Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 20 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review)

  • Authors:
    • Shijie Wang
    • Pin Wu
    • Yongyuan Chen
    • Ying Chai
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 1513-1525
    |
    Published online on: June 16, 2020
       https://doi.org/10.3892/ol.2020.11736
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Recent years have witnessed a significant development in the current understanding of innate lymphoid cells (ILCs) and their roles in the innate immune system, where they regulate tissue homeostasis, inflammation, as well as tumor surveillance and tumorigenesis. Based on the limited studies of ILCs in cancer, ILCs may be classified into three subgroups depending on their phenotypic and functional characteristics: Group 1 ILCs, which include natural killer cells and ILC1s; Group 2 ILCs, which only contain ILC2s and Group 3 ILCs, which comprise of LTi cells and ILC3s. Group 1 ILCs predominantly exert antitumor activities, while Group 2 ILCs and Group 3 ILCs are predominantly procarcinogenic in nature. In different types of tumor, each ILC subset behaves differently. Current research is focused on investigating how ILCs may be manipulated and employed as therapeutic strategies for the treatment of cancer. The present review aimed to summarize the characteristics and effects of ILCs in the context of tumor immunology, and provide novel insight into the pro‑ or anti‑tumor activities of ILCs in different types of malignancy, including solid tumors, such as those in the gastrointestinal tract, lung, breast, bladder or prostate, as well as melanoma, further to hematological malignancies, with the aim to highlight potential therapeutic targets for the treatment of cancer.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Withers DR: Innate lymphoid cell regulation of adaptive immunity. Immunology. 149:123–130. 2016. View Article : Google Scholar : PubMed/NCBI

2 

Iwasaki A and Medzhitov R: Regulation of adaptive immunity by the innate immune system. Science. 327:291–295. 2010. View Article : Google Scholar : PubMed/NCBI

3 

Eberl G, Colonna M, Di Santo JP and McKenzie AN: Innate lymphoid cells. Innate lymphoid cells: A new paradigm in immunology. Science. 348:aaa65662015. View Article : Google Scholar : PubMed/NCBI

4 

Ebbo M, Crinier A, Vély F and Vivier E: Innate lymphoid cells: Major players in inflammatory diseases. Nat Rev Immunol. 17:665–678. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Kumar V: Innate lymphoid cells: New paradigm in immunology of inflammation. Immunol Lett. 157:23–37. 2014. View Article : Google Scholar : PubMed/NCBI

6 

Artis D and Spits H: The biology of innate lymphoid cells. Nature. 517:293–301. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Spits H and Cupedo T: Innate lymphoid cells: Emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 30:647–675. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Kiessling R, Klein E, Pross H and Wigzell H: ‘Natural’ killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol. 5:117–121. 1975. View Article : Google Scholar : PubMed/NCBI

9 

Kiessling R, Klein E and Wigzell H: ‘Natural’ killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol. 5:112–117. 1975. View Article : Google Scholar : PubMed/NCBI

10 

Mebius RE, Rennert P and Weissman IL: Developing lymph nodes collect CD4+CD3- LTbeta+ cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity. 7:493–504. 1997. View Article : Google Scholar : PubMed/NCBI

11 

Cella M, Fuchs A, Vermi W, Facchetti F, Otero K, Lennerz JK, Doherty JM, Mills JC and Colonna M: A human natural killer cell subset provides an innate source of IL-22 for mucosal immunity. Nature. 457:722–725. 2009. View Article : Google Scholar : PubMed/NCBI

12 

Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H and Koyasu S: Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 463:540–544. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R, et al: Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 464:1367–1370. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Saglani S: Innate helper cells: A novel cell type essential in the initiation of asthma? Thorax. 66:834–835. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr, Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al: IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 464:1362–1366. 2010. View Article : Google Scholar : PubMed/NCBI

