|
1
|
Blattner WA: Human retroviruses: Their
role in cancer. Proc Assoc Am Physicians. 111:563–572. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tomlinson IP, Novelli MR and Bodmer WF:
The mutation rate and cancer. Proc Natl Acad Sci USA.
93:14800–14803. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Wogan GN, Hecht SS, Felton JS, Conney AH
and Loeb LA: Environmental and chemical carcinogenesis. Semin
Cancer Biol. 14:473–486. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen W, Zheng R, Zhang S, Zhang S, Zeng H,
Xia C, Zuo T, Yang Z, Zou X and He J: Cancer incidence and
mortality in China, 2013. Cancer Lett. 401:63–71. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tseng HH and He B: Molecular markers as
therapeutic targets in lung cancer. Chin J Cancer. 32:59–62. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Qi F, Zhao L, Zhou A, Zhang B, Li A, Wang
Z and Han J: The advantages of using traditional Chinese medicine
as an adjunctive therapy in the whole course of cancer treatment
instead of only terminal stage of cancer. Biosci Trends. 9:16–34.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Nakamura K, Shinozuka K and Yoshikawa N:
Anticancer and antimetastatic effects of cordycepin, an active
component of cordyceps sinensis. J Pharmacol Sci. 127:53–56. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lumlerdkij N, Tantiwongse J,
Booranasubkajorn S, Boonrak R, Akarasereenont P, Laohapand T and
Heinrich M: Understanding cancer and its treatment in thai
traditional medicine: An ethnopharmacological-anthropological
investigation. J Ethnopharmacol. 216:259–273. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bezwoda WR, MacDonald DF, Gear JS, Derman
DP, Bothwell TH, Sqi S, Hurwitz S and Lewis D: Combination
chemotherapy including bleomycin in the treatment of advanced
hodgkin's disease. S Afr Med J. 53:369–373. 1978.PubMed/NCBI
|
|
12
|
Durant JR, Gams RA, Bartolucci AA and
Dorfman RF: BCNU with and without cyclophosphamide, vincristine,
and prednisone (COP) and cycle-active therapy in non-hodgkin's
lymphoma. Cancer Treat Rep. 61:1085–1096. 1977.PubMed/NCBI
|
|
13
|
Wong MY and Chiu GN: Liposome formulation
of co-encapsulated vincristine and quercetin enhanced antitumor
activity in a trastuzumab-insensitive breast tumor xenograft model.
Nanomedicine. 7:834–840. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Munker S, Vogelhuber M, Bornschein J,
Stroszczynski C, Evert M, Schlitt H, Herr W and Teufel A: EpiCO
(epirubicin, cyclophosphamide and vincristine) as treatment for
extrapulmonary high-grade neuroendocrine neoplasms. Z
Gastroenterol. 58:133–136. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Büyükkapu Bay S, Kebudi R, Görgün O,
Zülfikar B, Darendeliler E and Çakır FB: Vincristine, irinotecan,
and temozolomide treatment for refractory/relapsed pediatric solid
tumors: A single center experience. J Oncol Pharm Pract.
25:1343–1348. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Weaver BA: How taxol/paclitaxel kills
cancer cells. Mol Biol Cell. 25:2677–2681. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Caparica R, Bruzzone M, Poggio F, Ceppi M,
de Azambuja E and Lambertini M: Anthracycline and taxane-based
chemotherapy versus docetaxel and cyclophosphamide in the adjuvant
treatment of HER2-negative breast cancer patients: A systematic
review and meta-analysis of randomized controlled trials. Breast
Cancer Res Treat. 174:27–37. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Reck M, Brahmer J, Bennett B, Taylor F,
Penrod JR, DeRosa M, Dastani H, Spigel DR and Gralla RJ: Evaluation
of health-related quality of life and symptoms in patients with
advanced non-squamous non-small cell lung cancer treated with
nivolumab or docetaxel in checkmate 057. Eur J Cancer. 102:23–30.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
da Rocha AB, Lopes RM and Schwartsmann G:
Natural products in anticancer therapy. Curr Opin Pharmacol.
1:364–369. 2001. View Article : Google Scholar
|
|
20
|
Wang P, Yang HL, Yang YJ, Wang L and Lee
SC: Overcome cancer cell drug resistance using natural products.
