Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Function and regulation of F‑box/WD repeat‑containing protein 7 (Review)

  • Authors:
    • Zheng Zhang
    • Qiangsheng Hu
    • Wenyan Xu
    • Wensheng  Liu
    • Mengqi Liu
    • Qiqing  Sun
    • Zeng Ye
    • Guixiong Fan
    • Yi  Qin
    • Xiaowu Xu
    • Xianjun Yu
    • Shunrong Ji
  • View Affiliations / Copyright

    Affiliations: Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1526-1534
    |
    Published online on: June 11, 2020
       https://doi.org/10.3892/ol.2020.11728
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The ubiquitin‑proteasome system is an important post‑translational modification system involved in numerous biological processes, such as cell cycle regulation, gene transcription, signal transduction, apoptosis, differentiation and development. F‑box/WD repeat‑containing protein 7 (FBXW7) is one of the most studied F‑box (FBX) proteins, serving as substrate recognition component of S phase kinase‑associated protein 1‑Cullin 1‑FBX protein complexes. As a tumor suppressor, FBXW7 recognizes numerous proto‑oncoproteins and promotes their ubiquitination and subsequent proteasomal degradation. FBXW7 is regulated at different levels, leading to tunable and specific control of the activity and abundance of its substrates. Therefore, genetic mutations or decreases in its expression serve an important biological role in tumor development. In‑depth studies and identification of additional substrates targeted by FBXW7 have suggested a signaling network regulated by FBXW7, including its tumor‑inhibitory role. The present review focused on the role of FBXW7 in tumor suppression and its application in cancer therapy.
View Figures

Figure 1

Figure 2

View References

1 

Hershko A and Ciechanover A: The ubiquitin system. Annu Rev Biochem. 67:425–479. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Schulman BA and Harper JW: Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways. Nat Rev Mol Cell Biol. 10:319–331. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Wenzel DM, Stoll KE and Klevit RE: E2s: Structurally economical and functionally replete. Biochem J. 433:31–42. 2011. View Article : Google Scholar : PubMed/NCBI

4 

Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI

5 

Zheng N and Shabek N: Ubiquitin ligases: Structure, function, and regulation. Annu Rev Biochem. 86:129–157. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Deshaies RJ and Joazeiro CA: RING domain E3 ubiquitin ligases. Annu Rev Biochem. 78:399–434. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Zimmerman ES, Schulman BA and Zheng N: Structural assembly of cullin-RING ubiquitin ligase complexes. Curr Opin Struct Biol. 20:714–721. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Diaz VM and de Herreros AG: F-box proteins: Keeping the epithelial-to-mesenchymal transition (EMT) in check. Semin Cancer Biol. 36:71–79. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Zheng N, Zhou Q, Wang Z and Wei W: Recent advances in SCF ubiquitin ligase complex: Clinical implications. Biochim Biophys Acta. 1866:12–22. 2016.PubMed/NCBI

10 

Bai C, Sen P, Hofmann K, Ma L, Goebl M, Harper JW and Elledge SJ: SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 86:263–274. 1996. View Article : Google Scholar : PubMed/NCBI

11 

Pei XH, Bai F, Li Z, Smith MD, Whitewolf G, Jin R and Xiong Y: Cytoplasmic CUL9/PARC ubiquitin ligase is a tumor suppressor and promotes p53-dependent apoptosis. Cancer Res. 71:2969–2977. 2011. View Article : Google Scholar : PubMed/NCBI

12 

Nguyen HC, Wang W and Xiong Y: Cullin-RING E3 ubiquitin ligases: Bridges to destruction. Subcell Biochem. 83:323–347. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Harper JW and Tan MK: Understanding cullin-RING E3 biology through proteomics-based substrate identification. Mol Cell Proteomics. 11:1541–1550. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Nakagawa T, Nakayama K and Nakayama KI: Knockout mouse models provide insight into the biological functions of CRL1 components. Adv Exp Med Biol. 1217:147–171. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Gupta-Rossi N, Le Bail O, Gonen H, Brou C, Logeat F, Six E, Ciechanover A and Israel A: Functional interaction between SEL-10, an F-box protein, and the nuclear form of activated Notch1 receptor. J Biol Chem. 276:34371–34378. 2001. View Article : Google Scholar : PubMed/NCBI