16 

Koyasu S, Moro K, Tanabe M and Takeuchi T: Natural helper cells: A new player in the innate immune response against helminth infection. Adv Immunol. 108:21–44. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M and Colonna M: Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity. 38:769–781. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE, et al: Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 13:145–149. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, et al: Innate lymphoid cells: 10 years on. Cell. 174:1054–1066. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Morvan MG and Lanier LL: NK cells and cancer: You can teach innate cells new tricks. Nat Rev Cancer. 16:7–19. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Guillerey C and Smyth MJ: NK cells and cancer immunoediting. Curr Top Microbiol Immunol. 395:115–145. 2016.PubMed/NCBI

22 

Klose CS and Artis D: Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat Immunol. 17:765–774. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Simoni Y, Fehlings M, Kløverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, et al: Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 46:148–161. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Spits H, Bernink JH and Lanier L: NK cells and type 1 innate lymphoid cells: Partners in host defense. Nat Immunol. 17:758–764. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL, Weijer K, Hreggvidsdottir HS, Heinsbroek SE, Legrand N, Buskens CJ, et al: Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat Immunol. 14:221–229. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, Angelosanto JM, Laidlaw BJ, Yang CY, Sathaliyawala T, et al: Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 12:1045–1054. 2011. View Article : Google Scholar : PubMed/NCBI

27 

Gieseck RL III, Wilson MS and Wynn TA: Type 2 immunity in tissue repair and fibrosis. Science. 18:62–76. 2018.

28 

Goc J, Hepworth MR and Sonnenberg GF: Group 3 innate lymphoid cells: Regulating host-commensal bacteria interactions in inflammation and cancer. Int Immunol. 28:43–52. 2016.PubMed/NCBI

29 

Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, Abbas AR, Modrusan Z, Ghilardi N, de Sauvage FJ and Ouyang W: Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med. 14:282–289. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d'Hargues Y, Göppert N, Croxford AL, Waisman A, Tanriver Y and Diefenbach A: A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells. Nature. 494:261–265. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Buonocore S, Ahern PP, Uhlig HH, Ivanov II, Littman DR, Maloy KJ and Powrie F: Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature. 464:1371–1375. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Kim HY, Lee HJ, Chang YJ, Pichavant M, Shore SA, Fitzgerald KA, Iwakura Y, Israel E, Bolger K, Faul J, et al: Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 20:54–61. 2014. View Article : Google Scholar : PubMed/NCBI

33 

Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T and Ludewig B: Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 9:667–675. 2008. View Article : Google Scholar : PubMed/NCBI

34 

Singh N, Baby D, Rajguru JP, Patil PB, Thakkannavar SS and Pujari VB: Inflammation and cancer. Ann Afr Med. 18:121–126. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Balkwill F and Mantovani A: Inflammation and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Yang S, Tian Z, Wu Y, van Velkinburgh JC and Ni B: Pivotal roles of ILCs in hepatic diseases. Int Rev Immunol. 34:509–522. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Sun C, Sun H, Zhang C and Tian Z: NK cell receptor imbalance and NK cell dysfunction in HBV infection and hepatocellular carcinoma. Cell Mol Immunol. 12:292–302. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Han X, Huang T and Han J: Cytokines derived from innate lymphoid cells assist Helicobacter hepaticus to aggravate hepatocellular tumorigenesis in viral transgenic mice. Gut Pathog. 11:232019. View Article : Google Scholar : PubMed/NCBI

