|
1
|
Kompella P and Vasquez KM: Obesity and
cancer: A mechanistic overview of metabolic changes in obesity that
impact genetic instability. Mol Carcinog. 58:1531–1550. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Murata M: Inflammation and cancer. Environ
Health Prev Med. 23:502018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Axelrad JE, Lichtiger S and Yajnik V:
Inflammatory bowel disease and cancer: The role of inflammation,
immunosuppression, and cancer treatment. World J Gastroenterol.
22:4794–4801. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Raskov H, Soby JH, Troelsen J, Bojesen RD
and Gogenur I: Driver gene mutations and epigenetics in colorectal
Cancer. Ann Surg. 271:75–85. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Todd R and Wong DT: Oncogenes. Anticancer
Res. 19:4729–4746. 1999.PubMed/NCBI
|
|
6
|
Bos JL: Ras oncogenes in human cancer: A
review. Cancer Res. 49:4682–4689. 1989.PubMed/NCBI
|
|
7
|
Felsher DW and Bishop JM: Reversible
tumorigenesis by MYC in hematopoietic lineages. Mol Cell.
4:199–207. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Cargnello M and Roux PP: Activation and
function of the MAPKs and their substrates, the MAPK-activated
protein kinases. Microbiol Mol Biol Rev. 75:50–83. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hisada M, Garber JE, Fung CY, Fraumeni JF
and Li FP: Multiple primary cancers in families with Li-Fraumeni
syndrome. J Natl Cancer Inst. 90:606–611. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
National Cancer Institute, . Genetic
Testing for Hereditary Cancer Syndromes. June
21–, 2016
|
|
11
|
National Cancer Institute, . Physician
Data Query (PDQ). Cancer Genetics Overview. 2016. June
21–2016
|
|
12
|
National Cancer Institute, . Physician
Data Query (PDQ). Genetics of Breast and Ovarian Cancer. 2016.
June
21–2016
|
|
13
|
Chang-Claude J: Inherited genetic
susceptibility to breast cancer. IARC Sci Publ. 154:177–190.
2001.PubMed/NCBI
|
|
14
|
National Cancer Institute, . Physician
Data Query (PDQ). Genetics of Colorectal Cancer. 2016. June
21–2016
|
|
15
|
Akazawa C, Ishibashi M, Shimizu C,
Nakanishi S and Kageyama R: A mammalian helix-loop-helix factor
structurally related to the product of Drosophila proneural gene
atonal is a positive transcriptional regulator expressed in the
developing nervous system. J Biol Chem. 270:8730–8738. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Cai T and Groves AK: The role of atonal
factors in mechanosensory cell specification and function. Mol
Neurobiol. 52:1315–1329. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chonko KT, Jahan I, Stone J, Wright MC,
Fujiyama T, Hoshino M, Fritzsch B and Maricich SM: Atoh1 directs
hair cell differentiation and survival in the late embryonic mouse
inner ear. Dev Biolo. 381:401–410. 2013. View Article : Google Scholar
|
|
18
|
Ben-Arie N, Bellen HJ, Armstrong DL,
McCall AE, Gordadze PR, Guo Q, Matzuk MM and Zoghbi HY: Math1 is
essential for genesis of cerebellar granule neurons. Nature.
390:169–172. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Machold R and Fishell G: Math1 is
expressed in temporally discrete pools of cerebellar rhombic-lip
neural progenitors. Neuron. 48:17–24. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Rose MF, Ren J, Ahmad KA, Chao HT, Klisch
TJ, Flora A, Greer JJ and Zoghbi HY: Math1 is essential for the
development of hindbrain neurons critical for perinatal breathing.
Neuron. 64:341–354. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ayrault O, Zhao H, Zindy F, Qu C, Sherr CJ
and Roussel MF: Atoh1 inhibits neuronal differentiation and
collaborates with Gli1 to generate medulloblastoma-initiating
cells. Cancer Res. 70:5618–5627. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Flora A, Klisch TJ, Schuster G and Zoghbi
HY: Deletion of Atoh1 disrupts Sonic Hedgehog signaling in the
developing cerebellum and prevents medulloblastoma. Science.
326:1424–1427. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Yang ZJ, Ellis T, Markant SL, Read TA,
Kessler JD, Bourboulas M, Schüller U, Machold R, Fishell G, Rowitch
DH, et al: Medulloblastoma can be initiated by deletion of Patched
in lineage-restricted progenitors or stem cells. Cancer Cell.
