|
1
|
Neilson KM and Friesel R:
Ligand-independent activation of fibroblast growth factor receptors
by point mutations in the extracellular, transmembrane, and kinase
domains. J Biol Chem. 271:25049–25057. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Itoh N and Ornitz DM: Fibroblast growth
factors: From molecular evolution to roles in development,
metabolism and disease. J Biochem. 149:121–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Funato N, Moriyama K, Shimokawa H and
Kuroda T: Basic fibroblast growth factor induces apoptosis in
myofibroblastic cells isolated from rat palatal mucosa. Biochem
Biophys Res Commun. 240:21–26. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Dienstmann R, Rodon J, Prat A,
Perez-Garcia J, Adamo B, Felip E, Cortes J, Iafrate AJ, Nuciforo P
and Tabernero J: Genomic aberrations in the FGFR pathway:
Opportunities for targeted therapies in solid tumors. Ann Oncol.
25:552–563. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Touat M, Ileana E, Postel-Vinay S, André F
and Soria JC: Targeting FGFR signaling in cancer. Clin Cancer Res.
21:2684–2694. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Gallo LH, Nelson KN, Meyer AN and Donoghue
DJ: Functions of fibroblast growth factor receptors in cancer
defined by novel translocations and mutations. Cytokine Growth
Factor Rev. 26:425–449. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Weiss J, Sos ML, Seidel D, Peifer M,
Zander T, Heuckmann JM, Ullrich RT, Menon R, Maier S, Soltermann A,
et al: Frequent and focal FGFR1 amplification associates with
therapeutically tractable FGFR1 dependency in squamous cell lung
cancer. Sci Transl Med. 2:62ra932010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee HJ, Seo AN, Park SY, Kim JY, Park JY,
Yu JH, Ahn JH and Gong G: Low prognostic implication of fibroblast
growth factor family activation in triple-negative breast cancer
subsets. Ann Surg Oncol. 21:1561–1568. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Campbell J, Ryan CJ, Brough R, Bajrami I,
Pemberton HN, Chong IY, Costa-Cabral S, Frankum J, Gulati A, Holme
H, et al: Large-scale profiling of kinase dependencies in cancer
cell lines. Cell Rep. 14:2490–2501. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Helsten T, Elkin S, Arthur E, Tomson BN,
Carter J and Kurzrock R: The FGFR landscape in cancer: Analysis of
4,853 tumors by next-generation sequencing. Clin Cancer Res.
22:259–267. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Greenman C1, Stephens P, Smith R,
Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A,
Stevens C, et al: Patterns of somatic mutation in human cancer
genomes. Nature. 446:153–158. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Costa R, Carneiro BA, Taxter T, Tavora FA,
Kalyan A, Pai SA, Chae YK and Giles FJ: FGFR3-TACC3 fusion in solid
tumors: Mini review. Oncotarget. 7:55924–55938. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Babina IS and Turner NC: Advances and
challenges in targeting FGFR signalling in cancer. Nat Rev Cancer.
17:318–332. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Chae YK, Ranganath K, Hammerman PS,
Vaklavas C, Mohindra N, Kalyan A, Matsangou M, Costa R, Carneiro B,
Villaflor VM, et al: Inhibition of the fibroblast growth factor
receptor (FGFR) pathway: The current landscape and barriers to
clinical application. Oncotarget. 8:16052–16074. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Suyama K and Iwase H: Lenvatinib: A
promising molecular targeted agent for multiple cancers. Cancer
Control. 25:10732748187893612018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yoon JC, Hye SK, Se HP, Kim BS, Kyoung HK,
Hyo JL, Hong SS, Shin DY, Lee HY, Kim HG, et al: Phase II study of
dovitinib in patients with castration-resistant prostate cancer
(KCSG-GU11-05). Cancer Res Treat. 50:1252–1259. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Manchado E, Weissmueller S, Morris JP IV,
Chen CC, Wullenkord R, Lujambio A, de Stanchina E, Poirier JT,
Gainor JF, Corcoran RB, et al: A combinatorial strategy for
treating KRAS-mutant lung cancer. Nature. 534:647–651. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Kitai H, Ebi H, Tomida S, Floros KV,
Kotani H, Adachi Y, Oizumi S, Nishimura M, Faber AC and Yano S:
Epithelial-to-mesenchymal transition defines feedback activation of
receptor tyrosine kinase signaling induced by MEK inhibition in
KRAS-mutant lung cancer. Cancer Discov. 6:754–769. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Singleton KR, Hinz TK, Kleczko EK, Marek
LA, Kwak J, Harp T, Kim J, Tan AC and Heasley LE: Kinome RNAi
screens reveal synergistic targeting of MTOR and FGFR1 pathways for
treatment of lung cancer and HNSCC. Cancer Res. 75:4398–4406. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Dai B, Yan S, Lara-Guerra H, Kawashima H,
Sakai R, Jayachandran G, Majidi M, Mehran R, Wang J, Bekele BN, et
al: Exogenous restoration of TUSC2 expression induces
responsiveness to erlotinib in wildtype epidermal growth factor
receptor (EGFR) lung cancer cells through context specific pathways
resulting in enhanced therapeutic efficacy. PLoS One.
