Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2020 Volume 20 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Implications of lipid droplets in lung cancer: Associations with drug resistance (Review)

  • Authors:
    • Chunlai Jin
    • Peng Yuan
  • View Affiliations / Copyright

    Affiliations: Department of Surgery, First People's Hospital of Jinan, Jinan, Shandong 250011, P.R. China
    Copyright: © Jin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 2091-2104
    |
    Published online on: June 24, 2020
       https://doi.org/10.3892/ol.2020.11769
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer cells usually show different metabolic patterns compared with healthy cells due to the reprogramming of metabolic processes. The process of lipid metabolism undergoes notable changes, leading to the accumulation of lipid droplets in cells. Additionally, this phenotype is considered an important marker of cancer cells. Lipid droplets are a highly dynamic type of organelle in the cell, which is composed of a neutral lipid core, a monolayer phospholipid membrane and lipid droplet‑related proteins. Lipid droplets are involved in several biological processes, including cell proliferation, apoptosis, lipid metabolism, stress, immunity, signal transduction and protein trafficking. Epidermal growth factor receptor (EGFR)‑activating mutations are currently the most effective therapeutic targets for non‑small cell lung cancer. Several EGFR tyrosine kinase inhibitors (EGFR‑TKIs) that target these mutations, including gefitinib, erlotinib, afatinib and osimertinib, have been widely used clinically. However, the development of acquired resistance has a major impact on the efficacy of these drugs. A number of previous studies have reported that the expression of lipid droplets in the tumor tissues of patients with lung cancer are elevated, whereas the association between elevated numbers of lipid droplets and drug resistance has received little attention. The present review describes the potential association between lipid droplets and drug resistance. Furthermore, the mechanisms and implications of lipid droplet accumulation in cancer cells are analyzed, as wells as the mechanism by which lipid droplets suppress endoplasmic reticulum stress and apoptosis, which are essential for the development and treatment of lung cancer.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Welte MA: Expanding roles for lipid droplets. Curr Biol. 25:R470–R481. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Walther TC, Chung J and Farese RV Jr: Lipid Droplet Biogenesis. Annu Rev Cell Dev Biol. 33:491–510. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Wilfling F, Haas JT, Walther TC and Farese RV Jr: Lipid droplet biogenesis. Curr Opin Cell Biol. 29:39–45. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Cohen S, Valm AM and Lippincott-Schwartz J: Interacting organelles. Curr Opin Cell Biol. 53:84–91. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Valm AM, Cohen S, Legant WR, Melunis J, Hershberg U, Wait E, Cohen AR, Davidson MW, Betzig E and Lippincott-Schwartz J: Applying systems-level spectral imaging and analysis to reveal the organelle interactome. Nature. 546:162–167. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Fujimoto T, Ohsaki Y, Cheng J, Suzuki M and Shinohara Y: Lipid droplets: A classic organelle with new outfits. Histochem Cell Biol. 130:263–279. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Salo VT and Ikonen E: Moving out but keeping in touch: Contacts between endoplasmic reticulum and lipid droplets. Curr Opin Cell Biol. 57:64–70. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Schuldiner M and Bohnert M: A different kind of love - lipid droplet contact sites. Biochim Biophys Acta Mol Cell Biol Lipids 1862B. 1188–1196. 2017. View Article : Google Scholar

10 

Welte MA and Gould AP: Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids 186B. 1260–1272. 2017. View Article : Google Scholar

11 

Karagiannis F, Masouleh SK, Wunderling K, Surendar J, Schmitt V, Kazakov A, Michla M, Hölzel M, Thiele C and Wilhelm C: Lipid-Droplet Formation Drives Pathogenic Group 2 Innate Lymphoid Cells in Airway Inflammation. Immunity. 52:620–634 e626. 2020. View Article : Google Scholar : PubMed/NCBI

12 

Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, Postle AD and Gould AP: Antioxidant Role for Lipid Droplets in a Stem Cell Niche of Drosophila. Cell. 163:340–353. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Rambold AS, Cohen S and Lippincott-Schwartz J: Fatty acid trafficking in starved cells: Regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev Cell. 32:678–692. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Jarc E and Petan T: Lipid Droplets and the Management of Cellular Stress. Yale J Biol Med. 92:435–452. 2019.PubMed/NCBI

15 

Pavlova NN and Thompson CB: The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Sciacovelli M and Frezza C: Metabolic reprogramming and epithelial-to-mesenchymal transition in cancer. FEBS J. 284:3132–3144. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Ward PS and Thompson CB: Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell. 21:297–308. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Ou J, Miao H, Ma Y, Guo F, Deng J, Wei X, Zhou J, Xie G, Shi H, Xue B, et al: Loss of abhd5 promotes colorectal tumor development and progression by inducing aerobic glycolysis and epithelial-mesenchymal transition. Cell Rep. 9:1798–1811. 2014. View Article : Google Scholar : PubMed/NCBI