39 

McHedlidze T, Waldner M, Zopf S, Walker J, Rankin AL, Schuchmann M, Voehringer D, McKenzie AN, Neurath MF, Pflanz S and Wirtz S: Interleukin-33-dependent innate lymphoid cells mediate hepatic fibrosis. Immunity. 39:357–371. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Li J, Razumilava N, Gores GJ, Walters S, Mizuochi T, Mourya R, Bessho K, Wang YH, Glaser SS, Shivakumar P and Bezerra JA: Biliary repair and carcinogenesis are mediated by IL-33-dependent cholangiocyte proliferation. J Clin Invest. 124:3241–3251. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Jiang R, Tan Z, Deng L, Chen Y, Xia Y, Gao Y, Wang X and Sun B: Interleukin-22 promotes human hepatocellular carcinoma by activation of STAT3. Hepatology. 54:900–909. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Geremia A, Arancibia-Cárcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, Travis SP and Powrie F: IL-23- responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 208:1127–1133. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Fuchs A and Colonna M: Innate lymphoid cells in homeostasis, infection, chronic inflammation and tumors of the gastrointestinal tract. Curr Opin Gastroenterol. 29:581–587. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Castleman MJ, Dillon SM, Purba CM, Cogswell AC, Kibbie JJ, McCarter MD, Santiago ML, Barker E and Wilson CC: Commensal and pathogenic bacteria indirectly induce IL-22 but Not IFNγ production from human colonic ILC3s via multiple mechanisms. Front Immunol. 10:6492019. View Article : Google Scholar : PubMed/NCBI

45 

Man SM: Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat Rev Gastroenterol Hepatol. 15:721–737. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Chan IH, Jain R, Tessmer MS, Gorman D, Mangadu R, Sathe M, Vives F, Moon C, Penaflor E, Turner S, et al: Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol. 7:842–856. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O and Powrie F: Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med. 210:917–931. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Bergmann H, Roth S, Pechloff K, Kiss EA, Kuhn S, Heikenwälder M, Diefenbach A, Greten FR and Ruland J: Card9-dependent IL-1β regulates IL-22 production from group 3 innate lymphoid cells and promotes colitis-associated cancer. Eur J Immunol. 47:1342–1353. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Saadalla AM, Osman A, Gurish MF, Dennis KL, Blatner NR, Pezeshki A, McNagny KM, Cheroutre H, Gounari F and Khazaie K: Mast cells promote small bowel cancer in a tumor stage-specific and cytokine-dependent manner. Proc Natl Acad Sci USA. 115:1588–1592. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Chang WJ, Du Y, Zhao X, Ma LY and Cao GW: Inflammation- related factors predicting prognosis of gastric cancer. World J Gastroenterol. 20:4586–4596. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Bie Q, Zhang P, Su Z, Zheng D, Ying X, Wu Y, Yang H, Chen D, Wang S and Xu H: Polarization of ILC2s in peripheral blood might contribute to immunosuppressive microenvironment in patients with gastric cancer. J Immunol Res. 2014:9231352014. View Article : Google Scholar : PubMed/NCBI

52 

Salimi M, Wang R, Yao X, Li X, Wang X, Hu Y, Chang X, Fan P, Dong T and Ogg G: Activated innate lymphoid cell populations accumulate in human tumour tissues. BMC Cancer. 18:3412018. View Article : Google Scholar : PubMed/NCBI

53 

Trabanelli S, Curti A, Lecciso M, Salomé B, Riether C, Ochsenbein A, Romero P and Jandus C: CD127+ innate lymphoid cells are dysregulated in treatment naïve acute myeloid leukemia patients at diagnosis. Haematologica. 100:e257–e260. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Munneke JM, Björklund AT, Mjösberg JM, Garming-Legert K, Bernink JH, Blom B, Huisman C, van Oers MH, Spits H, Malmberg KJ and Hazenberg MD: Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease. Blood. 124:812–821. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez- Cadena A, Salomé B, Lecciso M, Salvestrini V, Verdeil G, Racle J, Papayannidis C, et al: Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat Commun. 8:5932017. View Article : Google Scholar : PubMed/NCBI

56 

de Weerdt I, van Hoeven V, Munneke JM, Endstra S, Hofland T, Hazenberg MD and Kater AP: Innate lymphoid cells are expanded and functionally altered in chronic lymphocytic leukemia. Haematologica. 101:e461–e464. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Schleussner N, Merkel O, Costanza M, Liang HC, Hummel F, Romagnani C, Durek P, Anagnostopoulos I, Hummel M, Jöhrens K, et al: The AP-1-BATF and -BATF3 module is essential for growth, survival and TH17/ILC3 skewing of anaplastic large cell lymphoma. Leukemia. 32:1994–2007. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Harbeck N and Gnant M: Breast cancer. Lancet. 389:1134–1150. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Stein JV and Nombela-Arrieta C: Chemokine control of lymphocyte trafficking: A general overview. Immunology. 116:1–12. 2005. View Article : Google Scholar : PubMed/NCBI

