizes with glucocorticoids but antagonizes with methotrexate in T-cell acute lymphoblastic leukemia. Oncotarget. 6:13105–13118. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Sánchez-Beato M, Sánchez-Aguilera A and Piris MA: Cell cycle deregulation in B-cell lymphomas. Blood. 101:1220–1235. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Huang MM and Zhu J: The regulation of normal and leukemic hematopoietic stem cells by niches. Cancer Microenviron. 5:295–305. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Yang Y, Xue K, Li Z, Zheng W, Dong W, Song J, Sun S, Ma T and Li W: c-Myc regulates the CDK1/cyclin B1 dependentG2/M cell cycle progression by histone H4 acetylation in Raji cells. Int J Mol Med. 41:3366–3378. 2018.PubMed/NCBI

45 

Ren Y, Bi C, Zhao X, Lwin T, Wang C, Yuan J, Silva AS, Shah BD, Fang B, Li T, et al: PLK1 stabilizes a MYC-dependent kinase network in aggressive B cell lymphomas. J Clin Invest. 128:5517–5530. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Slack GW and Gascoyne RD: MYC and aggressive B-cell lymphomas. Adv Anat Pathol. 18:219–228. 2011. View Article : Google Scholar : PubMed/NCBI

47 

Du W, Zhou Y, Pike S and Pang Q: NPM phosphorylation stimulates Cdk1, overrides G2/M checkpoint and increases leukemic blasts in mice. Carcinogenesis. 31:302–310. 2010. View Article : Google Scholar : PubMed/NCBI

48 

Rahmani M, Talebi M, Hagh MF, Feizi AAH and Solali S: Aberrant DNA methylation of key genes and Acute Lymphoblastic Leukemia. Biomed Pharmacother. 97:1493–1500. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Vasconcelos GM, Christensen BC, Houseman EA, Xiao J, Marsit CJ, Wiencke JK, Zheng S, Karagas MR, Nelson HH, Wrensch MR, et al: History of Parvovirus B19 infection is associated with a DNA methylation signature in childhood acute lymphoblastic leukemia. Epigenetics. 6:1436–1443. 2011. View Article : Google Scholar : PubMed/NCBI

50 

Timms JA, Relton CL, Rankin J, Strathdee G and McKay JA: DNA methylation as a potential mediator of environmental risks in the development of childhood acute lymphoblastic leukemia. Epigenomics. 8:519–536. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Milne E, Laurvick CL, Blair E, Bower C and de Klerk N: Fetal growth and acute childhood leukemia: Looking beyond birth weight. Am J Epidemiol. 166:151–159. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Groves FD, Watkins BT, Roberts DJ, Tucker TC, Shen T and Flood TJ: Birth weight and risk of childhood acute lymphoblastic leukemia in arizona, Illinois, and kentucky. South Med J. 111:579–584. 2018. View Article : Google Scholar : PubMed/NCBI

53 

Robison LL, Codd M, Gunderson P, Neglia JP, Smithson WA and King FL: Birth weight as a risk factor for childhood acute lymphoblastic leukemia. Pediatr Hematol Oncol. 4:63–72. 1987. View Article : Google Scholar : PubMed/NCBI

54 

Hellström A, Ley D, Hansen-Pupp I, Hallberg B, Ramenghi LA, Löfqvist C, Smith LE and Hard AL: Role of insulinlike growth factor 1 in fetal development and in the early postnatal life of premature infants. Am J Perinatol. 33:1067–1071. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Stratikopoulos E, Szabolcs M, Dragatsis I, Klinakis A and Efstratiadis A: The hormonal action of IGF1 in postnatal mouse growth. Proc Natl Acad Sci USA. 105:19378–19383. 2008. View Article : Google Scholar : PubMed/NCBI

56 

Khalade A, Jaakkola MS, Pukkala E and Jaakkola JJ: Exposure to benzene at work and the risk of leukemia: A systematic review and meta-analysis. Environ Health. 9:312010. View Article : Google Scholar : PubMed/NCBI

57 

Xie Z, Zhang Y, Guliaev AB, Shen H, Hang B, Singer B and Wang Z: The p-benzoquinone DNA adducts derived from benzene are highly mutagenic. DNA Repair (Amst). 4:1399–1409. 2005. View Article : Google Scholar : PubMed/NCBI