19 

Zagani R, El-Assaad W, Gamache I and Teodoro JG: Inhibition of adipose triglyceride lipase (ATGL) by the putative tumor suppressor G0S2 or a small molecule inhibitor attenuates the growth of cancer cells. Oncotarget. 6:28282–28295. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Hirsch HA, Iliopoulos D, Joshi A, Zhang Y, Jaeger SA, Bulyk M, Tsichlis PN, Shirley Liu X and Struhl K: A transcriptional signature and common gene networks link cancer with lipid metabolism and diverse human diseases. Cancer Cell. 17:348–361. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Patterson AD, Maurhofer O, Beyoglu D, Lanz C, Krausz KW, Pabst T, Gonzalez FJ, Dufour JF and Idle JR: Aberrant lipid metabolism in hepatocellular carcinoma revealed by plasma metabolomics and lipid profiling. Cancer Res. 71:6590–6600. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Ueno M, Shen WJ, Patel S, Greenberg AS, Azhar S and Kraemer FB: Fat-specific protein 27 modulates nuclear factor of activated T cells 5 and the cellular response to stress. J Lipid Res. 54:734–743. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Liu L, Zhang K, Sandoval H, Yamamoto S, Jaiswal M, Sanz E, Li Z, Hui J, Graham BH, Quintana A, et al: Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration. Cell. 160:177–190. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Covington JD, Coen PM, Burk DH, Obanda DN, Ebenezer PJ, Tam CS, Goodpaster BH, Ravussin E and Bajpeyi S: Intramyocellular Lipid Droplet Size Rather than Total Lipid Content Is Related to Insulin Sensitivity after 8 Weeks of Overfeeding. Diabetes. 64:A11. 2015.

25 

Nielsen J, Christensen AE, Nellemann B and Christensen B: Lipid droplet size and location in human skeletal muscle fibers are associated with insulin sensitivity. Am J Physiol Endocrinol Metab. 313:E721–E730. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Fu X, et al: Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest. 125:4447–4462. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Kim HY, Kwon WY, Kim YA, Oh YJ, Yoo SH, Lee MH, Bae JY, Kim JM and Yoo YH: Polychlorinated biphenyls exposure-induced insulin resistance is mediated by lipid droplet enlargement through Fsp27. Arch Toxicol. 91:2353–2363. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Siegel RL, Miller KD and Jemal A: Cancer statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Remon J, Morán T, Majem M, Reguart N, Dalmau E, Márquez-Medina D and Lianes P: Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in EGFR-mutant non-small cell lung cancer: A new era begins. Cancer Treat Rev. 40:93–101. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Juchum M, Günther M and Laufer SA: Fighting cancer drug resistance: Opportunities and challenges for mutation-specific EGFR inhibitors. Drug Resist Updat. 20:12–28. 2015. View Article : Google Scholar : PubMed/NCBI

31 

Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al: Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 350:2129–2139. 2004. View Article : Google Scholar : PubMed/NCBI

32 

Paez JG, Jänne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al: EGFR mutations in lung cancer: Correlation with clinical response to gefitinib therapy. Science. 304:1497–1500. 2004. View Article : Google Scholar : PubMed/NCBI

33 

Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al: EGF receptor gene mutations are common in lung cancers from ‘never smokers’ and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 101:13306–13311. 2004. View Article : Google Scholar : PubMed/NCBI

34 

Wen C, Xu G, He S, Huang Y, Shi J, Wu L and Zhou H: Screening Circular RNAs Related to Acquired Gefitinib Resistance in Non-small Cell Lung Cancer Cell Lines. J Cancer. 11:3816–3826. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Lin Y, Higashisaka K, Shintani T, Maki A, Hanamuro S, Haga Y, Maeda S, Tsujino H, Nagano K, Fujio Y, et al: Progesterone receptor membrane component 1 leads to erlotinib resistance, initiating crosstalk of Wnt/β-catenin and NF-κB pathways, in lung adenocarcinoma cells. Sci Rep. 10:47482020. View Article : Google Scholar : PubMed/NCBI

36 

Chen C, Liu WR, Zhang B, Zhang LM, Li CG, Liu C, Zhang H, Huo YS, Ma YC, Tian PF, et al: lncRNA H19 downregulation confers erlotinib resistance through upregulation of PKM2 and phosphorylation of AKT in EGFR-mutant lung cancers. Cancer Lett. 486:58–70. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Wu JY, Wu SG, Yang CH, Chang YL, Chang YC, Hsu YC, Shih JY and Yang PC: Comparison of gefitinib and erlotinib in advanced NSCLC and the effect of EGFR mutations. Lung Cancer. 72:205–212. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, Chu T, Zaatar A, et al: Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: A meta-analysis. J Natl Cancer Inst. 105:595–605. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Kasahara K, Arao T, Sakai K, Matsumoto K, Sakai A, Kimura H, Sone T, Horiike A, Nishio M, Ohira T, et al: Impact of serum hepatocyte growth factor on treatment response to epidermal growth factor receptor tyrosine kinase inhibitors in patients with non-small cell lung adenocarcinoma. Clin Cancer Res. 16:4616–4624. 2010. View Article : Google Scholar : PubMed/NCBI