14:135–145. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Leow CC, Romero MS, Ross S, Polakis P and
Gao WQ: Hath1, down-regulated in colon adenocarcinomas, inhibits
proliferation and tumorigenesis of colon cancer cells. Cancer Res.
64:6050–6057. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Yang Q, Bermingham NA, Finegold MJ and
Zoghbi HY: Requirement of Math1 for secretory cell lineage
commitment in the mouse intestine. Science. 294:2155–2158. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Bossuyt W, Kazanjian A, De Geest N, Van
Kelst S, De Hertogh G, Geboes K, Boivin GP, Luciani J, Fuks F,
Chuah M, et al: Atonal homolog 1 is a tumor suppressor gene. PLoS
Biol. 7:e392009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Peignon G, Durand A, Cacheux W, Ayrault O,
Terris B, Laurent-Puig P, Shroyer NF, Van Seuningen I, Honjo T,
Perret C, et al: Complex interplay between beta-catenin signalling
and Notch effectors in intestinal tumorigenesis. Gut. 60:166–176.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Huang C, Chan JA and Schuurmans C:
Proneural bHLH genes in development and disease. Curr Top Dev Biol.
110:75–127. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Leonard JH, Cook AL, Van Gele M, Boyle GM,
Inglis KJ, Speleman F and Sturm RA: Proneural and proneuroendocrine
transcription factor expression in cutaneous mechanoreceptor
(Merkel) cells and Merkel cell carcinoma. Int J Cancer.
101:103–110. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Xu HT, Xie XM, Li QC, Liu SL, Dai SD, Liu
Y and Wang EH: Atonal homolog 1 expression in lung cancer
correlates with inhibitors of the Wnt pathway as well as the
differentiation and primary tumor stage. APMIS. 121:111–119. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Hou K, Jiang H, Karim MR, Zhong C, Xu Z,
Liu L, Guan M, Shao J and Huang X: A Critical E-box in
Barhl1 3′ enhancer is essential for auditory hair cell
differentiation. Cells. 8(pii): E4582019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Scheffer D, Sage C, Corey DP and Pingault
V: Gene expression profiling identifies Hes6 as a transcriptional
target of ATOH1 in cochlear hair cells. FEBS Lett. 581:4651–4666.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Jarman AP, Grau Y, Jan LY and Jan YN:
Atonal is a proneural gene that directs chordotonal organ formation
in the Drosophila peripheral nervous system. Cell. 73:1307–1321.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Jarman AP, Grell EH, Ackerman L, Jan LY
and Jan YN: Atonal is the proneural gene for Drosophila
photoreceptors. Nature. 369:398–400. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Mulvaney J and Dabdoub A: Atoh1, an
essential transcription factor in neurogenesis and intestinal and
inner ear development: Function, regulation, and context
dependency. J Assoc Res Otolaryngol. 13:281–293. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Weinberger S, Topping MP, Yan J, Claeys A,
Geest N, Ozbay D, Hassan T, He X, Albert JT, Hassan BA and
Ramaekers A: Evolutionary changes in transcription factor coding
sequence quantitatively alter sensory organ development and
function. Elife. 6(pii): e264022017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Quan XJ, Denayer T, Yan J, Jafar-Nejad H,
Philippi A, Lichtarge O, Vleminckx K and Hassan BA: Evolution of
neural precursor selection: Functional divergence of proneural
proteins. Development. 131:1679–1689. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Aerts S, Quan XJ, Claeys A, Naval Sanchez
M, Tate P, Yan J and Hassan BA: Robust target gene discovery
through transcriptome perturbations and genome-wide enhancer
predictions in Drosophila uncovers a regulatory basis for sensory
specification. PLoS Biol. 8:e10004352010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Klisch TJ, Xi Y, Flora A, Wang L, Li W and
Zoghbi HY: In vivo Atoh1 targetome reveals how a proneural
transcription factor regulates cerebellar development. Proc Natl
Acad Sci USA. 108:3288–3293. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Gazit R, Krizhanovsky V and Ben-Arie N:
Math1 controls cerebellar granule cell differentiation by
regulating multiple components of the Notch signaling pathway.
Development. 131:903–913. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
VanDussen KL and Samuelson LC: Mouse
atonal homolog 1 directs intestinal progenitors to secretory cell
rather than absorptive cell fate. Dev Biol. 346:215–223. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Peignon G, Durand A, Cacheux W, Ayrault O,
Terris B, Laurent-Puig P, Shroyer NF, Van Seuningen I, Honjo T,
Perret C and Romagnolo B: Complex interplay between β-catenin
signalling and Notch effectors in intestinal tumorigenesis. Gut.