58 

Mansell E, Zareian N, Malouf C, Kapeni C, Brown N, Badie C, Baird D, Lane J, Ottersbach K, Blair A and Case CP: DNA damage signalling from the placenta to foetal blood as a potential mechanism for childhood leukaemia initiation. Sci Rep. 9:43702019. View Article : Google Scholar : PubMed/NCBI

59 

Zhou Y, Zhang S, Li Z, Zhu J, Bi Y, Bai Y and Wang H: Maternal benzene exposure during pregnancy and risk of childhood acute lymphoblastic leukemia: A meta-analysis of epidemiologic studies. PLoS One. 9:e1104662014. View Article : Google Scholar : PubMed/NCBI

60 

Cooper SL and Brown PA: Treatment of pediatric acute lymphoblastic leukemia. Pediatr Clin North Am. 62:61–73. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Pui CH, Campana D, Pei D, Bowman WP, Sandlund JT, Kaste SC, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, et al: Treating childhood acute lymphoblastic leukemia without cranial irradiation. N Engl J Med. 360:2730–2741. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Tsurusawa M, Shimomura Y, Asami K, Kikuta A, Watanabe A, Horikoshi Y, Matsushita T, Kanegane H, Ohta S, Iwai A, et al: Long-term results of the Japanese childhood cancer and leukemia study group studies 811, 841, 874 and 911 on childhood acute lymphoblastic leukemia. Leukemia. 24:335–344. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Pui CH, Pei D, Sandlund JT, Ribeiro RC, Rubnitz JE, Raimondi SC, Onciu M, Campana D, Kun LE, Jeha S, et al: Long-term results of St Jude total therapy studies 11, 12, 13A, 13B, and 14 for childhood acute lymphoblastic leukemia. Leukemia. 24:371–382. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Jabbour EJ, Faderl S and Kantarjian HM: Adult acute lymphoblastic leukemia. Mayo Clin Proc. 80:1517–1527. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Winter SS, Holdsworth MT, Devidas M, Raisch DW, Chauvenet A, Ravindranath Y, Ducore JM and Amylon MD: Antimetabolite-based therapy in childhood T-cell acute lymphoblastic leukemia: A report of POG study 9296. Pediatr Blood Cancer. 46:179–186. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Seymour JF, Grigg AP, Szer J and Fox RM: Cisplatin, fludarabine, and cytarabine: A novel, pharmacologically designed salvage therapy for patients with refractory, histologically aggressive or mantle cell non-Hodgkin's lymphoma. Cancer. 94:585–593. 2002. View Article : Google Scholar : PubMed/NCBI

67 

Kato M and Manabe A: Treatment and biology of pediatric acute lymphoblastic leukemia. Pediatr Int. 60:4–12. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Narayanan S and Shami PJ: Treatment of acute lymphoblastic leukemia in adults. Crit Rev Oncol Hematol. 81:94–102. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Terwilliger T and Abdul-Hay M: Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 7:e5772017. View Article : Google Scholar : PubMed/NCBI

70 

Baraz R, Cisterne A, Saunders PO, Hewson J, Thien M, Weiss J, Basnett J, Bradstock KF and Bendall LJ: mTOR inhibition by everolimus in childhood acute lymphoblastic leukemia induces caspase-independent cell death. PLoS One. 9:e1024942014. View Article : Google Scholar : PubMed/NCBI

71 

Singh SK, Banerjee S, Acosta EP, Lillard JW and Singh R: Resveratrol induces cell cycle arrest and apoptosis with docetaxel in prostate cancer cells via a p53/p21WAF1/CIP1 and p27KIP1 pathway. Oncotarget. 8:17216–17228. 2017. View Article : Google Scholar : PubMed/NCBI

72 

Ge J, Liu Y, Li Q, Guo X, Gu L, Ma ZG and Zhu YP: Resveratrol induces apoptosis and autophagy in T-cell acute lymphoblastic leukemia cells by inhibiting Akt/mTOR and activating p38-MAPK. Biomed Environ Sci. 26:902–911. 2013.PubMed/NCBI

73 

Cai Y, Xia Q, Su Q, Luo R, Sun Y, Shi Y and Jiang W: mTOR inhibitor RAD001 (Everolimus) induces apoptotic, not autophagic cell death, in human nasopharyngeal carcinoma cells. Int J Mol Med. 31:904–912. 2013. View Article : Google Scholar : PubMed/NCBI