40 

Huang Q, Wang Q, Li D, Wei X, Jia Y, Zhang Z, Ai B, Cao X, Guo T and Liao Y: Co-administration of 20(S)-protopanaxatriol (g-PPT) and EGFR-TKI overcomes EGFR-TKI resistance by decreasing SCD1 induced lipid accumulation in non-small cell lung cancer. J Exp Clin Canc Res. 38:1292019. View Article : Google Scholar

41 

Grillitsch K, Connerth M, Köfeler H, Arrey TN, Rietschel B, Wagner B, Karas M and Daum G: Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: Lipidome meets proteome. Biochim Biophys Acta. 1811:1165–1176. 2011. View Article : Google Scholar : PubMed/NCBI

42 

Bartz R, Li WH, Venables B, Zehmer JK, Roth MR, Welti R, Anderson RG, Liu P and Chapman KD: Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic. J Lipid Res. 48:837–847. 2007. View Article : Google Scholar : PubMed/NCBI

43 

Vrablik TL, Petyuk VA, Larson EM, Smith RD and Watts JL: Lipidomic and proteomic analysis of Caenorhabditis elegans lipid droplets and identification of ACS-4 as a lipid droplet-associated protein. Biochim Biophys Acta. 1851:1337–1345. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Prévost C, Sharp ME, Kory N, Lin Q, Voth GA, Farese RV Jr and Walther TC: Mechanism and Determinants of Amphipathic Helix-Containing Protein Targeting to Lipid Droplets. Dev Cell. 44:73–86. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Zhao Y, Chen Z, Wu Y, Tsukui T, Ma X, Zhang X, Chiba H and Hui SP: Separating and Profiling Phosphatidylcholines and Triglycerides from Single Cellular Lipid Droplet by In-Tip Solvent Microextraction Mass Spectrometry. Anal Chem. 91:4466–4471. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Wilfling F, Thiam AR, Olarte MJ, Wang J, Beck R, Gould TJ, Allgeyer ES, Pincet F, Bewersdorf J, Farese RV Jr and Walther TC: Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. Elife. 3:e016072014. View Article : Google Scholar : PubMed/NCBI

47 

Wang H, Becuwe M, Housden BE, Chitraju C, Porras AJ, Graham MM, Liu XN, Thiam AR, Savage DB, Agarwal AK, et al: Seipin is required for converting nascent to mature lipid droplets. Elife. 5:e165822016. View Article : Google Scholar : PubMed/NCBI

48 

Sturley SL and Hussain MM: Lipid droplet formation on opposing sides of the endoplasmic reticulum. J Lipid Res. 53:1800–1810. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Gibbons GF, Islam K and Pease RJ: Mobilisation of triacylglycerol stores. Biochim Biophys Acta. 1483:37–57. 2000. View Article : Google Scholar : PubMed/NCBI

50 

Romanauska A and Kohler A: The Inner Nuclear Membrane Is a Metabolically Active Territory that Generates Nuclear Lipid Droplets. Cell. 174:700–715. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Soltysik K, Ohsaki Y, Tatematsu T, Cheng JL and Fujimoto T: Nuclear lipid droplets derive from a lipoprotein precursor and regulate phosphatidylcholine synthesis. Nat Commun. 10:4732019. View Article : Google Scholar : PubMed/NCBI

52 

Liao Y, Tham DKL, Liang FX, Chang J, Wei Y, Sudhir PR, Sall J, Ren SJ, Chicote JU, Arnold LL, et al: Mitochondrial lipid droplet formation as a detoxification mechanism to sequester and degrade excessive urothelial membranes. Mol Biol Cell. 30:2969–2984. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, et al: Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science. 306:1383–1386. 2004. View Article : Google Scholar : PubMed/NCBI

54 

Reid BN, Ables GP, Otlivanchik OA, Schoiswohl G, Zechner R, Blaner WS, Goldberg IJ, Schwabe RF, Chua SC Jr and Huang LS: Hepatic overexpression of hormone-sensitive lipase and adipose triglyceride lipase promotes fatty acid oxidation, stimulates direct release of free fatty acids, and ameliorates steatosis. J Biol Chem. 283:13087–13099. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Holm C, Kirchgessner TG, Svenson KL, Fredrikson G, Nilsson S, Miller CG, Shively JE, Heinzmann C, Sparkes RS, Mohandas T, et al: Hormone-sensitive lipase: Sequence, expression, and chromosomal localization to 19 cent-q13.3. Science. 241:1503–1506. 1988. View Article : Google Scholar : PubMed/NCBI

56 

Karlsson M, Contreras JA, Hellman U, Tornqvist H and Holm C: cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J Biol Chem. 272:27218–27223. 1997. View Article : Google Scholar : PubMed/NCBI

57 

Young SG and Zechner R: Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 27:459–484. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Zechner R, Zimmermann R, Eichmann TO, Kohlwein SD, Haemmerle G, Lass A and Madeo F: FAT SIGNALS--lipases and lipolysis in lipid metabolism and signaling. Cell Metab. 15:279–291. 2012. View Article : Google Scholar : PubMed/NCBI

59 

Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M and Sul HS: Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am J Physiol Gastrointest Liver Physiol. 293:G1–G4. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Settembre C and Ballabio A: Lysosome: Regulator of lipid degradation pathways. Trends Cell Biol. 24:743–750. 2014. View Article : Google Scholar : PubMed/NCBI