Evid Based Complement Alternat Med. 2015:7671362015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Wu X, Kong W, Qi X, Wang S, Chen Y, Zhao
Z, Wang W, Lin X, Lai J, Yu Z and Lai G: Icariin induces apoptosis
of human lung adenocarcinoma cells by activating the mitochondrial
apoptotic pathway. Life Sci. 15:1168792019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Zhang P, Zhang M, Yu D, Liu W, Hu L, Zhang
B, Zhou Q and Cao Z: Lycorine inhibits melanoma cell migration and
metastasis mainly through reducing intracellular levels of
beta-catenin and matrix metallopeptidase 9. J Cell Physiol.
234:10566–10575. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Segun PA, Ismail FMD, Ogbole OO, Nahar L,
Evans AR, Ajaiyeoba O and Sarker SD: Acridone alkaloids from the
stem bark of citrus aurantium display selective cytotoxicity
against breast, liver, lung and prostate human carcinoma cells. J
Ethnopharmacol. 227:131–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tomar P, Dey YN, Sharma D, Wanjari MM,
Gaidhani S and Jadhav A: Cytotoxic and antiproliferative activity
of kanchnar guggulu, an ayurvedic formulation. J Integr Med.
16:411–417. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Dhiman K: Ayurvedic intervention in the
management of uterine fibroids: A case series. Ayu. 35:303–308.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Kasymjanova G, Tran AT, Cohen V, Pepe C,
Sakr L, Small D, Agulnik JS and Jagoe RT: The use of a standardized
Chinese herbal formula in patients with advanced lung cancer: A
feasibility study. J Integr Med. 16:390–395. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Wang R, Lu Y, Li H, Sun L, Yang N, Zhao M,
Zhang M and Shi Q: Antitumor activity of the ailanthus altissima
bark phytochemical ailanthone against breast cancer MCF-7 cells.
Oncol Lett. 15:6022–6028. 2018.PubMed/NCBI
|
|
28
|
Rahman S, Fukamiya N, Ohno N, Tokuda H,
Nishino H, Tagahara, Lee KH and Okano M: Inhibitory effects of
quassinoid derivatives on epstein-barr virus early antigen
activation. Chem Pharm Bull (Tokyo). 45:675–677. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cho SK, Jeong M, Jang DS and Choi JH:
Anti-Inflammatory effects of canthin-6-one alkaloids from ailanthus
altissima. Planta Med. 84:527–535. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Okunade AL, Bikoff RE, Casper SJ, Oksman
A, Goldberg DE and Lewis WH: Antiplasmodial activity of extracts
and quassinoids isolated from seedlings of ailanthus altissima
(Simaroubaceae). Phytother Res. 17:675–677. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jin M, Yang JH, Lee E, Lu Y, Kwon S, Son
KH, Son KH, Son JK and Chang HW: Antiasthmatic activity of
luteolin-7-O-glucoside from Ailanthus altissima through the
downregulation of T helper 2 cytokine expression and inhibition of
prostaglandin E2 production in an ovalbumin-induced asthma model.
Biol Pharm Bull. 32:1500–1503. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Rahman S, Fukamiya N, Okano M, Tagahara K
and Lee KH: Anti-Tuberculosis activity of quassinoids. Chem Pharm
Bull (Tokyo). 45:1527–1529. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Melanchauski LS, Broto AP, Moraes TM,
Nasser ALM, Said A, Hawas UW, Rashed K, Vilegas W and Hiruma-Lima
CA: Gastroprotective and antisecretory effects of ailanthus excelsa
(Roxb). J Nat Med. 64:109–113. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wright CW, O'Neill MJ, Phillipson JD and
Warhurst DC: Use of microdilution to assess in vitro antiamoebic
activities of brucea javanica fruits, simarouba amara stem, and a
number of quassinoids. Antimicrob Agents Chemother. 32:1725–1729.
1988. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Kundu P and Laskar S: A brief resume on
the genus Ailanthus: Chemical and pharmacological aspects.