60:166–176. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Flora A, Garcia JJ, Thaller C and Zoghbi
HY: The E-protein Tcf4 interacts with Math1 to regulate
differentiation of a specific subset of neuronal progenitors. Proc
Natl Acad Sci USA. 104:15382–15387. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lee KJ, Dietrich P and Jessell TM: Genetic
ablation reveals that the roof plate is essential for dorsal
interneuron specification. Nature. 403:734–740. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhao H, Ayrault O, Zindy F, Kim JH and
Roussel MF: Post-transcriptional down-regulation of Atoh1/Math1 by
bone morphogenic proteins suppresses medulloblastoma development.
Genes Dev. 22:722–727. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hu X, Huang J, Feng L, Fukudome S,
Hamajima Y and Lin J: Sonic hedgehog (SHH) promotes the
differentiation of mouse cochlear neural progenitors via the
Math1-Brn3.1 signaling pathway in vitro. J Neurosci Res.
88:927–935. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Moll I, Roessler M, Brandner JM, Eispert
AC, Houdek P and Moll R: Human Merkel cells-aspects of cell
biology, distribution and functions. Eur J Cell Biol. 84:259–271.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wellnitz SA, Lesniak DR, Gerling GJ and
Lumpkin EA: The regularity of sustained firing reveals two
populations of slowly adapting touch receptors in mouse hairy skin.
J Neurophysiol. 103:3378–3388. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ben-Arie N, Hassan BA, Bermingham NA,
Malicki DM, Armstrong D, Matzuk M, Bellen HJ and Zoghbi HY:
Functional conservation of atonal and Math1 in the CNS and PNS.
Development. 127:1039–1048. 2000.PubMed/NCBI
|
|
50
|
Haeberle H, Fujiwara M, Chuang J, Medina
MM, Panditrao MV, Bechstedt S, Howard J and Lumpkin EA: Molecular
profiling reveals synaptic release machinery in Merkel cells. Proc
Natl Acad Sci USA. 101:14503–14508. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wright MC, Reed-Geaghan EG, Bolock AM,
Fujiyama T, Hoshino M and Maricich SM: Unipotent, ATOH1+
progenitors maintain the Merkel cell population in embryonic and
adult mice. J Cell Biol. 208:367–379. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Maricich SM, Wellnitz SA, Nelson AM,
Lesniak DR, Gerling GJ, Lumpkin EA and Zoghbi HY: Merkel cells are
essential for light-touch responses. Science. 324:1580–1582. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bardot ES, Valdes VJ, Zhang J, Perdigoto
CN, Nicolis S, Hearn SA, Silva JM and Ezhkova E: Polycomb subunits
Ezh1 and Ezh2 regulate the Merkel cell differentiation program in
skin stem cells. EMBO J. 32:1990–2000. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Coggshall K, Tello TL, North JP and Yu SS:
Merkel cell carcinoma: An update and review: Pathogenesis,
diagnosis, and staging. J Am Acad Dermatol. 78:433–442. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tello TL, Coggshall K, Yom SS and Yu SS:
Merkel cell carcinoma: An update and review: Current and future
therapy. J Am Acad Dermatol. 78:445–454. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liu W, MacDonald M and You J: Merkel cell
polyomavirus infection and Merkel cell carcinoma. Curr Opin Virol.
20:20–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Schadendorf D, Lebbé C, Zur Hausen A,
Avril MF, Hariharan S, Bharmal M and Becker JC: Merkel cell
carcinoma: Epidemiology, prognosis, therapy and unmet medical
needs. Eur J Cancer. 71:53–69. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gambichler T, Mohtezebsade S, Wieland U,
Silling S, Hoh AK, Dreissigacker M, Schaller J, Schulze HJ, Oellig
F, Kreuter A, et al: Prognostic relevance of high atonal homolog-1
expression in Merkel cell carcinoma. J Cancer Res Clin Oncol.