16 

Jin J, Cardozo T, Lovering RC, Elledge SJ, Pagano M and Harper JW: Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev. 18:2573–2580. 2004. View Article : Google Scholar : PubMed/NCBI

17 

Matsumoto A, Onoyama I and Nakayama KI: Expression of mouse Fbxw7 isoforms is regulated in a cell cycle- or p53-dependent manner. Biochem Biophys Res Commun. 350:114–119. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Welcker M, Orian A, Grim JE, Eisenman RN and Clurman BE: A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol. 14:1852–1857. 2004. View Article : Google Scholar : PubMed/NCBI

19 

Grim JE, Gustafson MP, Hirata RK, Hagar AC, Swanger J, Welcker M, Hwang HC, Ericsson J, Russell DW and Clurman BE: Isoform- and cell cycle-dependent substrate degradation by the Fbw7 ubiquitin ligase. J Cell Biol. 181:913–920. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Welcker M, Larimore EA, Frappier L and Clurman BE: Nucleolar targeting of the fbw7 ubiquitin ligase by a pseudosubstrate and glycogen synthase kinase 3. Mol Cell Biol. 31:1214–1224. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Yumimoto K and Nakayama KI: Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol. Feb 27–2020.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI

22 

Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Wei W, Jin J, Schlisio S, Harper JW and Kaelin WG Jr: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien-West M, Clurman BE and Roberts JM: Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell. 12:381–392. 2003. View Article : Google Scholar : PubMed/NCBI

25 

Moberg KH, Bell DW, Wahrer DC, Haber DA and Hariharan IK: Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature. 413:311–316. 2001. View Article : Google Scholar : PubMed/NCBI

26 

Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R and Balmain A: FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 321:1499–1502. 2008. View Article : Google Scholar : PubMed/NCBI

28 

Rajagopalan H and Lengauer C: hCDC4 and genetic instability in cancer. Cell Cycle. 3:693–694. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Rajagopalan H, Jallepalli PV, Rago C, Velculescu VE, Kinzler KW, Vogelstein B and Lengauer C: Inactivation of hCDC4 can cause chromosomal instability. Nature. 428:77–81. 2004. View Article : Google Scholar : PubMed/NCBI

30 

Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neil J, Gutierrez A, Ivanova E, Perna I, et al: Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature. 447:966–971. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Tetzlaff MT, Yu W, Li M, Zhang P, Finegold M, Mahon K, Harper JW, Schwartz RJ and Elledge SJ: Defective cardiovascular development and elevated cyclin E and Notch proteins in mice lacking the Fbw7 F-box protein. Proc Natl Acad Sci USA. 101:3338–3345. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Wang Z, Inuzuka H, Fukushima H, Wan L, Gao D, Shaik S, Sarkar FH and Wei W: Emerging roles of the FBW7 tumour suppressor in stem cell differentiation. EMBO Rep. 13:36–43. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Balamurugan K, Sharan S, Klarmann KD, Zhang Y, Coppola V, Summers GH, Roger T, Morrison DK, Keller JR and Sterneck E: FBXW7α attenuates inflammatory signalling by downregulating C/EBP δ and its target gene Tlr4. Nat Commun. 4:16622013. View Article : Google Scholar : PubMed/NCBI

35 

Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K, et al: FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol. 17:322–332. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Yumimoto K, Akiyoshi S, Ueo H, Sagara Y, Onoyama I, Ueo H, Ohno S, Mori M, Mimori K and Nakayama KI: F-box protein FBXW7 inhibits cancer metastasis in a non-cell-autonomous manner. J Clin Invest. 125:621–635. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Rocher-Ros V, Marco S, Mao JH, Gines S, Metzger D, Chambon P, Balmain A and Saura CA: Presenilin modulates EGFR signaling and cell transformation by regulating the ubiquitin ligase Fbw7. Oncogene. 29:2950–2961. 2010. View Article : Google Scholar : PubMed/NCBI

38 

Grinkevich VV, Nikulenkov F, Shi Y, Enge M, Bao W, Maljukova A, Gluch A, Kel A, Sangfelt O and Selivanova G: Ablation of key oncogenic pathways by RITA-reactivated p53 is required for efficient apoptosis. Cancer Cell. 31:724–726. 2017. View Article : Google Scholar : PubMed/NCBI