Phytochem Rev. 9:379–412. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kato T, Suzumura Y, Fukushima M, Honda T,
Nakanishi T and Noguchi T: Antitumor activity of novel ailanthone
derivatives in vitro and in vivo. Anticancer Res. 8:573–579.
1988.PubMed/NCBI
|
|
37
|
Liu W, Liu X, Pan Z, Wang D, Li M, Chen X,
Zhou L, Xu M, Li D and Zheng Q: Ailanthone induces cell cycle
arrest and apoptosis in melanoma B16 and A375 cells. Biomolecules.
9:2752019. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhang Y, Zhang C and Min D: Ailanthone
up-regulates miR-449a to restrain acute myeloid leukemia cells
growth, migration and invasion. Exp Mol Pathol. 108:114–120. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wei C, Chen C, Cheng Y, Zhu L, Wang Y, Luo
C, He Y, Yang Z and Ji Z: Ailanthone induces autophagic and
apoptotic cell death in human promyelocytic leukemia HL-60 cells.
Oncol Lett. 16:3569–3576. 2018.PubMed/NCBI
|
|
40
|
Daga M, Pizzimenti S, Dianzani C, Cucci
MA, Cavalli R, Grattarola M, Ferrara B, Scariot V, Trotta F and
Barrera G: Ailanthone inhibits cell growth and migration of
cisplatin resistant bladder cancer cells through down-regulation of
Nrf2, YAP, and c-Myc expression. Phytomedicine. 56:156–164. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hou S, Cheng Z, Wang W, Wang X and Wu Y:
Ailanthone exerts an antitumor function on the development of human
lung cancer by upregulating microRNA-195. J Cell Biochem.
120:10444–10451. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ni Z, Yao C, Zhu X, Gong C, Xu Z, Wang L,
Li S, Zou C and Zhu S: Ailanthone inhibits non-small cell lung
cancer cell growth through repressing DNA replication via
downregulating RPA1. Br J Cancer. 117:1621–1630. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Chen Y, Zhu L, Yang X, Wei C, Chen C, He Y
and Ji Z: Ailanthone induces G2/M cell cycle arrest and apoptosis
of SGC7901 human gastric cancer cells. Mol Med Rep. 16:6821–6827.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zhuo Z, Hu J, Yang X, Chen M, Lei X, Deng
L, Yao N, Peng Q, Chen Z, Ye W and Zhang D: Ailanthone inhibits
huh7 cancer cell growth via cell cycle arrest and apoptosis in
vitro and in vivo. Sci Rep. 5:161852015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Gao W, Ge S and Sun J: Ailanthone exerts
anticancer effect by up-regulating miR-148a expression in
MDA-MB-231 breast cancer cells and inhibiting proliferation,
migration and invasion. Biomed Pharmacother. 109:1062–1069. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yang P, Sun D and Jiang F: Ailanthone
promotes human vestibular schwannoma cell apoptosis and autophagy
by downregulation of miR-21. Oncol Res. 26:941–948. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kong D, Ying B, Zhang J and Ying H: The
anti-osteosarcoma property of ailanthone through regulation of
miR-126/VEGF-A axis. Artif Cells Nanomed Biotechnol. 47:3913–3919.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
He Y, Peng S, Wang J, Chen H, Cong X, Chen
A, Hu M, Qin M, Wu H, Gao S, et al: Ailanthone targets p23 to
overcome MDV3100 resistance in castration-resistant prostate
cancer. Nat Commun. 7:131222016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Han F, Liu G, Sun C and Wei J: Ailanthone
reverses multidrug resistance by inhibiting the
P-glycoprotein-mediated efflux in resistant K562/A02 cells. Cell
Mol Biol (Noisy-le-grand). 64:55–61. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Guy GP Jr, Thomas CC, Thompson T, Watson
M, Massetti GM and Richardson LC; Centers for Disease Control and
Prevention (CDC), : Vital signs: Melanoma incidence and mortality
trends and projections - United States, 1982-2030. MMWR Morb Mortal
Wkly Rep. 64:591–596. 2015.PubMed/NCBI
|
|
51
|
Lens MB and Dawes M: Global perspectives
of contemporary epidemiological trends of cutaneous malignant
melanoma. Br J Dermatol. 150:179–185. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Yamamoto JF and Goodman MT: Patterns of
leukemia incidence in the United States by subtype and demographic
characteristics, 1997-2002. Cancer Causes Control. 19:379–390.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shin VY and Chu KM: miRNA as potential
biomarkers and therapeutic targets for gastric cancer. World J
Gastroenterol. 20:10432–10439. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Chen YJ, Guo YN, Shi K, Huang HM, Huang
SP, Xu WQ, Li ZY, Wei KL, Gan TQ and Chen G: Down-Regulation of
microRNA-144-3p and its clinical value in non-small cell lung
cancer: A comprehensive analysis based on microarray,
miRNA-sequencing, and quantitative real-time PCR data. Respir Res.