61 

Aboumrad MH, Horn RC Jr and Fine G: Lipid-secreting mammary carcinoma. Report of a case associated with Paget's disease of the nipple. Cancer. 16:521–525. 1963. View Article : Google Scholar : PubMed/NCBI

62 

Ramos CV and Taylor HB: Lipid-rich carcinoma of the breast. A clinicopathologic analysis of 13 examples. Cancer. 33:812–819. 1974. View Article : Google Scholar : PubMed/NCBI

63 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI

64 

Huang WC, Li X, Liu J, Lin J and Chung LWK: Activation of androgen receptor, lipogenesis, and oxidative stress converged by SREBP-1 is responsible for regulating growth and progression of prostate cancer cells. Mol Cancer Res. 10:133–142. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Baenke F, Peck B, Miess H and Schulze A: Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 6:1353–1363. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Zaytseva YY, Harris JW, Mitov MI, Kim JT, Butterfield DA, Lee EY, Weiss HL, Gao T and Evers BM: Increased expression of fatty acid synthase provides a survival advantage to colorectal cancer cells via upregulation of cellular respiration. Oncotarget. 6:18891–18904. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Cai Y, Crowther J, Pastor T, Abbasi Asbagh L, Baietti MF, De Troyer M, Vazquez I, Talebi A, Renzi F, Dehairs J, et al: Loss of Chromosome 8p Governs Tumor Progression and Drug Response by Altering Lipid Metabolism. Cancer Cell. 29:751–766. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Röhrig F and Schulze A: The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 16:732–749. 2016. View Article : Google Scholar : PubMed/NCBI

70 

Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S, Griffiths JR, Chung YL and Schulze A: SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8:224–236. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Liu Y: Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 9:230–234. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Hager MH, Solomon KR and Freeman MR: The role of cholesterol in prostate cancer. Curr Opin Clin Nutr Metab Care. 9:379–385. 2006. View Article : Google Scholar : PubMed/NCBI

73 

Wang H, Xi Q and Wu G: Fatty acid synthase regulates invasion and metastasis of colorectal cancer via Wnt signaling pathway. Cancer Med. 5:1599–1606. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Gansler TS, Hardman W III, Hunt DA, Schaffel S and Hennigar RA: Increased expression of fatty acid synthase (OA-519) in ovarian neoplasms predicts shorter survival. Hum Pathol. 28:686–692. 1997. View Article : Google Scholar : PubMed/NCBI

75 

Fujimoto M, Yoshizawa A, Sumiyoshi S, Sonobe M, Menju T, Hirata M, Momose M, Date H and Haga H: Adipophilin expression in lung adenocarcinoma is associated with apocrine-like features and poor clinical prognosis: An immunohistochemical study of 328 cases. Histopathology. 70:232–241. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Zhang XD, Li W, Zhang N, Hou YL, Niu ZQ, Zhong YJ, Zhang YP and Yang SY: Identification of adipophilin as a potential diagnostic tumor marker for lung adenocarcinoma. Int J Clin Exp Med. 7:1190–1196. 2014.PubMed/NCBI

77 

Rak S, De Zan T, Stefulj J, Kosović M, Gamulin O and Osmak M: FTIR spectroscopy reveals lipid droplets in drug resistant laryngeal carcinoma cells through detection of increased ester vibrational bands intensity. Analyst (Lond). 139:3407–3415. 2014. View Article : Google Scholar

78 

Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl JA, Keith B and Simon MC: HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov. 5:652–667. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT and Viola JP: Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells. Cancer Res. 68:1732–1740. 2008. View Article : Google Scholar : PubMed/NCBI

80 

Bozza PT and Viola JP: Lipid droplets in inflammation and cancer. Prostaglandins Leukot Essent Fatty Acids. 82:243–250. 2010. View Article : Google Scholar : PubMed/NCBI

81 

Nieva C, Marro M, Santana-Codina N, Rao S, Petrov D and Sierra A: The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: Towards a stratification of malignancy. PLoS One. 7:e464562012. View Article : Google Scholar : PubMed/NCBI

82 

Fujimoto T, Kogo H, Ishiguro K, Tauchi K and Nomura R: Caveolin-2 is targeted to lipid droplets, a new ‘membrane domain’ in the cell. J Cell Biol. 152:1079–1085. 2001. View Article : Google Scholar : PubMed/NCBI

83 

Yu W, Bozza PT, Tzizik DM, Gray JP, Cassara J, Dvorak AM and Weller PF: Co-compartmentalization of MAP kinases and cytosolic phospholipase A2 at cytoplasmic arachidonate-rich lipid bodies. Am J Pathol. 152:759–769. 1998.PubMed/NCBI

84 

Yu W, Cassara J and Weller PF: Phosphatidylinositide 3-kinase localizes to cytoplasmic lipid bodies in human polymorphonuclear leukocytes and other myeloid-derived cells. Blood. 95:1078–1085. 2000. View Article : Google Scholar : PubMed/NCBI