143:43–49. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Briggs KJ, Corcoran-Schwartz IM, Zhang W,
Harcke T, Devereux WL, Baylin SB, Eberhart CG and Watkins DN:
Cooperation between the Hic1 and Ptch1 tumor suppressors in
medulloblastoma. Genes Dev. 22:770–785. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Schüller U, Heine VM, Mao J, Kho AT,
Dillon AK, Han YG, Huillard E, Sun T, Ligon AH, Qian Y, et al:
Acquisition of granule neuron precursor identity is a critical
determinant of progenitor cell competence to form Shh-induced
medulloblastoma. Cancer Cell. 14:123–134. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Shroyer NF, Helmrath MA, Wang VY, Antalffy
B, Henning SJ and Zoghbi HY: Intestine-specific ablation of mouse
atonal homolog 1 (Math1) reveals a role in cellular homeostasis.
Gastroenterology. 132:2478–2488. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Peignon G, Durand A, Cacheux W, Ayrault O,
Terris B, Laurent-Puig P, Shroyer NF, Van Seuningen I, Honjo T,
Perret C, et al: Complex interplay between β-catenin signalling and
Notch effectors in intestinal tumorigenesis. Gut. 60:166–176. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Westerman BA, Breuer RH, Poutsma A,
Chhatta A, Noorduyn LA, Koolen MG, Postmus PE, Blankenstein MA and
Oudejans CB: Basic helix-loop-helix transcription factor profiling
of lung tumors shows aberrant expression of the proneural gene
atonal homolog 1 (ATOH1, HATH1, MATH1) in neuroendocrine tumors.
Int J Biol Markers. 22:114–123. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bhattacharjee A, Richards WG, Staunton J,
Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M, et
al: Classification of human lung carcinomas by mRNA expression
profiling reveals distinct adenocarcinoma subclasses. Proc Natl
Acad Sci USA. 98:13790–13795. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hiroshima K, Iyoda A, Shibuya K, Toyozaki
T, Haga Y, Fujisawa T and Ohwada H: Prognostic significance of
neuroendocrine differentiation in adenocarcinoma of the lung. Ann
Thorac Surg. 73:1732–1735. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Berendsen HH, de Leij L, Poppema S,
Postmus PE, Boes A, Sluiter HJ and The H: Clinical characterization
of non-small-cell lung cancer tumors showing neuroendocrine
differentiation features. J Clin Oncol. 7:1614–1620. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ben-Arie N, McCall AE, Berkman S, Eichele
G, Bellen HJ and Zoghbi HY: Evolutionary conservation of sequence
and expression of the bHLH protein Atonal suggests a conserved role
in neurogenesis. Hum Mol Genet. 5:1207–1216. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bermingham NA, Hassan BA, Wang VY,
Fernandez M, Banfi S, Bellen HJ, Fritzsch B and Zoghbi HY:
Proprioceptor pathway development is dependent on Math1. Neuron.
30:411–422. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Iulianella A, Wingate RJ, Moens CB and
Capaldo E: The generation of granule cells during the development
and evolution of the cerebellum. Dev Dyn. 248:506–513. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Thompson MC, Fuller C, Hogg TL, Dalton J,
Finkelstein D, Lau CC, Chintagumpala M, Adesina A, Ashley DM,
Kellie SJ, et al: Genomics identifies medulloblastoma subgroups
that are enriched for specific genetic alterations. J Clin Oncol.
24:1924–1931. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Gibson P, Tong Y, Robinson G, Thompson MC,
Currle DS, Eden C, Kranenburg TA, Hogg T, Poppleton H, Martin J, et
al: Subtypes of medulloblastoma have distinct developmental
origins. Nature. 468:1095–1099. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gilbertson RJ and Ellison DW: The origins
of medulloblastoma subtypes. Ann Rev Pathol. 3:341–365. 2008.
View Article : Google Scholar
|
|
73
|
Lee Y, Miller HL, Jensen P, Hernan R,
Connelly M, Wetmore C, Zindy F, Roussel MF, Curran T, Gilbertson RJ
and McKinnon PJ: A molecular fingerprint for medulloblastoma.