20:482019. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yuan G, Zhao Y, Wu D, Gao C and Jiao Z:
miRNA-20a upregulates TAK1 and increases proliferation in
osteosarcoma cells. Future Oncol. 14:461–469. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
De Luca L, Trino S, Laurenzana I,
Tagliaferri D, Falco G, Grieco V, Bianchino G, Nozza F, Campia V,
D'Alessio F, et al: Knockdown of miR-128a induces Lin28a expression
and reverts myeloid differentiation blockage in acute myeloid
leukemia. Cell Death Dis. 8:e28492017. View Article : Google Scholar
|
|
57
|
Elhamamsy AR, El Sharkawy MS, Zanaty AF,
Mahrous MA, Mohamed AE and Abushaaban EA: Circulating miR-92a,
miR-143 and miR-342 in plasma are novel potential biomarkers for
acute myeloid leukemia. Int J Mol Cell Med. 6:77–86.
2017.PubMed/NCBI
|
|
58
|
Li Q, Peng J, Li X, Leng A and Liu T:
MiR-449a targets Flot2 and inhibits gastric cancer invasion by
inhibiting TGF-beta-mediated EMT. Diagn Pathol. 10:2022015.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sandbothe M, Buurman R, Reich N, Greiwe L,
Vajen B, Gürlevik E, Schäffer V, Eilers M, Kühnel F, Vaquero A, et
al: The microRNA-449 family inhibits TGF-beta-mediated liver cancer
cell migration by targeting SOX4. J Hepatol. 66:1012–1021. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
DeGeorge KC, Holt HR and Hodges SC:
Bladder cancer: Diagnosis and treatment. Am Fam Physician.
96:507–514. 2017.PubMed/NCBI
|
|
61
|
Nadal R and Bellmunt J: Management of
metastatic bladder cancer. Cancer Treat Rev. 76:10–21. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ciamporcero E, Daga M, Pizzimenti S,
Roetto A, Dianzani C, Compagnone A, Palmieri A, Ullio C, Cangemi L,
Pili R and Barrera G: Crosstalk between Nrf2 and YAP contributes to
maintaining the antioxidant potential and chemoresistance in
bladder cancer. Free Radic Biol Med. 115:447–457. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Rojo de la Vega M, Chapman E and Zhang DD:
NRF2 and the hallmarks of cancer. Cancer Cell. 34:21–43. 2018.
View Article : Google Scholar
|
|
64
|
Zanconato F, Cordenonsi M and Piccolo S:
YAP/TAZ at the roots of cancer. Cancer Cell. 29:783–803. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang Y, Zhang X, Zou C, Kung HF, Lin MC,
Dress A, Wardle F, Jiang BH and Lai L: miR-195 inhibits tumor
growth and angiogenesis through modulating IRS1 in breast cancer.
Biomed Pharmacother. 80:95–101. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Liu B, Qu J, Xu F, Guo Y, Wang Y, Yu H and
Qian B: miR-195 suppresses non-small cell lung cancer by targeting
CHEK1. Oncotarget. 6:9445–9456. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yu S, Jing L, Yin XR, Wang MC, Chen YM,
Guo Y, Nan KJ and Han LL: miR-195 suppresses the metastasis and
epithelial-mesenchymal transition of hepatocellular carcinoma by
inhibiting YAP. Oncotarget. 8:99757–99771. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhang X, Tao T, Liu C, Guan H, Huang Y, Xu
B and Chen M: Downregulation of miR-195 promotes prostate cancer
progression by targeting HMGA1. Oncol Rep. 36:376–382. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Brackmann DE: Vestibular schwannoma
(acoustic neuroma). Otolaryngol Clin North Am. 45:xiii–xv. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Rosahl S, Bohr C, Lell M, Hamm K and Iro
H: Diagnosis and management of vestibular schwannomas - an
interdisciplinary challenge. Laryngorhinootologie. 96:S152–S182.