85 

Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI

86 

Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C and Flavell RA: Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer. 13:759–771. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Melo RCN and Weller PF: Lipid droplets in leukocytes: Organelles linked to inflammatory responses. Exp Cell Res. 340:193–197. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Heller S, Cable C, Penrose H, Makboul R, Biswas D, Cabe M, Crawford SE and Savkovic SD: Intestinal inflammation requires FOXO3 and prostaglandin E2-dependent lipogenesis and elevated lipid droplets. Am J Physiol Gastrointest Liver Physiol. 310:G844–G854. 2016. View Article : Google Scholar : PubMed/NCBI

89 

Rigas B, Goldman IS and Levine L: Altered eicosanoid levels in human colon cancer. J Lab Clin Med. 122:518–523. 1993.PubMed/NCBI

90 

Wang D and Dubois RN: Cyclooxygenase-2: A potential target in breast cancer. Semin Oncol. 31 (Suppl 3):64–73. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Hambek M, Baghi M, Wagenblast J, Schmitt J, Baumann H and Knecht R: Inverse correlation between serum PGE2 and T classification in head and neck cancer. Head Neck 29 (Spec). 244–248. 2007. View Article : Google Scholar

92 

McLemore TL, Hubbard WC, Litterst CL, Liu MC, Miller S, McMahon NA, Eggleston JC and Boyd MR: Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Res. 48:3140–3147. 1988.PubMed/NCBI

93 

Yan M, Myung SJ, Fink SP, Lawrence E, Lutterbaugh J, Yang P, Zhou X, Liu D, Rerko RM, Willis J, et al: 15-Hydroxyprostaglandin dehydrogenase inactivation as a mechanism of resistance to celecoxib chemoprevention of colon tumors. Proc Natl Acad Sci USA. 106:9409–9413. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Martinez-Lopez N and Singh R: Autophagy and Lipid Droplets in the Liver. Annu Rev Nutr. 35:215–237. 2015. View Article : Google Scholar : PubMed/NCBI

95 

Schulze RJ, Sathyanarayan A and Mashek DG: Breaking fat: The regulation and mechanisms of lipophagy. Biochim Biophys Acta Mol Cell Biol Lipids 1862B. 1178–1187. 2017. View Article : Google Scholar

96 

Zechner R, Madeo F and Kratky D: Cytosolic lipolysis and lipophagy: Two sides of the same coin. Nat Rev Mol Cell Biol. 18:671–684. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Herms A, Bosch M, Reddy BJ, Schieber NL, Fajardo A, Rupérez C, Fernández-Vidal A, Ferguson C, Rentero C, Tebar F, et al: AMPK activation promotes lipid droplet dispersion on detyrosinated microtubules to increase mitochondrial fatty acid oxidation. Nat Commun. 6:71762015. View Article : Google Scholar : PubMed/NCBI

98 

Cabodevilla AG, Sánchez-Caballero L, Nintou E, Boiadjieva VG, Picatoste F, Gubern A and Claro E: Cell survival during complete nutrient deprivation depends on lipid droplet-fueled β-oxidation of fatty acids. J Biol Chem. 288:27777–27788. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Cotte AK, Aires V, Fredon M, Limagne E, Derangère V, Thibaudin M, Humblin E, Scagliarini A, de Barros JP, Hillon P, et al: Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat Commun. 9:3222018. View Article : Google Scholar : PubMed/NCBI

100 

Penrose H, Heller S, Cable C, Makboul R, Chadalawada G, Chen Y, Crawford SE and Savkovic SD: Epidermal growth factor receptor mediated proliferation depends on increased lipid droplet density regulated via a negative regulatory loop with FOXO3/Sirtuin6. Biochem Biophys Res Commun. 469:370–376. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Müller MR and Rao A: NFAT, immunity and cancer: A transcription factor comes of age. Nat Rev Immunol. 10:645–656. 2010. View Article : Google Scholar : PubMed/NCBI

102 

Jauliac S, López-Rodriguez C, Shaw LM, Brown LF, Rao A and Toker A: The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat Cell Biol. 4:540–544. 2002. View Article : Google Scholar : PubMed/NCBI

103 

Germann S, Gratadou L, Zonta E, Dardenne E, Gaudineau B, Fougère M, Samaan S, Dutertre M, Jauliac S and Auboeuf D: Dual role of the ddx5/ddx17 RNA helicases in the control of the pro-migratory NFAT5 transcription factor. Oncogene. 31:4536–4549. 2012. View Article : Google Scholar : PubMed/NCBI

104 

Chen M, Sinha M, Luxon BA, Bresnick AR and O'Connor KL: Integrin alpha6beta4 controls the expression of genes associated with cell motility, invasion, and metastasis, including S100A4/metastasin. J Biol Chem. 284:1484–1494. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Kim DH, Kim KS and Ramakrishna S: NFAT5 promotes in vivo development of murine melanoma metastasis. Biochem Biophys Res Commun. 505:748–754. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Guo K and Jin F: NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. Biochem Biophys Res Commun. 465:644–649. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Kuper C, Beck FX and Neuhofer W: NFAT5-mediated expression of S100A4 contributes to proliferation and migration of renal carcinoma cells. Front Physiol. 5:2932014. View Article : Google Scholar : PubMed/NCBI