39 

Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CH, et al: The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 210:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, et al: Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 28:2324–2335. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Lerner M, Lundgren J, Akhoondi S, Jahn A, Ng HF, Akbari Moqadam F, Oude Vrielink JA, Agami R, Den Boer ML, Grander D and Sangfelt O: MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle. 10:2172–2183. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Wang Q, Li DC, Li ZF, Liu CX, Xiao YM, Zhang B, Li XD, Zhao J, Chen LP, Xing XM, et al: Upregulation of miR-27a contributes to the malignant transformation of human bronchial epithelial cells induced by SV40 small T antigen. Oncogene. 30:3875–3886. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Spruck C: MiR-27a regulation of SCF(Fbw7) in cell division control and cancer. Cell Cycle. 10:3232–3233. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Olive V, Sabio E, Bennett MJ, De Jong CS, Biton A, McGann JC, Greaney SK, Sodir NM, Zhou AY, Balakrishnan A, et al: A component of the mir-17-92 polycistronic oncomir promotes oncogene-dependent apoptosis. Elife. 2:e008222013. View Article : Google Scholar : PubMed/NCBI

45 

Zhou C, Shen L, Mao L, Wang B, Li Y and Yu H: MiR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun. 458:63–69. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Zhang P, Cao L, Fan P, Mei Y and Wu M: LncRNA-MIF, a c-Myc-activated long non-coding RNA, suppresses glycolysis by promoting Fbxw7-mediated c-Myc degradation. EMBO Rep. 17:1204–1220. 2016. View Article : Google Scholar : PubMed/NCBI

47 

Liu X, Ma J, Xu F and Li L: TINCR suppresses proliferation and invasion through regulating miR-544a/FBXW7 axis in lung cancer. Biomed Pharmacother. 99:9–17. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Wang Y, Liu Z, Yao B, Li Q, Wang L, Wang C, Dou C, Xu M, Liu Q and Tu K: Long non-coding RNA CASC2 suppresses epithelial-mesenchymal transition of hepatocellular carcinoma cells through CASC2/miR-367/FBXW7 axis. Mol Cancer. 16:1232017. View Article : Google Scholar : PubMed/NCBI

49 

Li L, Sarver AL, Khatri R, Hajeri PB, Kamenev I, French AJ, Thibodeau SN, Steer CJ and Subramanian S: Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol. 234:488–501. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Tang B, Lei B, Qi G, Liang X, Tang F, Yuan S, Wang Z, Yu S and He S: MicroRNA-155-3p promotes hepatocellular carcinoma formation by suppressing FBXW7 expression. J Exp Clin Canc Res. 35:932016. View Article : Google Scholar

51 

Xia W, Zhou J, Luo H, Liu Y, Peng C, Zheng W and Ma W: MicroRNA-32 promotes cell proliferation, migration and suppresses apoptosis in breast cancer cells by targeting FBXW7. Cancer Cell Int. 17:142017. View Article : Google Scholar : PubMed/NCBI

52 

Xu W, Taranets L and Popov N: Regulating Fbw7 on the road to cancer. Semin Cancer Biol. 36:62–70. 2016. View Article : Google Scholar : PubMed/NCBI

53 

Mo JS, Ann EJ, Yoon JH, Jung J, Choi YH, Kim HY, Ahn JS, Kim SM, Kim MY, Hong JA, et al: Serum- and glucocorticoid-inducible kinase 1 (SGK1) controls Notch1 signaling by downregulation of protein stability through Fbw7 ubiquitin ligase. J Cell Sci. 124:(Pt 1). 100–112. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Schulein C, Eilers M and Popov N: PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity. FEBS Lett. 585:2151–2157. 2011. View Article : Google Scholar : PubMed/NCBI

55 

Cao J, Ge MH and Ling ZQ: Fbxw7 tumor suppressor: A vital regulator contributes to human tumorigenesis. Medicine (Baltimore). 95:e24962016. View Article : Google Scholar : PubMed/NCBI