2017.(In German). PubMed/NCBI
|
|
72
|
Feng YH, Wu CL, Tsao CJ, Chang JG, Lu PJ,
Yeh KT, Uen YH, Lee JC and Shiau AL: Deregulated expression of
sprouty2 and microRNA-21 in human colon cancer: Correlation with
the clinical stage of the disease. Cancer Biol Ther. 11:111–121.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Wu X, Zhuo S, Zheng C and Gao G:
MicroRNA-21 correlates TGF-beta1 pathway of pancreatic ductal
adenocarcinoma. Zhong Nan Da Xue Xue Bao. 44:749–756. 2019.(In
Chinese). PubMed/NCBI
|
|
74
|
Bharali D, Banerjee BD, Bharadwaj M,
Husain SA and Kar P: Expression analysis of microrna-21 and
microrna-122 in hepatocellular carcinoma. J Clin Exp Hepatol.
9:294–301. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Mirabello L, Troisi RJ and Savage SA:
Osteosarcoma incidence and survival rates from 1973 to 2004: Data
from the surveillance, epidemiology, and end results program.
Cancer. 115:1531–1543. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Harrison DJ, Geller DS, Gill JD, Lewis VO
and Gorlick R: Current and future therapeutic approaches for
osteosarcoma. Expert Rev Anticancer Ther. 18:39–50. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim YH, Goh TS, Lee CS, Oh SO, Kim JI,
Jeung SH and Pak K: Prognostic value of microRNAs in osteosarcoma:
A meta-analysis. Oncotarget. 8:8726–8737. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hesse E and Taipaleenmaki H: MicroRNAs in
bone metastasis. Curr Osteoporos Rep. 17:122–128. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sasaki R, Osaki M and Okada F:
MicroRNA-Based diagnosis and treatment of metastatic human
osteosarcoma. Cancers. 11:5532019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Huggins C and Hodges CV: Studies on
prostatic cancer. I. The effect of castration, of estrogen and
androgen injection on serum phosphatases in metastatic carcinoma of
the prostate. CA Cancer J Clin. 22:232–240. 1972. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Koochekpour S: Androgen receptor signaling
and mutations in prostate cancer. Asian J Androl. 12:639–657. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Harris WP, Mostaghel EA, Nelson PS and
Montgomery B: Androgen deprivation therapy: Progress in
understanding mechanisms of resistance and optimizing androgen
depletion. Nat Clin Pract Urol. 6:76–85. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Petrylak DP, Tangen CM, Hussain MH, Lara
PN Jr, Jones JA, Taplin ME, Burch PA, Berry D, Moinpour C, Kohli M,
et al: Docetaxel and estramustine compared with mitoxantrone and
prednisone for advanced refractory prostate cancer. N Engl J Med.