108 

Meng X, Li Z, Zhou S, Xiao S and Yu P: miR-194 suppresses high glucose-induced non-small cell lung cancer cell progression by targeting NFAT5. Thorac Cancer. 10:1051–1059. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Tomin T, Fritz K, Gindlhuber J, Waldherr L, Pucher B, Thallinger GG, Nomura DK, Schittmayer M and Birner-Gruenberger R: Deletion of Adipose Triglyceride Lipase Links Triacylglycerol Accumulation to a More-Aggressive Phenotype in A549 Lung Carcinoma Cells. J Proteome Res. 17:1415–1425. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Zhang J, Song F, Zhao X, Jiang H, Wu X, Wang B, Zhou M, Tian M, Shi B, Wang H, et al: EGFR modulates monounsaturated fatty acid synthesis through phosphorylation of SCD1 in lung cancer. Mol Cancer. 16:1272017. View Article : Google Scholar : PubMed/NCBI

111 

Makinoshima H, Takita M, Matsumoto S, Yagishita A, Owada S, Esumi H and Tsuchihara K: Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J Biol Chem. 289:20813–20823. 2014. View Article : Google Scholar : PubMed/NCBI

112 

De Rosa V, Iommelli F, Monti M, Fonti R, Votta G, Stoppelli MP and Del Vecchio S: Reversal of Warburg Effect and Reactivation of Oxidative Phosphorylation by Differential Inhibition of EGFR Signaling Pathways in Non-Small Cell Lung Cancer. Clin Cancer Res. 21:5110–5120. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Liu Y, Liu S, Wu C, Huang W, Xu B, Lian S, Wang L, Yue S, Chen N and Zhu Z: PD-1-Mediated PI3K/Akt/mTOR, Caspase 9/Caspase 3 and ERK Pathways Are Involved in Regulating the Apoptosis and Proliferation of CD4+ and CD8+ T Cells During BVDV Infection in vitro. Front Immunol. 11:4672020. View Article : Google Scholar : PubMed/NCBI

114 

Amri J, Molaee N and Karami H; J A, : Up-Regulation of MiRNA-125a-5p Inhibits Cell Proliferation and Increases EGFR-TKI Induced Apoptosis in Lung Cancer Cells. Asian Pac J Cancer Prev. 20:3361–3367. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Efeyan A, Comb WC and Sabatini DM: Nutrient-sensing mechanisms and pathways. Nature. 517:302–310. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Hardie DG, Ross FA and Hawley SA: AMPK: A nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol. 13:251–262. 2012. View Article : Google Scholar : PubMed/NCBI

117 

Garcia D and Shaw RJ: AMPK: Mechanisms of Cellular Energy Sensing and Restoration of Metabolic Balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Aramburu J, Ortells MC, Tejedor S, Buxade M and Lopez-Rodriguez C: Transcriptional regulation of the stress response by mTOR. Sci Signal. 7:re22014. View Article : Google Scholar : PubMed/NCBI

119 

Muoio DM, Seefeld K, Witters LA and Coleman RA: AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: Evidence that sn-glycerol-3-phosphate acyltransferase is a novel target. Biochem J. 338:783–791. 1999. View Article : Google Scholar : PubMed/NCBI

120 

Jeon SM, Chandel NS and Hay N: AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature. 485:661–665. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Wendel AA, Lewin TM and Coleman RA: Glycerol-3-phosphate acyltransferases: Rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta. 1791:501–506. 2009. View Article : Google Scholar : PubMed/NCBI

122 

Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Yecies JL, Zhang HH, Menon S, Liu S, Yecies D, Lipovsky AI, Gorgun C, Kwiatkowski DJ, Hotamisligil GS, Lee CH, et al: Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 14:21–32. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Owen JL, Zhang Y, Bae SH, Farooqi MS, Liang G, Hammer RE, Goldstein JL and Brown MS: Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proc Natl Acad Sci USA. 109:16184–16189. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Nguyen TB, Louie SM, Daniele JR, Tran Q, Dillin A, Zoncu R, Nomura DK and Olzmann JA: DGAT1-Dependent Lipid Droplet Biogenesis Protects Mitochondrial Function during Starvation-Induced Autophagy. Dev Cell. 42:9–21. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Seo AY, Lau PW, Feliciano D, Sengupta P, Gros MAL, Cinquin B, Larabell CA and Lippincott-Schwartz J: AMPK and vacuole-associated Atg14p orchestrate mu-lipophagy for energy production and long-term survival under glucose starvation. Elife. 6:e216902017. View Article : Google Scholar : PubMed/NCBI

127 

Henne WM, Reese ML and Goodman JM: The assembly of lipid droplets and their roles in challenged cells. EMBO J. 37:e989472018. View Article : Google Scholar : PubMed/NCBI

128 

Hariri H, Rogers S, Ugrankar R, Liu YL, Feathers JR and Henne WM: Lipid droplet biogenesis is spatially coordinated at ER-vacuole contacts under nutritional stress. EMBO Rep. 19:57–72. 2018. View Article : Google Scholar : PubMed/NCBI