Cancer Res. 63:5428–5437. 2003.PubMed/NCBI
|
|
74
|
Vaillant C, Valdivieso P, Nuciforo S, Kool
M, Schwarzentruber-Schauerte A, Mereau H, Cabuy E, Lobrinus JA,
Pfister S, Zuniga A, et al: Serpine2/PN-1 is required for
proliferative expansion of pre-neoplastic lesions and malignant
progression to medulloblastoma. PLoS One. 10:e01248702015.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Blaess S, Corrales JD and Joyner AL: Sonic
hedgehog regulates Gli activator and repressor functions with
spatial and temporal precision in the mid/hindbrain region
Development 133. 1799–1809. 2006.PubMed/NCBI
|
|
76
|
Briggs KJ, Eberhart CG and Watkins DN:
Just say no to ATOH: How HIC1 methylation might predispose
medulloblastoma to lineage addiction. Cancer Res. 68:8654–8666.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Klisch TJ, Vainshtein A, Patel AJ and
Zoghbi HY: Jak2-mediated phosphorylation of ATOH1 is critical for
medulloblastoma growth. Elife. 6(pii): e311812017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Salsano E, Pollo B, Eoli M, Giordana MT
and Finocchiaro G: Expression of MATH1, a marker of cerebellar
granule cell progenitors, identifies different medulloblastoma
sub-types. Neurosci Lett. 370:180–185. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhao H, Ayrault O, Zindy F, Kim JH and
Roussel MF: Post-transcriptional down-regulation of ATOH1/Math1 by
bone morphogenic proteins suppresses medulloblastoma development.
Genes Dev. 22:722–727. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Garraway LA, Weir BA, Zhao X, Widlund H,
Beroukhim R, Berger A, Rimm D, Rubin MA, Fisher DE, Meyerson ML and
Sellers WR: ‘Lineage addiction’ in human cancer: Lessons from
integrated genomics. Cold Spring Harb Symp Quant Biol. 70:25–34.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zakrzewska M, Gresner SM, Zakrzewski K,
Zalewska-Szewczyk B and Liberski PP: Novel gene expression model
for outcome prediction in paediatric medulloblastoma. J Mol
Neurosci. 51:371–379. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Lum L and Beachy PA: The Hedgehog response
network: Sensors, switches, and routers. Science. 304:1755–1759.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Katoh Y and Katoh M: Integrative genomic
analyses on GLI1: Positive regulation of GLI1 by Hedgehog-GLI,
TGFbeta-Smads, and RTK-PI3K-AKT signals, and negative regulation of
GLI1 by Notch-CSL-HES/HEY, and GPCR-Gs-PKA signals. Int J Oncol.
35:187–192. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Browd SR, Kenney AM, Gottfried ON, Yoon
JW, Walterhouse D, Pedone CA and Fults DW: N-myc can substitute for
insulin-like growth factor signaling in a mouse model of sonic
hedgehog-induced medulloblastoma. Cancer Res. 66:2666–2672. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Eberhart CG: Medulloblastoma in mice
lacking p53 and PARP: All roads lead to Gli. Am J Pathol. 162:7–10.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Chiba S, Takeshita K, Imai Y, Kumano K,
Kurokawa M, Masuda S, Shimizu K, Nakamura S, Ruddle FH and Hirai H:
Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling
pathway from activin A in hematopoietic cells. Proc Natl Acad Sci
USA. 100:15577–15582. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Harris SE, Guo D, Harris MA, Krishnaswamy
A and Lichtler A: Transcriptional regulation of BMP-2 activated
genes in osteoblasts using gene expression microarray analysis:
Role of Dlx2 and Dlx5 transcription factors. Front Biosci.
8:s1249–s1265. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
88
|
Katoh Y and Katoh M: Comparative genomics
on HHIP family orthologs. Int J Mol Med. 17:391–395.
2006.PubMed/NCBI
|
|
89
|
Kamaid A, Neves J and Giraldez F: Id gene
regulation and function in the prosensory domains of the chicken
inner ear: A link between Bmp signaling and ATOH1. J Neurosci.
30:11426–11434. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Angley C, Kumar M, Dinsio KJ, Hall AK and
Siegel RE: Signaling by bone morphogenetic proteins and Smad1
modulates the postnatal differentiation of cerebellar cells. J
Neurosci. 23:260–268. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dennis G Jr, Sherman BT, Hosack DA, Yang
J, Gao W, Lane HC and Lempicki RA: DAVID: Database for annotation,
visualization, and integrated discovery. Genome Biol. 4:P32003.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Killeen MT and Sybingco SS: Netrin, Slit
and Wnt receptors allow axons to choose the axis of migration. Dev
Biol. 323:143–151. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Zou YR, Kottmann AH, Kuroda M, Taniuchi I
and Littman DR: Function of the chemokine receptor CXCR4 in
haematopoiesis and in cerebellar development. Nature. 393:595–599.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Adamson DC, Shi Q, Wortham M, Northcott
PA, Di C, Duncan CG, Li J, McLendon RE, Bigner DD, Taylor MD and
Yan H: OTX2 is critical for the maintenance and progression of
Shh-independent medulloblastomas. Cancer Res. 70:181–191. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Berman DM, Karhadkar SS, Hallahan AR,
Pritchard JI, Eberhart CG, Watkins DN, Chen JK, Cooper MK, Taipale
J, Olson JM and Beachy PA: Medulloblastoma growth inhibition by
hedgehog pathway blockade. Science. 297:1559–1561. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Romer JT, Kimura H, Magdaleno S, Sasai K,
Fuller C, Baines H, Connelly M, Stewart CF, Gould S, Rubin LL and
Curran T: Suppression of the Shh pathway using a small molecule
inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(−/-) mice.