60 

Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ, Arsenijevic NN and Lukic ML: Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer. 134:1669–1682. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Irshad S, Flores-Borja F, Lawler K, Monypenny J, Evans R, Male V, Gordon P, Cheung A, Gazinska P, Noor F, et al: RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res. 77:1083–1096. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Carrega P, Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, Benelli R, Spaggiari GM, Cantoni C, Campana S, et al: NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun. 6:82802015. View Article : Google Scholar : PubMed/NCBI

63 

Koh J, Kim HY, Lee Y, Park IK, Kang CH, Kim YT, Kim JE, Choi M, Lee WW, Jeon YK and Chung DH: IL23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin Cancer Res. 25:4026–4037. 2019. View Article : Google Scholar : PubMed/NCBI

64 

Wu Y, Yan Y, Su Z, Bie Q, Chen X, Barnie PA, Guo Q, Wang S and Xu H: Enhanced circulating ILC2s and MDSCs may contribute to ensure maintenance of Th2 predominant in patients with lung cancer. Mol Med Rep. 15:4374–4381. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Cui W, Zhang W, Yuan X, Liu S, Li M, Niu J, Zhang P and Li D: Vitamin A deficiency execrates Lewis lung carcinoma via induction of type 2 innate lymphoid cells and alternatively activates macrophages. Food Sci Nutr. 7:1288–1294. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Bruchard M and Ghiringhelli F: Deciphering the roles of innate lymphoid cells in cancer. Front Immunol. 10:6562019. View Article : Google Scholar : PubMed/NCBI

67 

Eisenring M, vom Berg J, Kristiansen G, Saller E and Becher B: IL-12 initiates tumor rejection via lymphoid tissue-inducer cells bearing the natural cytotoxicity receptor NKp46. Nat Immunol. 11:1030–1038. 2010. View Article : Google Scholar : PubMed/NCBI

68 

Lotfi R, Lee JJ and Lotze MT: Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): Role in the inflammatory response within tumors. J Immunother. 30:16–28. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S and Takatsu K: Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol. 188:703–713. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Moskalenko M, Pan M, Fu Y, de Moll EH, Hashimoto D, Mortha A, Leboeuf M, Jayaraman P, Bernardo S, Sikora AG, et al: Requirement for innate immunity and CD90+ NK1.1− lymphocytes to treat established melanoma with chemo-immunotherapy. Cancer Immunol Res. 3:296–304. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Shields JD, Kourtis IC, Tomei AA, Roberts JM and Swartz MA: Induction of lymphoidlike stroma and immune escape by tumors that express the chemokine CCL21. Science. 328:749–752. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Chevalier MF, Trabanelli S, Racle J, Salomé B, Cesson V, Gharbi D, Bohner P, Domingos-Pereira S, Dartiguenave F, Fritschi AS, et al: ILC2-modulated T cell-to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest. 127:2916–2929. 2017. View Article : Google Scholar : PubMed/NCBI

73 

Crome SQ, Nguyen LT, Lopez-Verges S, Yang SY, Martin B, Yam JY, Johnson DJ, Nie J, Pniak M, Yen PH, et al: A distinct innate lymphoid cell population regulates tumor-associated T cells. Nat Med. 23:368–375. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES and Gorter A: Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology. 4:e9845392015. View Article : Google Scholar : PubMed/NCBI

75 

Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y and O'Shea JJ: Helper T cell plasticity: Impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Top Microbiol Immunol. 381:279–326. 2014.PubMed/NCBI