351:1513–1520. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
de Bono JS, Oudard S, Ozguroglu M, Hansen
S, Machiels JP, Kocak I, Gravis G, Bodrogi I, Mackenzie MJ, Shen L,
et al: Prednisone plus cabazitaxel or mitoxantrone for metastatic
castration-resistant prostate cancer progressing after docetaxel
treatment: A randomised open-label trial. Lancet. 376:1147–1154.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ryan CJ, Smith MR, Fizazi K, Saad F,
Mulders PFA, Sternberg CN, Miller K, Logothetis CJ, Shore ND, Small
EJ, et al: Abiraterone acetate plus prednisone versus placebo plus
prednisone in chemotherapy-naive men with metastatic
castration-resistant prostate cancer (COU-AA-302): final overall
survival analysis of a randomised, double-blind, placebo-controlled
phase 3 study. Lancet Oncol. 16:152–160. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Parker C, Nilsson S, Heinrich D, Helle SI,
O'Sullivan JM, Fosså SD, Chodacki A, Wiechno P, Logue J, Seke M, et
al: Alpha emitter radium-223 and survival in metastatic prostate
cancer. N Engl J Med. 369:213–223. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Beer TM, Armstrong AJ, Rathkopf DE, Loriot
Y, Sternberg CN, Higano CS, Iversen P, Bhattacharya S, Carles J,
Chowdhury S, et al: Enzalutamide in metastatic prostate cancer
before chemotherapy. N Engl J Med. 371:424–433. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Scher HI, Fizazi K, Saad F, Taplin ME,
Sternberg CN, Miller K, de Wit R, Mulders P, Chi KN, Shore ND, et
al: Increased survival with enzalutamide in prostate cancer after
chemotherapy. N Engl J Med. 367:1187–1197. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Antonarakis ES, Lu C, Wang H, Luber B,
Nakazawa M, Roeser JC, Chen Y, Mohammad TA, Chen Y, Fedor HL, et
al: AR-V7 and resistance to enzalutamide and abiraterone in
prostate cancer. N Engl J Med. 371:1028–1038. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Cano LQ, Lavery DN and Bevan CL:
Mini-Review: Foldosome regulation of androgen receptor action in
prostate cancer. Mol Cell Endocrinol. 369:52–62. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Tao WW, Jiang H, Tao XM, Jiang P, Sha LY
and Sun XC: Effects of acupuncture, tuina, tai chi, qigong, and
traditional Chinese medicine five-element music therapy on symptom
management and quality of life for cancer patients: A
meta-analysis. J Pain Symptom Manage. 51:728–747. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Tang S, Ma X, Lu J, Zhang Y, Liu M and
Wang X: Preclinical toxicology and toxicokinetic evaluation of
ailanthone, a natural product against castration-resistant prostate
cancer, in mice. Fitoterapia. 136:1041612019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Winder C, Azzi R and Wagner D: The
development of the globally harmonized system (GHS) of
classification and labelling of hazardous chemicals. J Hazard
Mater. 125:29–44. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hassan M, Watari H, AbuAlmaaty A, Ohba Y
and Sakuragi N: Apoptosis and molecular targeting therapy in
cancer. BioMed Res Int. 2014:1508452014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Goldar S, Khaniani MS, Derakhshan SM and
Baradaran B: Molecular mechanisms of apoptosis and roles in cancer
development and treatment. Asian Pac J Cancer Prev. 16:2129–2144.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Green DR and Reed JC: Mitochondria and
apoptosis. Science. 281:1309–1312. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Redza-Dutordoir M and Averill-Bates DA:
Activation of apoptosis signalling pathways by reactive oxygen
species. Biochim Biophys Acta. 1863:2977–2992. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Cory S, Roberts AW, Colman PM and Adams
JM: Targeting BCL-2-like proteins to kill cancer cells. Trends
Cancer. 2:443–460. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Lowe SW, Schmitt EM, Smith SW, Osborne BA
and Jacks T: P53 is required for radiation-induced apoptosis in
mouse thymocytes. Nature. 362:847–849. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Kastenhuber ER and Lowe SW: Putting p53 in
context. Cell. 170:1062–1078. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Wang Z, Wang N, Liu P and Xie X: AMPK and
cancer. Exp Suppl. 107:203–226. 2016.PubMed/NCBI
|
|
102
|
Aziz SA, Jilaveanu LB, Zito C, Camp RL,
Rimm DL, Conrad P and Kluger HM: Vertical targeting of the
phosphatidylinositol-3 kinase pathway as a strategy for treating
melanoma. Clin Cancer Res. 16:6029–6039. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Brachmann SM, Hofmann I, Schnell C,
Fritsch C, Wee S, Lane H, Wang S, Echeverria CG and Maira SM:
Specific apoptosis induction by the dual PI3K/mTor inhibitor
NVP-BEZ235 in HER2 amplified and PIK3CA mutant breast cancer cells.