129 

Schaffer JE: Lipotoxicity: When tissues overeat. Curr Opin Lipidol. 14:281–287. 2003. View Article : Google Scholar : PubMed/NCBI

130 

Petan T, Jarc E and Jusovic M: Lipid Droplets in Cancer: Guardians of Fat in a Stressful World. Molecules. 23:19412018. View Article : Google Scholar

131 

Herms A, Bosch M, Ariotti N, Reddy BJ, Fajardo A, Fernández-Vidal A, Alvarez-Guaita A, Fernández-Rojo MA, Rentero C, Tebar F, et al: Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity. Curr Biol. 23:1489–1496. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G and Migliaccio A: ROS in cancer therapy: The bright side of the moon. Exp Mol Med. 52:192–203. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Li R, Jia Z and Trush MA: Defining ROS in Biology and Medicine. React Oxyg Species (Apex). 1:9–21. 2016.PubMed/NCBI

134 

Ramzan R, Vogt S and Kadenbach B: Stress-mediated generation of deleterious ROS in healthy individuals - role of cytochrome c oxidase. J Mol Med (Berl). 98:651–657. 2020. View Article : Google Scholar : PubMed/NCBI

135 

Yang S and Lian G: ROS and diseases: Role in metabolism and energy supply. Mol Cell Biochem. 467:1–12. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Zhang Z, Zhao S, Yao Z, Wang L, Shao J, Chen A, Zhang F and Zheng S: Autophagy regulates turnover of lipid droplets via ROS-dependent Rab25 activation in hepatic stellate cell. Redox Biol. 11:322–334. 2017. View Article : Google Scholar : PubMed/NCBI

137 

Müller G, Wied S, Jung C and Over S: Hydrogen peroxide-induced translocation of glycolipid-anchored (c)AMP-hydrolases to lipid droplets mediates inhibition of lipolysis in rat adipocytes. Br J Pharmacol. 154:901–913. 2008. View Article : Google Scholar : PubMed/NCBI

138 

Blas-García A, Apostolova N, Ballesteros D, Monleón D, Morales JM, Rocha M, Victor VM and Esplugues JV: Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology. 52:115–125. 2010. View Article : Google Scholar : PubMed/NCBI

139 

Sekiya M, Hiraishi A, Touyama M and Sakamoto K: Oxidative stress induced lipid accumulation via SREBP1c activation in HepG2 cells. Biochem Biophys Res Commun. 375:602–607. 2008. View Article : Google Scholar : PubMed/NCBI

140 

Krawczyk SA, Haller JF, Ferrante T, Zoeller RA and Corkey BE: Reactive Oxygen Species Facilitate Translocation of Hormone Sensitive Lipase to the Lipid Droplet During Lipolysis in Human Differentiated Adipocytes. Plos One. 7:e349042012. View Article : Google Scholar : PubMed/NCBI

141 

Velázquez AP, Tatsuta T, Ghillebert R, Drescher I and Graef M: Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J Cell Biol. 212:621–631. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Welte MA: How Brain Fat Conquers Stress. Cell. 163:269–270. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Szegezdi E, Fitzgerald U and Samali A: Caspase-12 and ER-stress-mediated apoptosis: The story so far. Ann N Y Acad Sci. 1010:186–194. 2003. View Article : Google Scholar : PubMed/NCBI

144 

Turró S, Ingelmo-Torres M, Estanyol JM, Tebar F, Fernández MA, Albor CV, Gaus K, Grewal T, Enrich C and Pol A: Identification and characterization of associated with lipid droplet protein 1: A novel membrane-associated protein that resides on hepatic lipid droplets. Traffic. 7:1254–1269. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Panaretakis T, Kepp O, Brockmeier U, Tesniere A, Bjorklund AC, Chapman DC, Durchschlag M, Joza N, Pierron G, van Endert P, et al: Mechanisms of pre-apoptotic calreticulin exposure in immunogenic cell death. EMBO J. 28:578–590. 2009. View Article : Google Scholar : PubMed/NCBI

146 

Kalinski P: Regulation of immune responses by prostaglandin E2. J Immunol. 188:21–28. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Gao G, Chen FJ, Zhou L, Su L, Xu D, Xu L and Li P: Control of lipid droplet fusion and growth by CIDE family proteins. Biochim Biophys Acta Mol Cell Biol Lipids 1862B. 1197–1204. 2017. View Article : Google Scholar

148 

Liu K, Zhou S, Kim JY, Tillison K, Majors D, Rearick D, Lee JH, Fernandez-Boyanapalli RF, Barricklow K, Houston MS, et al: Functional analysis of FSP27 protein regions for lipid droplet localization, caspase-dependent apoptosis, and dimerization with CIDEA. Am J Physiol Endocrinol Metab. 297:E1395–E1413. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Bischof J, Salzmann M, Streubel MK, Hasek J, Geltinger F, Duschl J, Bresgen N, Briza P, Haskova D, Lejskova R, et al: Clearing the outer mitochondrial membrane from harmful proteins via lipid droplets. Cell Death Discov. 3:170162017. View Article : Google Scholar : PubMed/NCBI