76 

Gaffen SL, Jain R, Garg AV and Cua DJ: The IL-23-IL-17 immune axis: From mechanisms to therapeutic testing. Nat Rev Immunol. 14:585–600. 2014. View Article : Google Scholar : PubMed/NCBI

77 

Mucida D, Husain MM, Muroi S, van Wijk F, Shinnakasu R, Naoe Y, Reis BS, Huang Y, Lambolez F, Docherty M, et al: Transcriptional reprogramming of mature CD4+ helper T cells generates distinct MHC class II-restricted cytotoxic T lymphocytes. Nat Immunol. 14:281–289. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, Rautela J, Straube J, Waddell N, Blake SJ, et al: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol. 18:1004–1015. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, White AJ, Gilfillan S, Cella M and Colonna M: SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol. 18:995–1003. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Chea S, Perchet T, Petit M, Verrier T, Guy-Grand D, Banchi EG, Vosshenrich CA, Di Santo JP, Cumano A and Golub R: Notch signaling in group 3 innate lymphoid cells modulates their plasticity. Sci Signal. 9:ra452016. View Article : Google Scholar : PubMed/NCBI

81 

Viant C, Rankin LC, Girard-Madoux MJ, Seillet C, Shi W, Smyth MJ, Bartholin L, Walzer T, Huntington ND, Vivier E and Belz GT: Transforming growth factor-β and Notch ligands act as opposing environmental cues in regulating the plasticity of type 3 innate lymphoid cells. Sci Signal. 9:ra462016. View Article : Google Scholar : PubMed/NCBI

82 

Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, van Drunen CM, Lutter R, Jonkers RE, Hombrink P, et al: IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol. 17:636–645. 2016. View Article : Google Scholar : PubMed/NCBI

83 

Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, Casanova JL, Yssel H and Di Santo JP: IL-12 drives functional plasticity of human group 2 innate lymphoid cells. J Exp Med. 213:569–583. 2016. View Article : Google Scholar : PubMed/NCBI

84 

Ohne Y, Silver JS, Thompson-Snipes L, Collet MA, Blanck JP, Cantarel BL, Copenhaver AM, Humbles AA and Liu YJ: IL-1 is a critical regulator of group 2 innate lymphoid cell function and plasticity. Nat Immunol. 17:646–655. 2016. View Article : Google Scholar : PubMed/NCBI

85 

Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler R, et al: Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol. 17:626–635. 2016. View Article : Google Scholar : PubMed/NCBI

86 

Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, et al: Interleukin-12 and −23 control plasticity of CD127(+) group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity. 43:146–160. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Crellin NK, Trifari S, Kaplan CD, Satoh-Takayama N, Di Santo JP and Spits H: Regulation of cytokine secretion in human CD127(+) LTi-like innate lymphoid cells by Toll-like receptor 2. Immunity. 33:752–764. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Huang Y, Guo L, Qiu J, Chen X, Hu-Li J, Siebenlist U, Williamson PR, Urban JF Jr and Paul WE: IL-25-responsive, lineage-negative KLRG1(hi) cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat Immunol. 16:161–169. 2015. View Article : Google Scholar : PubMed/NCBI

89 

Pietra G, Vitale C, Pende D, Bertaina A, Moretta F, Falco M, Vacca P, Montaldo E, Cantoni C, Mingari MC, et al: Human natural killer cells: News in the therapy of solid tumors and high-risk leukemias. Cancer Immunol Immunother. 65:465–476. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Baumeister SH, Freeman GJ, Dranoff G and Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Khalil DN, Smith EL, Brentjens RJ and Wolchok JD: The future of cancer treatment: Immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 13:273–290. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Ribas A and Wolchok JD: Cancer immunotherapy using checkpoint blockade. Science. 359:1350–1355. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Mallett G, Laurence A and Amarnath S: Programmed cell death-1 receptor (PD-1)-mediated regulation of innate lymphoid cells. Int J Mol Sci. 20(pii): E28362019. View Article : Google Scholar : PubMed/NCBI