74 

Ciombor KK and Bekaii-Saab T: Selumetinib for the treatment of cancer. Expert Opin Investig Drugs. 24:111–123. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Kerstjens M, Driessen EM, Willekes M, Pinhancos SS, Schneider P, Pieters R and Stam RW: MEK inhibition is a promising therapeutic strategy for MLL-rearranged infant acute lymphoblastic leukemia patients carrying RAS mutations. Oncotarget. 8:14835–14846. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Piya S, Andreeff M and Borthakur G: Targeting autophagy to overcome chemoresistance in acute myleogenous leukemia. Autophagy. 13:214–215. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Takahashi H, Inoue J, Sakaguchi K, Takagi M, Mizutani S and Inazawa J: Autophagy is required for cell survival under L-asparaginase-induced metabolic stress in acute lymphoblastic leukemia cells. Oncogene. 36:4267–4276. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Takahashi H, Inoue J, Sakaguchi K, Takagi M, Mizutani S and Inazawa J: Autophagy inhibition sensitizes acute lymphoblastic leukemia cells to L-asparaginase. Blood. 126:3772. 2015. View Article : Google Scholar

79 

Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ and Ishii S: Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci USA. 86:5758–5762. 1989. View Article : Google Scholar : PubMed/NCBI

80 

Tanaka Y, Nomura T and Ishii S: Two regions in c-myb proto-oncogene product negatively regulating its DNA-binding activity. FEBS Lett. 413:162–168. 1997. View Article : Google Scholar : PubMed/NCBI

81 

Zhou Y and Ness SA: Myb proteins: Angels and demons in normal and transformed cells. Front Biosci (Landmark Ed). 16:1109–1131. 2011. View Article : Google Scholar : PubMed/NCBI

82 

Lv M, Wang Y, Wu W, Yang S, Zhu H, Hu B, Chen Y, Shi C, Zhang Y, Mu Q and Ouyang G: CMyc inhibitor 10058F4 increases the efficacy of dexamethasone on acute lymphoblastic leukaemia cells. Mol Med Rep. 18:421–428. 2018.PubMed/NCBI

83 

Liu X, Xu Y, Han L and Yi Y: Reassessing the Potential of Myb-targeted Anti-cancer Therapy. J Cancer. 9:1259–1266. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Mitra P: Transcription regulation of MYB: A potential and novel therapeutic target in cancer. Ann Transl Med. 6:4432018. View Article : Google Scholar : PubMed/NCBI

85 

Grobbelaar C and Ford AM: The Role of MicroRNA in paediatric acute lymphoblastic leukaemia: Challenges for diagnosis and therapy. J Oncol. 2019:89414712019. View Article : Google Scholar : PubMed/NCBI

86 

Nakase K, Kita K, Miwa H, Nishii K, Shikami M, Tanaka I, Tsutani H, Ueda T, Nasu K, Kyo T, et al: Clinical and prognostic significance of cytokine receptor expression in adult acute lymphoblastic leukemia: Interleukin-2 receptor alpha-chain predicts a poor prognosis. Leukemia. 21:326–332. 2007. View Article : Google Scholar : PubMed/NCBI

87 

Duyu M, Durmaz B, Gunduz C, Vergin C, Yilmaz Karapinar D, Aksoylar S, Kavakli K, Cetingul N, Irken G, Yaman Y, et al: Prospective evaluation of whole genome microRNA expression profiling in childhood acute lymphoblastic leukemia. Biomed Res Int. 2014:9675852014. View Article : Google Scholar : PubMed/NCBI

88 

Yoshida N, Oda M, Kuroda Y, Katayama Y, Okikawa Y, Masunari T, Fujiwara M, Nishisaka T, Sasaki N, Sadahira Y, et al: Clinical significance of sIL-2R levels in B-cell lymphomas. PLoS One. 8:e787302013. View Article : Google Scholar : PubMed/NCBI

89 

Nakase K, Kita K, Kyo T, Tsuji K and Katayama N: High serum levels of soluble interleukin-2 receptor in acute myeloid leukemia: Correlation with poor prognosis and CD4 expression on blast cells. Cancer Epidemiol. 36:e306–e309. 2012. View Article : Google Scholar : PubMed/NCBI