Proc Natl Acad Sci USA. 106:22299–22304. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Martinelli E, Troiani T, D'Aiuto E,
Morgillo F, Vitagliano D, Capasso A, Costantino S, Ciuffreda LP,
Merolla F, Vecchione L, et al: Antitumor activity of pimasertib, a
selective MEK 1/2 inhibitor, in combination with PI3K/mTOR
inhibitors or with multi-targeted kinase inhibitors in
pimasertib-resistant human lung and colorectal cancer cells. Int J
Cancer. 133:2089–2101. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Lim HJ, Crowe P and Yang JL: Current
clinical regulation of PI3K/PTEN/Akt/mTOR signalling in treatment
of human cancer. J Cancer Res Clin Oncol. 141:671–689. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hassan B, Akcakanat A, Holder AM and
Meric-Bernstam F: Targeting the PI3-kinase/Akt/mTOR signaling
pathway. Surg Oncol Clin N Am. 22:641–664. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Panda M and Biswal BK: Cell signaling and
cancer: A mechanistic insight into drug resistance. Mol Biol Rep.
46:5645–5659. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Koskela HL, Eldfors S, Ellonen P, van
Adrichem AJ, Kuusanmäki H, Andersson EI, Lagström S, Clemente MJ,
Olson T, Jalkanen SE, et al: Somatic STAT3 mutations in large
granular lymphocytic leukemia. N Engl J Med. 366:1905–1913. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Cocchiola R, Rubini E, Altieri F,
Chichiarelli S, Paglia G, Romaniello D, Carissimi S, Giorgi A,
Giamogante F, Macone A, et al: STAT3 post-translational
modifications drive cellular signaling pathways in prostate cancer
cells. Int J Mol Sci. 20:8152019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Horiguchi A, Oya M, Shimada T, Uchida A,
Marumo K and Murai M: Activation of signal transducer and activator
of transcription 3 in renal cell carcinoma: A study of incidence
and its association with pathological features and clinical
outcome. J Urol. 168:762–765. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zhu H, Chang LL, Yan FJ, Hu Y, Zeng CM,
Zhou TY, Yuan T, Ying MD, Cao J, He QJ and Yang B: AKR1C1 activates
STAT3 to promote the metastasis of non-small cell lung cancer.
Theranostics. 8:676–692. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Nishimoto A, Kugimiya N, Hosoyama T, Enoki
T, Li TS and Hamano K: JAB1 regulates unphosphorylated STAT3
DNA-binding activity through protein-protein interaction in human
colon cancer cells. Biochem Biophy Res Commun. 438:513–518. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Wei D, Le X, Zheng L, Wang L, Frey JA, Gao
AC, Peng Z, Huang S, Xiong HQ, Abbruzzese JL and Xie K: Stat3
activation regulates the expression of vascular endothelial growth
factor and human pancreatic cancer angiogenesis and metastasis.
Oncogene. 22:319–329. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S,
Ren C and Shu X: Negative regulators of STAT3 signaling pathway in
cancers. Cancer Manag Res. 11:4957–4969. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Stirewalt DL, Kopecky KJ, Meshinchi S,
Appelbaum FR, Slovak ML, Willman CL and Radich JP: FLT3, RAS, and
TP53 mutations in elderly patients with acute myeloid leukemia.
Blood. 97:3589–3595. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Roberts PJ and Der CJ: Targeting the
Raf-MEK-ERK mitogen-activated protein kinase cascade for the
treatment of cancer. Oncogene. 26:3291–3310. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Polakis P: Wnt signaling in cancer. Cold
Spring Harb Perspect Biol. 4:a0080522012. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Tan SH and Barker N: Wnt signaling in
adult epithelial stem cells and cancer. Prog Mol Biol Transl Sci.
153:21–79. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Taketo MM: Shutting down wnt
signal-activated cancer. Nat Genet. 36:320–322. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Radtke F and Raj K: The role of Notch in
tumorigenesis: Oncogene or tumour suppressor? Nat Rev Cancer.
3:756–767. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Huang T, Zhou Y, Cheng AS, Yu J, To KF and
Kang W: NOTCH receptors in gastric and other gastrointestinal
cancers: Oncogenes or tumor suppressors? Mol Cancer. 15:802016.
View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Lobry C, Oh P, Mansour MR, Look AT and
Aifantis I: Notch signaling: Switching an oncogene to a tumor
suppressor. Blood. 123:2451–2459. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Xu X, Zhao Y, Xu M, Dai Q, Meng W, Yang J
and Qin R: Activation of Notch signal pathway is associated with a
poorer prognosis in acute myeloid leukemia. Med Oncol.