56 

Akhoondi S, Lindstrom L, Widschwendter M, Corcoran M, Bergh J, Spruck C, Grander D and Sangfelt O: Inactivation of FBXW7/hCDC4-β expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 12(R105)2010.PubMed/NCBI

57 

Kitade S, Onoyama I, Kobayashi H, Yagi H, Yoshida S, Kato M, Tsunematsu R, Asanoma K, Sonoda K, Wake N, et al: FBXW7 is involved in the acquisition of the malignant phenotype in epithelial ovarian tumors. Cancer Sci. 107:1399–1405. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P, Shaik S, Lee DY, Finn G, Balastik M, et al: Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell. 46:771–783. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Ji S, Qin Y, Shi S, Liu X, Hu H, Zhou H, Gao J, Zhang B, Xu W, Liu J, et al: ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res. 25:561–573. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Cizmecioglu O, Krause A, Bahtz R, Ehret L, Malek N and Hoffmann I: Plk2 regulates centriole duplication through phosphorylation-mediated degradation of Fbxw7 (human Cdc4). J Cell Sci. 125:(Pt 4). 981–992. 2012. View Article : Google Scholar : PubMed/NCBI

61 

Chen J, Shin JH, Zhao R, Phan L, Wang H, Xue Y, Post SM, Ho Choi H, Chen JS, Wang E, et al: CSN6 drives carcinogenesis by positively regulating Myc stability. Nat Commun. 5:53842014. View Article : Google Scholar : PubMed/NCBI

62 

Diefenbacher ME, Popov N, Blake SM, Schulein-Volk C, Nye E, Spencer-Dene B, Jaenicke LA, Eilers M and Behrens A: The deubiquitinase USP28 controls intestinal homeostasis and promotes colorectal cancer. J Clin Invest. 124:3407–3418. 2014. View Article : Google Scholar : PubMed/NCBI

63 

Schulein-Volk C, Wolf E, Zhu J, Xu W, Taranets L, Hellmann A, Janicke LA, Diefenbacher ME, Behrens A, Eilers M and Popov N: Dual regulation of Fbw7 function and oncogenic transformation by Usp28. Cell Rep. 9:1099–1109. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Welcker M, Larimore EA, Swanger J, Bengoechea-Alonso MT, Grim JE, Ericsson J, Zheng N and Clurman BE: Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 27:2531–2536. 2013. View Article : Google Scholar : PubMed/NCBI

65 

Davis RJ, Welcker M and Clurman BE: Tumor suppression by the Fbw7 ubiquitin ligase: Mechanisms and opportunities. Cancer Cell. 26:455–464. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F and Tyers M: Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell. 129:1165–1176. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Bonetti P, Davoli T, Sironi C, Amati B, Pelicci PG and Colombo E: Nucleophosmin and its AML-associated mutant regulate c-Myc turnover through Fbw7 gamma. J Cell Biol. 182:19–26. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Durgan J and Parker PJ: Regulation of the tumour suppressor Fbw7α by PKC-dependent phosphorylation and cancer-associated mutations. Biochem J. 432:77–87. 2010. View Article : Google Scholar : PubMed/NCBI

69 

Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI

70 

King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, et al: The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 153:1552–1566. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Davis H, Lewis A, Behrens A and Tomlinson I: Investigation of the atypical FBXW7 mutation spectrum in human tumours by conditional expression of a heterozygous propellor tip missense allele in the mouse intestines. Gut. 63:792–799. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Ju Y, Yu A, Sun X, Wu D and Zhang H: Glucosamine, a naturally occurring amino monosaccharide, inhibits A549 and H446 cell proliferation by blocking G1/S transition. Mol Med Rep. 8:794–798. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Dong JT and Chen C: Essential role of KLF5 transcription factor in cell proliferation and differentiation and its implications for human diseases. Cell Mol Life Sci. 66:2691–2706. 2009. View Article : Google Scholar : PubMed/NCBI

74 

Klotz K, Cepeda D, Tan Y, Sun D, Sangfelt O and Spruck C: SCF(Fbxw7/hCdc4) targets cyclin E2 for ubiquitin-dependent proteolysis. Exp Cell Res. 315:1832–1839. 2009. View Article : Google Scholar : PubMed/NCBI