90 

Li B, Brady SW, Ma X, Shen S, Zhang Y, Li Y, Szlachta K, Dong L, Liu Y, Yang F, et al: Therapy-induced mutations drive the genomic landscape of relapsed acute lymphoblastic leukemia. Blood. 135:41–55. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Tomiyasu H, Watanabe M, Sugita K, Goto-Koshino Y, Fujino Y, Ohno K, Sugano S and Tsujimoto H: Regulations of ABCB1 and ABCG2 expression through MAPK pathways in acute lymphoblastic leukemia cell lines. Anticancer Res. 33:5317–5323. 2013.PubMed/NCBI

92 

Xie J, Jin B, Li DW, Shen B, Cong N, Zhang TZ and Dong P: ABCG2 regulated by MAPK pathways is associated with cancer progression in laryngeal squamous cell carcinoma. Am J Cancer Res. 4:698–709. 2014.PubMed/NCBI

93 

El Azreq MA, Naci D and Aoudjit F: Collagen/β1 integrin signaling up-regulates the ABCC1/MRP-1 transporter in an ERK/MAPK-dependent manner. Mol Biol Cell. 23:3473–3484. 2012. View Article : Google Scholar : PubMed/NCBI

94 

Kourti M, Vavatsi N, Gombakis N, Sidi V, Tzimagiorgis G, Papageorgiou T, Koliouskas D and Athanassiadou F: Expression of multidrug resistance 1 (MDR1), multidrug resistance-related protein 1 (MRP1), lung resistance protein (LRP), and breast cancer resistance protein (BCRP) genes and clinical outcome in childhood acute lymphoblastic leukemia. Int J Hematol. 86:166–173. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Baudis M, Prima V, Tung YH and Hunger SP: ABCB1 over-expression and drug-efflux in acute lymphoblastic leukemia cell lines with t(17;19) and E2A-HLF expression. Pediatr Blood Cancer. 47:757–764. 2006. View Article : Google Scholar : PubMed/NCBI

96 

Zhang K, Mack P and Wong KP: Glutathione-related mechanisms in cellular resistance to anticancer drugs. Int J Oncol. 12:871–882. 1998.PubMed/NCBI

97 

Tsai SY, Sun NK, Lu HP, Cheng ML and Chao CC: Involvement of reactive oxygen species in multidrug resistance of a vincristine-selected lymphoblastoma. Cancer Sci. 98:1206–1214. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Zhu Z, Du S, Du Y, Ren J, Ying G and Yan Z: Glutathione reductase mediates drug resistance in glioblastoma cells by regulating redox homeostasis. J Neurochem. 144:93–104. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang FL, Liao EC, Li CL, Yen CY and Yu SJ: Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review). Oncol Lett 20: 448-454, 2020.
APA
Huang, F., Liao, E., Li, C., Yen, C., & Yu, S. (2020). Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review). Oncology Letters, 20, 448-454. https://doi.org/10.3892/ol.2020.11583
MLA
Huang, F., Liao, E., Li, C., Yen, C., Yu, S."Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review)". Oncology Letters 20.1 (2020): 448-454.
Chicago
Huang, F., Liao, E., Li, C., Yen, C., Yu, S."Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review)". Oncology Letters 20, no. 1 (2020): 448-454. https://doi.org/10.3892/ol.2020.11583
Copy and paste a formatted citation
x
Spandidos Publications style
Huang FL, Liao EC, Li CL, Yen CY and Yu SJ: Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review). Oncol Lett 20: 448-454, 2020.
APA
Huang, F., Liao, E., Li, C., Yen, C., & Yu, S. (2020). Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review). Oncology Letters, 20, 448-454. https://doi.org/10.3892/ol.2020.11583
MLA
Huang, F., Liao, E., Li, C., Yen, C., Yu, S."Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review)". Oncology Letters 20.1 (2020): 448-454.
Chicago
Huang, F., Liao, E., Li, C., Yen, C., Yu, S."Pathogenesis of pediatric B‑cell acute lymphoblastic leukemia: Molecular pathways and disease treatments (Review)". Oncology Letters 20, no. 1 (2020): 448-454. https://doi.org/10.3892/ol.2020.11583
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team