Cancer Cell. 6:229–240. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Hallahan AR, Pritchard JI, Hansen S,
Benson M, Stoeck J, Hatton BA, Russell TL, Ellenbogen RG, Bernstein
ID, Beachy PA and Olson JM: The SmoA1 mouse model reveals that
notch signaling is critical for the growth and survival of sonic
hedgehog-induced medulloblastomas. Cancer Res. 64:7794–7800. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Northcott PA, Nakahara Y, Wu X, Feuk L,
Ellison DW, Croul S, Mack S, Kongkham PN, Peacock J, Dubuc A, et
al: Multiple recurrent genetic events converge on control of
histone lysine methylation in medulloblastoma. Nat Genet.
41:465–472. 2009. View
Article : Google Scholar : PubMed/NCBI
|
|
99
|
Stanton BZ and Peng LF: Small-molecule
modulators of the Sonic Hedgehog signaling pathway. Mol Biosyst.
6:44–54. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Vlckova K, Reda J, Ondrusova L, Krayem M,
Ghanem G and Vachtenheim J: GLI inhibitor GANT61 kills melanoma
cells and acts in synergy with obatoclax. Int J Oncol. 49:953–960.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Northcott PA, Rutka JT and Taylor MD:
Genomics of medulloblastoma: From Giemsa-banding to next-generation
sequencing in 20 years. Neurosurg Focus. 28:E62010. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Hallahan AR, Pritchard JI, Chandraratna
RA, Ellenbogen RG, Geyer JR, Overland RP, Strand AD, Tapscott SJ
and Olson JM: BMP-2 mediates retinoid-induced apoptosis in
medulloblastoma cells through a paracrine effect. Nat Med.
9:1033–1038. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kazanjian A, Noah T, Brown D, Burkart J
and Shroyer NF: Atonal homolog 1 is required for growth and
differentiation effects of notch/gamma-secretase inhibitors on
normal and cancerous intestinal epithelial cells. Gastroenterology.
139:918–928. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Kim TH and Shivdasani RA: Genetic evidence
that intestinal Notch functions vary regionally and operate through
a common mechanism of Math1 repression. J Biol Chem.
286:11427–11433. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Noah TK and Shroyer NF: Notch in the
intestine: Regulation of homeostasis and pathogenesis. Annu Rev
Physiol. 75:263–288. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Van Keymeulen A, Mascre G, Youseff KK,
Harel I, Michaux C, De Geest N, Szpalski C, Achouri Y, Bloch W,
Hassan BA and Blanpain C: Epidermal progenitors give rise to Merkel
cells during embryonic development and adult homeostasis. J Cell
Biol. 187:91–100. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Barker N, van Es JH, Kuipers J, Kujala P,
van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H,
Peters PJ and Clevers H: Identification of stem cells in small
intestine and colon by marker gene Lgr5. Nature. 449:1003–1307.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Reedijk M, Odorcic S, Zhang H, Chetty R,
Tennert C, Dickson BC, Lockwood G, Gallinger S and Egan SE:
Activation of Notch signaling in human colon adenocarcinoma. Int J
Oncol. 33:1223–1229. 2008.PubMed/NCBI
|
|
109
|
van Es JH, de Geest N, van de Born M,
Clevers H and Hassan BA: Intestinal stem cells lacking the Math1
tumour suppressor are refractory to Notch inhibitors. Nat Commun.
1:182010. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Guilmeau S, Flandez M, Mariadason JM and
Augenlicht LH: Heterogeneity of Jagged1 expression in human and
mouse intestinal tumors: Implications for targeting Notch
signaling. Oncogene. 29:992–1002. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Sikandar SS, Pate KT, Anderson S, Dizon D,
Edwards RA, Waterman ML and Lipkin SM: NOTCH signaling is required
for formation and self-renewal of tumor-initiating cells and for
repression of secretory cell differentiation in colon cancer.