10:e01239672015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kim B, Wang S, Lee JM, Jeong Y, Ahn T, Son
DS, Park HW, Yoo HS, Song YJ, Lee E, et al: Synthetic lethal
screening reveals FGFR as one of the combinatorial targets to
overcome resistance to Met-targeted therapy. Oncogene.
34:1083–1093. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim SM, Kim H, Yun MR, Kang HN, Pyo KH,
Park HJ, Lee JM, Choi HM, Ellinghaus P, Ocker M, et al: Activation
of the Met kinase confers acquired drug resistance in FGFR-targeted
lung cancer therapy. Oncogenesis. 5:e2412016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Shang-Gin W and Jin-Yuan S: Management of
acquired resistance to EGFR TKI-targeted therapy in advanced
non-small cell lung cancer. Mol Cancer. 17:382018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Ware KE, Hinz TK, Kleczko E, Singleton KR,
Marek LA, Helfrich BA, Cummings CT, Graham DK, Astling D, Tan AC
and Heasley LE: A mechanism of resistance to gefitinib mediated by
cellular reprogramming and the acquisition of an FGF2-FGFR1
autocrine growth loop. Oncogenesis. 2:e392013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Greulich H: The genomics of lung
adenocarcinoma: Opportunities for targeted therapies. Genes Cancer.
1:1200–1210. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Eramo A, Lotti F, Sette G, Pilozzi E,
Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De
Maria R: Identification and expansion of the tumorigenic lung
cancer stem cell population. Cell Death Differ. 15:504–514. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Justilien V, Regala RP, Tseng IC, Walsh
MP, Batra J, Radisky ES, Murray NR and Fields AP: Matrix
metalloproteinase-10 is required for lung cancer stem cell
maintenance, tumor initiation and metastatic potential. PLoS One.
7:e350402012. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim HR, Kim DJ, Kang DR, Lee JG, Lim SM,
Lee CY, Rha SY, Bae MK, Lee YJ, Kim SH, et al: Fibroblast growth
factor receptor 1 gene amplification is associated with poor
survival and cigarette smoking dosage in patients with resected
squamous cell lung cancer. J Clin Oncol. 31:731–737. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Seo AN, Jin Y, Lee HJ, Sun PL, Kim H,
Jheon S, Kim K, Lee CT and Chung JH: FGFR1 amplification is
associated with poor prognosis and smoking in non-small-cell lung
cancer. Virchows Arch. 465:547–558. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Tran TN, Selinger CI, Kohonen-Corish MRJ,
McCaughan BC, Kennedy CW, O'Toole SA and Cooper WA: Fibroblast
growth factor receptor 1 (FGFR1) copy number is an independent
prognostic factor in non-small cell lung cancer. Lung Cancer.
81:462–467. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ji W, Yu Y, Li Z, Wang G, Li F, Xia W and
Lu S: FGFR1 promotes the stem cell-like phenotype of
FGFR1-amplified non-small cell lung cancer cells through the
Hedgehog pathway. Oncotarget. 7:15118–15134. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Koole K, Brunen D, van Kempen PM, Noorlag
R, de Bree R, Lieftink C, van Es RJ, Bernards R and Willems SM:
FGFR1 is a potential prognostic biomarker and therapeutic target in
head and neck squamous cell carcinoma. Clin Cancer Res.
22:3884–3893. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Singleton KR, Kim J, Hinz TK, Marek LA,
Casás-Selves M, Hatheway C, Tan AC, DeGregori J and Heasley LE: A
receptor tyrosine kinase network composed of fibroblast growth
factor receptors, epidermal growth factor receptor, v-erb-b2
erythroblastic leukemia viral oncogene homolog 2, and hepatocyte
growth factor receptor drives growth and survival of head and neck
squamous carcinoma cell lines. Mol Pharmacol. 83:882–893. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Pearson A, Smyth E, Babina IS,
Herrera-Abreu MT, Tarazona N, Peckitt C, Kilgour E, Smith NR, Geh
C, Rooney C, et al: High-level clonal FGFR amplification and
response to FGFR inhibition in a translational clinical trial.
Cancer Discov. 6:838–851. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chang J, Wang S, Zhang Z, Liu X, Wu Z,
Geng R, Ge X, Dai C, Liu R, Zhang Q, et al: Multiple receptor
tyrosine kinase activation attenuates therapeutic efficacy of the
fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2
amplified gastric cancer. Oncotarget. 6:2009–2022. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schlemmer M, Bauer S, Schütte R, Hartmann
J, Bokemeyer C, Hosius C and Reichardt P: Activity and side effects
of imatinib in patients with gastrointestinal stromal tumors: Data
from a German multicenter trial. Eur J Med Res. 16:206–212. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Javidi-Sharifi N, Traer E, Martinez J,
Gupta A, Taguchi T, Dunlap J, Heinrich MC, Corless CL, Rubin BP,
Druker BJ and Tyner JW: Crosstalk between KIT and FGFR3 promotes
gastrointestinal stromal tumor cell growth and drug resistance.