75 

Byrd KN, Huey B, Roydasgupta R, Fridlyand J, Snijders AM and Albertson DG: FBXW7 and DNA copy number instability. Breast Cancer Res Treat. 109:47–54. 2008. View Article : Google Scholar : PubMed/NCBI

76 

Liu X, Zhang Y, Wu S, Xu M, Shen Y, Yu M, Fan J, Wei S, Xu C, Huang L, et al: Palmatine induces G2/M phase arrest and mitochondrial-associated pathway apoptosis in colon cancer cells by targeting AURKA. Biochem Pharmacol. 175:1139332020. View Article : Google Scholar : PubMed/NCBI

77 

Zhang H, Bao J, Zhao S, Huo Z and Li B: MicroRNA-490-3p suppresses hepatocellular carcinoma cell proliferation and migration by targeting the aurora kinase A gene (AURKA). Arch Med Sci. 16:395–406. 2019. View Article : Google Scholar : PubMed/NCBI

78 

Finkin S, Aylon Y, Anzi S, Oren M and Shaulian E: Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene. 27:4411–4421. 2008. View Article : Google Scholar : PubMed/NCBI

79 

McIntyre B, Asahara T and Alev C: Overview of basic mechanisms of notch signaling in development and disease. Adv Exp Med Biol. 1227:9–27. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Nowell CS and Radtke F: Notch as a tumour suppressor. Nat Rev Cancer. 17:145–159. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Bray SJ: Notch signalling in context. Nat Rev Mol Cell Biol. 17:722–735. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Pancewicz J, Taylor JM, Datta A, Baydoun HH, Waldmann TA, Hermine O and Nicot C: Notch signaling contributes to proliferation and tumor formation of human T-cell leukemia virus type 1-associated adult T-cell leukemia. Proc Natl Acad Sci USA. 107:16619–16624. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Wu G, Lyapina S, Das I, Li J, Gurney M, Pauley A, Chui I, Deshaies RJ and Kitajewski J: SEL-10 is an inhibitor of notch signaling that targets notch for ubiquitin-mediated protein degradation. Mol Cell Biol. 21:7403–7415. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Tsunematsu R, Nakayama K, Oike Y, Nishiyama M, Ishida N, Hatakeyama S, Bessho Y, Kageyama R, Suda T and Nakayama KI: Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem. 279:9417–9423. 2004. View Article : Google Scholar : PubMed/NCBI

85 

Matsumoto A, Onoyama I, Sunabori T, Kageyama R, Okano H and Nakayama KI: Fbxw7-dependent degradation of Notch is required for control of ‘stemness’ and neuronal-glial differentiation in neural stem cells. J Biol Chem. 286:13754–13764. 2011. View Article : Google Scholar : PubMed/NCBI

86 

Yang-Yen HF: Mcl-1: A highly regulated cell death and survival controller. J Biomed Sci. 13:201–204. 2006. View Article : Google Scholar : PubMed/NCBI

87 

Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN and Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI

88 

Kanei-Ishii C, Nomura T, Takagi T, Watanabe N, Nakayama KI and Ishii S: Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation. J Biol Chem. 283:30540–30548. 2008. View Article : Google Scholar : PubMed/NCBI

89 

Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ and Eilers M: The ubiquitin-specific protease USP28 is required for MYC stability. Nat Cell Biol. 9:765–774. 2007. View Article : Google Scholar : PubMed/NCBI

90 

Li M, Ouyang L, Zheng Z, Xiang D, Ti A, Li L, Dan Y, Yu C and Li W: E3 ubiquitin ligase FBW7α inhibits cholangiocarcinoma cell proliferation by downregulating c-Myc and cyclin E. Oncol Rep. 37:1627–1636. 2017. View Article : Google Scholar : PubMed/NCBI

91 

Qin J, Zhou Z, Chen W, Wang C, Zhang H, Ge G, Shao M, You D, Fan Z, Xia H, et al: BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun. 6:84712015. View Article : Google Scholar : PubMed/NCBI

92 

Liu N, Li H, Li S, Shen M, Xiao N, Chen Y, Wang Y, Wang W, Wang R, Wang Q, et al: The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem. 285:18858–18867. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Zhao D, Zheng HQ, Zhou Z and Chen C: The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation. Cancer Res. 70:4728–4738. 2010. View Article : Google Scholar : PubMed/NCBI