Cancer Res. 70:1469–1478. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Fre S, Pallavi SK, Huyghe M, Lae M,
Janssen KP, Robine S, Artavanis-Tsakonas S and Louvard D: Notch and
Wnt signals cooperatively control cell proliferation and
tumorigenesis in the intestine. Proc Natl Acad Sci USA.
106:6309–6314. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
van Es JH, van Gijn ME, Riccio O, van den
Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ,
Radtke F and Clevers H: Notch/gamma-secretase inhibition turns
proliferative cells in intestinal crypts and adenomas into goblet
cells. Nature. 435:959–963. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhu DH, Niu BL, Du HM, Ren K, Sun JM and
Gong JP: Hath1 inhibits proliferation of colon cancer cells
probably through up-regulating expression of Muc2 and p27 and
down-regulating expression of cyclin D1. Asian Pac J Cancer Prev.
13:6349–6355. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Tsuchiya K, Nakamura T, Okamoto R, Kanai T
and Watanabe M: Reciprocal targeting of Hath1 and beta-catenin by
Wnt glycogen synthase kinase 3beta in human colon cancer.
Gastroenterology. 132:208–220. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Park ET, Oh HK, Gum JR Jr, Crawley SC,
Kakar S, Engel J, Leow CC, Gao WQ and Kim YS: HATH1 expression in
mucinous cancers of the colorectum and related lesions. Clin Cancer
Res. 12:5403–5410. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Aragaki M, Tsuchiya K, Okamoto R, Yoshioka
S, Nakamura T, Sakamoto N, Kanai T and Watanabe M: Proteasomal
degradation of ATOH1 by aberrant Wnt signaling maintains the
undifferentiated state of colon cancer. Biochem Biophys Res Commun.
368:923–929. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Polakis P: Wnt signaling and cancer. Genes
Dev. 14:1837–1851. 2000.PubMed/NCBI
|
|
119
|
Polakis P: The oncogenic activation of
beta-catenin. Curr Opin Genet Dev. 9:15–21. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Quan XJ, Yuan L, Tiberi L, Claeys A, De
Geest N, Yan J, van der Kant R, Xie WR, Klisch TJ, Shymkowitz J, et
al: Post-translational control of the temporal dynamics of
transcription factor activity regulates neurogenesis. Cell.
164:460–475. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Tomic G, Morrissey E, Kozar S, Ben-Moshe
S, Hoyle A, Azzarelli R, Kemp R, Chilamakuri CSR, Itzkovitz S,
Philpott A and Winton DJ: Phospho-regulation of ATOH1 is required
for plasticity of secretory progenitors and tissue regeneration.
Cell Stem Cell. 23:436–43.e7. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Yang X, Zhang L, Song X, He W, Zhang D, Lu
Q, Wu J, Wu C and Jiang J: MicroRNA-613 promotes colon cancer cell
proliferation, invasion and migration by targeting ATOH1. Biochem
Biophys Res Commun. 504:827–833. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ponz de Leon M and Di Gregorio C:
Pathology of colorectal cancer. Digestive and liver disease:
Official journal of the Italian Society of Gastroenterology and the
Italian Association for the Study of the Liver. 33:372–388. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Hooper LV and Macpherson AJ: Immune
adaptations that maintain homeostasis with the intestinal
microbiota. Nat Rev Immunol. 10:159–169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Hollingsworth MA and Swanson BJ: Mucins in
cancer: Protection and control of the cell surface. Nat Rev Cancer.
4:45–60. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Sheng XZ, Xu GJ, Tang XQ and Zhan WB:
Monoclonal antibodies recognizing mucus immunoglobulin and surface
immunoglobulin-positive cells of flounder (Paralichthys olivaceus).
Vet Immunol Immunopathol. 145:143–150. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Corfield AP, Carroll D, Myerscough N and
Probert CS: Mucins in the gastrointestinal tract in health and
disease. Front Biosci. 6:D1321–D1357. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Velcich A, Yang W, Heyer J, Fragale A,
Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K and
Augenlicht L: Colorectal cancer in mice genetically deficient in
the mucin Muc2. Science. 295:1726–1729. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Byrd JC and Bresalier RS: Mucins and mucin
binding proteins in colorectal cancer. Cancer Metastasis Rev.