94 

Tumino N, Martini S, Munari E, Tumino N, Martini S, Munari E, Scordamaglia F, Besi F, Mariotti FR, Bogina G, et al: Presence of innate lymphoid cells in pleural effusions of primary and metastatic tumors: Functional analysis and expression of PD-1 receptor. Int J Cancer. 145:1660–1668. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Wang T, Zheng N, Luo Q, Jiang L, He B, Yuan X and Shen L: Probiotics lactobacillus reuteri abrogates immune checkpoint blockade-associated colitis by inhibiting group 3 innate lymphoid cells. Front Immunol. 10:12352019. View Article : Google Scholar : PubMed/NCBI

96 

Turchinovich G, Ganter S, Bärenwaldt A and Finke D: NKp46 Calibrates tumoricidal potential of type 1 innate lymphocytes by regulating TRAIL expression. J Immunol. 200:3762–3768. 2018. View Article : Google Scholar : PubMed/NCBI

97 

Zaiss DMW, Gause WC, Osborne LC and Artis D: Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity. 42:216–226. 2015. View Article : Google Scholar : PubMed/NCBI

98 

Lu B, Yang M and Wang Q: Interleukin-33 in tumorigenesis, tumor immune evasion, and cancer immunotherapy. J Mol Med (Berl). 94:535–543. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Hanash AM, Dudakov JA, Hua G, O'Connor MH, Young LF, Singer NV, West ML, Jenq RR, Holland AM, Kappel LW, et al: Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. Immunity. 37:339–350. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Lim C and Savan R: The role of the IL-22/IL-22R1 axis in cancer. Cytokine Growth Factor Rev. 25:257–271. 2014. View Article : Google Scholar : PubMed/NCBI

101 

Markota A, Endres S and Kobold S: Targeting interleukin-22 for cancer therapy. Hum Vaccin Immunother. 14:2012–2015. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Song Y and Yang JM: Role of interleukin (IL)-17 and T-helper (Th)17 cells in cancer. s. 493:1–8. 2017.

103 

Kathania M, Khare P, Zeng M, Cantarel B, Zhang H, Ueno H and Venuprasad K: Itch inhibits IL-17-mediated colon inflammation and tumorigenesis by ROR-γt ubiquitination. Nat Immunol. 17:997–1004. 2016. View Article : Google Scholar : PubMed/NCBI

104 

Kim J, Kim W, Moon UJ, Kim HJ, Choi HJ, Sin JI, Park NH, Cho HR and Kwon B: Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth. J Immunol. 196:2410–2423. 2016. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang S, Wu P, Chen Y and Chai Y: Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review). Oncol Lett 20: 1513-1525, 2020.
APA
Wang, S., Wu, P., Chen, Y., & Chai, Y. (2020). Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review). Oncology Letters, 20, 1513-1525. https://doi.org/10.3892/ol.2020.11736
MLA
Wang, S., Wu, P., Chen, Y., Chai, Y."Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review)". Oncology Letters 20.2 (2020): 1513-1525.
Chicago
Wang, S., Wu, P., Chen, Y., Chai, Y."Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review)". Oncology Letters 20, no. 2 (2020): 1513-1525. https://doi.org/10.3892/ol.2020.11736
Copy and paste a formatted citation
x
Spandidos Publications style
Wang S, Wu P, Chen Y and Chai Y: Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review). Oncol Lett 20: 1513-1525, 2020.
APA
Wang, S., Wu, P., Chen, Y., & Chai, Y. (2020). Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review). Oncology Letters, 20, 1513-1525. https://doi.org/10.3892/ol.2020.11736
MLA
Wang, S., Wu, P., Chen, Y., Chai, Y."Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review)". Oncology Letters 20.2 (2020): 1513-1525.
Chicago
Wang, S., Wu, P., Chen, Y., Chai, Y."Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review)". Oncology Letters 20, no. 2 (2020): 1513-1525. https://doi.org/10.3892/ol.2020.11736
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team