94 

Rottmann S, Wang Y, Nasoff M, Deveraux QL and Quon KC: A TRAIL receptor-dependent synthetic lethal relationship between MYC activation and GSK3beta/FBW7 loss of function. Proc Natl Acad Sci USA. 102:15195–15200. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Goga A, Yang D, Tward AD, Morgan DO and Bishop JM: Inhibition of CDK1 as a potential therapy for tumors over-expressing MYC. Nat Med. 13:820–827. 2007. View Article : Google Scholar : PubMed/NCBI

96 

Liu L, Ulbrich J, Muller J, Wustefeld T, Aeberhard L, Kress TR, Muthalagu N, Rycak L, Rudalska R, Moll R, et al: Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature. 483:608–612. 2012. View Article : Google Scholar : PubMed/NCBI

97 

Chauhan D, Tian Z, Nicholson B, Kumar KG, Zhou B, Carrasco R, McDermott JL, Leach CA, Fulcinniti M, Kodrasov MP, et al: A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell. 22:345–358. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Grim JE, Knoblaugh SE, Guthrie KA, Hagar A, Swanger J, Hespelt J, Delrow JJ, Small T, Grady WM, Nakayama KI and Clurman BE: Fbw7 and p53 cooperatively suppress advanced and chromosomally unstable intestinal cancer. Mol Cell Biol. 32:2160–2167. 2012. View Article : Google Scholar : PubMed/NCBI

99 

Selivanova G and Wiman KG: Reactivation of mutant p53: Molecular mechanisms and therapeutic potential. Oncogene. 26:2243–2254. 2007. View Article : Google Scholar : PubMed/NCBI

100 

Csizmok V, Montecchio M, Lin H, Tyers M, Sunnerhagen M and Forman-Kay JD: Multivalent interactions with Fbw7 and Pin1 facilitate recognition of c-Jun by the SCFFbw7 Ubiquitin Ligase. Structure. 26:28–39.e2. 2018. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang Z, Hu Q, Xu W, Liu W, Liu M, Sun Q, Ye Z, Fan G, Qin Y, Xu X, Xu X, et al: Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) . Oncol Lett 20: 1526-1534, 2020.
APA
Zhang, Z., Hu, Q., Xu, W., Liu, W., Liu, M., Sun, Q. ... Ji, S. (2020). Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) . Oncology Letters, 20, 1526-1534. https://doi.org/10.3892/ol.2020.11728
MLA
Zhang, Z., Hu, Q., Xu, W., Liu, W., Liu, M., Sun, Q., Ye, Z., Fan, G., Qin, Y., Xu, X., Yu, X., Ji, S."Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) ". Oncology Letters 20.2 (2020): 1526-1534.
Chicago
Zhang, Z., Hu, Q., Xu, W., Liu, W., Liu, M., Sun, Q., Ye, Z., Fan, G., Qin, Y., Xu, X., Yu, X., Ji, S."Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) ". Oncology Letters 20, no. 2 (2020): 1526-1534. https://doi.org/10.3892/ol.2020.11728
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang Z, Hu Q, Xu W, Liu W, Liu M, Sun Q, Ye Z, Fan G, Qin Y, Xu X, Xu X, et al: Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) . Oncol Lett 20: 1526-1534, 2020.
APA
Zhang, Z., Hu, Q., Xu, W., Liu, W., Liu, M., Sun, Q. ... Ji, S. (2020). Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) . Oncology Letters, 20, 1526-1534. https://doi.org/10.3892/ol.2020.11728
MLA
Zhang, Z., Hu, Q., Xu, W., Liu, W., Liu, M., Sun, Q., Ye, Z., Fan, G., Qin, Y., Xu, X., Yu, X., Ji, S."Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) ". Oncology Letters 20.2 (2020): 1526-1534.
Chicago
Zhang, Z., Hu, Q., Xu, W., Liu, W., Liu, M., Sun, Q., Ye, Z., Fan, G., Qin, Y., Xu, X., Yu, X., Ji, S."Function and regulation of F‑box/WD repeat‑containing protein 7 (Review) ". Oncology Letters 20, no. 2 (2020): 1526-1534. https://doi.org/10.3892/ol.2020.11728
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team