23:77–99. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Noah TK, Kazanjian A, Whitsett J and
Shroyer NF: SAM pointed domain ETS factor (SPDEF) regulates
terminal differentiation and maturation of intestinal goblet cells.
Exp Cell Res. 316:452–265. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lo YH, Chung E, Li Z, Wan YW, Mahe MM,
Chen MS, Noah TK, Bell KN, Yalamanchili HK, Klisch TJ, et al:
Transcriptional regulation by ATOH1 and its Target SPDEF in the
intestine. Cell Mol Gastroenterol Hepatol. 3:51–71. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Noah TK, Lo YH, Price A, Chen G, King E,
Washington MK, Aronow BJ and Shroyer NF: SPDEF functions as a
colorectal tumor suppressor by inhibiting β-catenin activity.
Gastroenterology. 144:1012–1023.e6. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Riccio O, van Gijn ME, Bezdek AC,
Pellegrinet L, van Es JH, Zimber-Strobl U, Strobl LJ, Honjo T,
Clevers H and Radtke F: Loss of intestinal crypt progenitor cells
owing to inactivation of both Notch1 and Notch2 is accompanied by
derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep.
9:377–383. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Souaze F, Bou-Hanna C, Kandel C, Leclair
F, Devalliere J, Charreau B, Bézieau S, Mosnier JF and Laboisse CL:
Differential roles of Hath1, MUC2 and P27Kip1 in relation with
gamma-secretase inhibition in human colonic carcinomas: A
translational study. PLoS One. 8:e559042013. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Aragaki M, Tsuchiya K, Okamoto R, Yoshioka
S, Nakamura T, Sakamoto N, Kanai T and Watanabe M: Proteasomal
degradation of Atoh1 by aberrant Wnt signaling maintains the
undifferentiated state of colon cancer. Biochem Biophys Res Commun.
368:923–929. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Cohen Y, Chetrit A, Cohen Y, Sirota P and
Modan B: Cancer morbidity in psychiatric patients: Influence of
lithium carbonate treatment. Med Oncol. 15:32–36. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Gould TD, Gray NA and Manji HK: Effects of
a glycogen synthase kinase-3 inhibitor, lithium, in adenomatous
polyposis coli mutant mice. Pharmacol Res. 48:49–53.
2003.PubMed/NCBI
|
|
138
|
Shakoori A, Mai W, Miyashita K, Yasumoto
K, Takahashi Y, Ooi A, Kawakami K and Minamoto T: Inhibition of
GSK-3 beta activity attenuates proliferation of human colon cancer
cells in rodents. Cancer Sci. 98:1388–1393. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET
and Yu Q: Pharmacologic modulation of glycogen synthase
kinase-3beta promotes p53-dependent apoptosis through a direct
Bax-mediated mitochondrial pathway in colorectal cancer cells.
Cancer Res. 65:9012–9020. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ring DB, Johnson KW, Henriksen EJ, Nuss
JM, Goff D, Kinnick TR, Ma ST, Reeder JW, Samuels I, Slabiak T, et
al: Selective glycogen synthase kinase 3 inhibitors potentiate
insulin activation of glucose transport and utilization in vitro
and in vivo. Diabetes. 52:588–595. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Veenendaal LM, Kranenburg O, Smakman N,
Klomp A, Borel Rinkes IH and van Diest PJ: Differential Notch and
TGFbeta signaling in primary colorectal tumors and their
corresponding metastases. Cell Oncol. 30:1–11. 2008.PubMed/NCBI
|
|
142
|
Wu Y, Cain-Hom C, Choy L, Hagenbeek TJ, de
Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, et al:
Therapeutic antibody targeting of individual Notch receptors.
Nature. 464:1052–1057. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Kim JW, Shin MK and Kim BC:
Clinicopathologic impacts of poorly differentiated cluster-based
grading system in colorectal carcinoma. J Korean Med Sci. 30:16–23.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Akiyoshi T, Nakamura M, Yanai K, Nagai S,
Wada J, Koga K, Nakashima H, Sato N, Tanaka M and Katano M:
Gamma-secretase inhibitors enhance taxane-induced mitotic arrest
and apoptosis in colon cancer cells. Gastroenterology. 134:131–144.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Aleksic T and Feller SM: Gamma-secretase
inhibition combined with platinum compounds enhances cell death in
a large subset of colorectal cancer cells. Cell Commun Signal.
6:82008. View Article : Google Scholar : PubMed/NCBI
|