150 

Zhang C, Yang L, Ding Y, Wang Y, Lan L, Ma Q, Chi X, Wei P, Zhao Y, Steinbüchel A, et al: Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress. Nat Commun. 8:159792017. View Article : Google Scholar : PubMed/NCBI

151 

Wang G, Li Y, Yang Z, Xu W, Yang Y and Tan X: ROS mediated EGFR/MEK/ERK/HIF-1α Loop Regulates Glucose metabolism in pancreatic cancer. Biochem Biophys Res Commun. 500:873–878. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Wang TH, Chen CC, Huang KY, Shih YM and Chen CY: High levels of EGFR prevent sulforaphane-induced reactive oxygen species-mediated apoptosis in non-small-cell lung cancer cells. Phytomedicine. 64:1529262019. View Article : Google Scholar : PubMed/NCBI

153 

Bollu LR, Katreddy RR, Blessing AM, Pham N, Zheng B, Wu X and Weihua Z: Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget. 6:34992–35003. 2015. View Article : Google Scholar : PubMed/NCBI

154 

Ali A, Levantini E, Teo JT, Goggi J, Clohessy JG, Wu CS, Chen L, Yang H, Krishnan I, Kocher O, et al: Fatty acid synthase mediates EGFR palmitoylation in EGFR mutated non-small cell lung cancer. EMBO Mol Med. 10:e83132018. View Article : Google Scholar : PubMed/NCBI

155 

Thun MJ, Henley SJ and Patrono C: Nonsteroidal anti-inflammatory drugs as anticancer agents: Mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst. 94:252–266. 2002. View Article : Google Scholar : PubMed/NCBI

156 

Thun MJ, Jacobs EJ and Patrono C: The role of aspirin in cancer prevention. Nat Rev Clin Oncol. 9:259–267. 2012. View Article : Google Scholar : PubMed/NCBI

157 

Ali R, Toh HC and Chia WK; ASCOLT Trial Investigators, : The utility of Aspirin in Dukes C and High Risk Dukes B Colorectal cancer - The ASCOLT study: Study Protocol for a randomized controlled trial. Trials. 12:2612011. View Article : Google Scholar : PubMed/NCBI

158 

Jafari N, Drury J, Morris AJ, Onono FO, Stevens PD, Gao T, Liu J, Wang C, Lee EY, Weiss HL, et al: De novo fatty acid synthesis-driven sphingolipid metabolism promotes metastatic potential of colorectal cancer. Mol Cancer Res. Aug 28–2018.(Epub ahead of print). https://doi.org/10.1158/1541-7786.MCR-18-0199. PubMed/NCBI

159 

Heuer TS, Ventura R, Mordec K, Lai J, Fridlib M, Buckley D and Kemble G: FASN Inhibition and Taxane Treatment Combine to Enhance Anti-tumor Efficacy in Diverse Xenograft Tumor Models through Disruption of Tubulin Palmitoylation and Microtubule Organization and FASN Inhibition-Mediated Effects on Oncogenic Signaling and Gene Expression. EBioMedicine. 16:51–62. 2017. View Article : Google Scholar : PubMed/NCBI

160 

Tsai TH, Chen E, Li L, Saha P, Lee HJ, Huang LS, Shelness GS, Chan L and Chang BH: The constitutive lipid droplet protein PLIN2 regulates autophagy in liver. Autophagy. 13:1130–1144. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jin C and Yuan P: Implications of lipid droplets in lung cancer: Associations with drug resistance (Review). Oncol Lett 20: 2091-2104, 2020.
APA
Jin, C., & Yuan, P. (2020). Implications of lipid droplets in lung cancer: Associations with drug resistance (Review). Oncology Letters, 20, 2091-2104. https://doi.org/10.3892/ol.2020.11769
MLA
Jin, C., Yuan, P."Implications of lipid droplets in lung cancer: Associations with drug resistance (Review)". Oncology Letters 20.3 (2020): 2091-2104.
Chicago
Jin, C., Yuan, P."Implications of lipid droplets in lung cancer: Associations with drug resistance (Review)". Oncology Letters 20, no. 3 (2020): 2091-2104. https://doi.org/10.3892/ol.2020.11769
Copy and paste a formatted citation
x
Spandidos Publications style
Jin C and Yuan P: Implications of lipid droplets in lung cancer: Associations with drug resistance (Review). Oncol Lett 20: 2091-2104, 2020.
APA
Jin, C., & Yuan, P. (2020). Implications of lipid droplets in lung cancer: Associations with drug resistance (Review). Oncology Letters, 20, 2091-2104. https://doi.org/10.3892/ol.2020.11769
MLA
Jin, C., Yuan, P."Implications of lipid droplets in lung cancer: Associations with drug resistance (Review)". Oncology Letters 20.3 (2020): 2091-2104.
Chicago
Jin, C., Yuan, P."Implications of lipid droplets in lung cancer: Associations with drug resistance (Review)". Oncology Letters 20, no. 3 (2020): 2091-2104. https://doi.org/10.3892/ol.2020.11769
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team