28:S483–S489. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Ono M, Takimoto R, Osuga T, Okagawa Y,
Hirakawa M, Yoshida M, Arihara Y, Uemura N, Hayasaka N, Miura S, et
al: Targeting notch-1 positive acute leukemia cells by novel
fucose-bound liposomes carrying daunorubicin. Oncotarget.
7:38586–38597. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Johnson DG and Walker CL: Cyclins and cell
cycle checkpoints. Ann Rev Pharmacol Toxicol. 39:295–312. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Vermeulen K, Van Bockstaele DR and
Berneman ZN: The cell cycle: A review of regulation, deregulation
and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Geng Y, Eaton EN, Picon M, Roberts JM,
Lundberg AS, Gifford A, Sardet C and Weinberg RA: Regulation of
cyclin E transcription by E2Fs and retinoblastoma protein.
Oncogene. 12:1173–1180. 1996.PubMed/NCBI
|
|
128
|
Ohtani K, DeGregori J and Nevins JR:
Regulation of the cyclin E gene by transcription factor E2F1. Proc
Natl Acad Sci USA. 92:12146–12150. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Luo Z, Zang M and Guo W: AMPK as a
metabolic tumor suppressor: Control of metabolism and cell growth.
Future Oncol. 6:457–470. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Galluzzi L, Bravo-San Pedro JM, Levine B,
Green DR and Kroemer G: Pharmacological modulation of autophagy:
Therapeutic potential and persisting obstacles. Nat Rev Drug
Discov. 16:487–511. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Choi KS: Autophagy and cancer. Exp Mol
Med. 44:109–120. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Liang XH, Jackson S, Seaman M, Brown K,
Kempkes B, Hibshoosh H and Levine B: Induction of autophagy and
inhibition of tumorigenesis by beclin 1. Nature. 402:672–676. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Komatsu M, Waguri S, Koike M, Sou YS, Ueno
T, Hara T, Mizushima N, Iwata JI, Ezaki J, Murata S, et al:
Homeostatic levels of p62 control cytoplasmic inclusion body
formation in autophagy-deficient mice. Cell. 131:1149–1163. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Tanida I, Minematsu-Ikeguchi N, Ueno T and
Kominami E: Lysosomal turnover, but not a cellular level, of
endogenous LC3 is a marker for autophagy. Autophagy. 1:84–91. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Tanida I, Ueno T and Kominami E: LC3 and
Autophagy. Methods Mol Biol. 445:77–88. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Mundade R, Imperiale TF, Prabhu L, Loehrer
PJ and Lu T: Genetic pathways, prevention, and treatment of
sporadic colorectal cancer. Oncoscience. 1:400–406. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Coleman MP: Cancer survival: Global
surveillance will stimulate health policy and improve equity.
Lancet. 383:564–573. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Winer A, Adams S and Mignatti P: Matrix
metalloproteinase inhibitors in cancer therapy: Turning past
failures into future successes. Mol Cancer Ther. 17:1147–1155.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Hung WC, Tseng WL, Shiea J and Chang HC:
Skp2 overexpression increases the expression of MMP-2 and MMP-9 and
invasion of lung cancer cells. Cancer Lett. 288:156–161. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Karthika C and Sureshkumar R: Can curcumin
along with chemotherapeutic drug and lipid provide an effective
treatment of metastatic colon cancer and alter multidrug
resistance? Med Hypotheses. 132:1093252019. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
An Q, Han C, Zhou Y, Li F, Li D, Zhang X,
Yu Z, Duan Z and Kan Q: Matrine induces cell cycle arrest and
apoptosis with recovery of the expression of miR-126 in the A549
non-small cell lung cancer cell line. Mol Med Rep. 14:4042–4048.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Bjorklund M, Roos J, Gogvadze V and
Shoshan M: Resveratrol induces SIRT1- and energy-stress-independent
inhibition of tumor cell regrowth after low-dose platinum
treatment. Cancer Chemother Pharmacol. 68:1459–1467. 2011.
View Article : Google Scholar : PubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBIPubMed/NCBI
|