Cancer Res. 75:880–891. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bauer S, Hartmann JT, de Wit M, Lang H,
Grabellus F, Antoch G, Niebel W, Erhard J, Ebeling P, Zeth M, et
al: Resection of residual disease in patients with metastatic
gastrointestinal stromal tumors responding to treatment with
imatinib. Int J Cancer. 117:316–325. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li F, Huynh H, Li X, Ruddy DA, Wang Y, Ong
R, Chow P, Qiu S, Tam A, Rakiec DP, et al: FGFR-mediated
reactivation of MAPK signaling attenuates antitumor effects of
imatinib in gastrointestinal stromal tumors. Cancer Discov.
5:438–541. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Sugiura K, Ozawa S, Kitagawa Y, Ueda M and
Kitajima M: Co-expression of aFGF and FGFR-1 is predictive of a
poor prognosis in patients with esophageal squamous cell carcinoma.
Oncol Rep. 17:557–564. 2007.PubMed/NCBI
|
|
41
|
Kim HS, Lee SE, Bae YS, Kim DJ, Lee CG,
Hur J, Chung H, Park JC, Jung DH, Shin SK, et al: Fibroblast growth
factor receptor 1 gene amplification is associated with poor
survival in patients with resected esophageal squamous cell
carcinoma. Oncotarget. 6:2562–2572. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang Y, Pan T, Zhong X and Cheng C:
Resistance to cetuximab in EGFR-overexpressing esophageal squamous
cell carcinoma xenografts due to FGFR2 amplification and
overexpression. J Pharmacol Sci. 126:77–83. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Luo H, Quan J, Xiao H, Luo J, Zhang Q, Pi
G, Ye Y, He R, Liu Y, Su X, Zhao L and Wang G: FGFR inhibitor
AZD4547 can enhance sensitivity of esophageal squamous cell
carcinoma cells with epithelial-mesenchymal transition to
gefitinib. Oncol Rep. 39:2270–2278. 2018.PubMed/NCBI
|
|
44
|
Pinter M and Peck-Radosavljevic M: Review
article: Systemic treatment of hepatocellular carcinoma. Aliment
Pharmacol Ther. 48:598–609. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kaposi-Novak P, Lee JS, Gòmez-Quiroz L,
Coulouarn C, Factor VM and Thorgeirsson SS: Met-regulated
expression signature defines a subset of human hepatocellular
carcinomas with poor prognosis and aggressive phenotype. J Clin
Invest. 116:1582–1595. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
You H, Ding W, Dang H, Jiang Y and
Rountree CB: c-Met represents a potential therapeutic target for
personalized treatment in hepatocellular carcinoma. Hepatology.
54:879–889. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Jo JC, Choi EK, Shin JS, Moon JH, Hong SW,
Lee HR, Kim SM, Jung SA, Lee DH, Jung SH, et al: Targeting FGFR
pathway in human hepatocellular carcinoma: Expressing pFGFR and
pMET for antitumor activity. Mol Cancer Ther. 14:2613–2622. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Scheller T, Hellerbrand C, Moser C,
Schmidt K, Kroemer A, Brunner SM, Schlitt HJ, Geissler EK and Lang
SA: mTOR inhibition improves fibroblast growth factor receptor
targeting in hepatocellular carcinoma. Br J Cancer. 112:841–580.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Burbridge MF, Bossard CJ, Saunier C, Fejes
I, Bruno A, Léonce S, Ferry G, Da Violante G, Bouzom F, Cattan V,
et al: S49076 is a novel kinase inhibitor of MET, AXL, and FGFR
with strong preclinical activity alone and in association with
bevacizumab. Mol Cancer Ther. 12:1749–1762. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Feng S, Shao L, Yu W, Gavine P and Ittmann
M: Targeting fibroblast growth factor receptor signaling inhibits
prostate cancer progression. Clin Cancer Res. 18:3880–3888. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Feng S, Shao L, Castro P, Coleman I,
Nelson PS, Smith PD, Davies BR and Ittmann M: Combination treatment
of prostate cancer with FGF receptor and AKT kinase inhibitors.
Oncotarget. 8:6179–6192. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ibrahim N and Haluska FG: Molecular
pathogenesis of cutaneous melanocytic neoplasms. Annu Rev Pathol.
4:551–579. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Beenken A and Mohammadi M: The FGF family:
Biology, pathophysiology and therapy. Nat Rev Drug Discov.
8:235–253. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Metzner T, Bedeir A, Held G,
Peter-Vörösmarty B, Ghassemi S, Heinzle C, Spiegl-Kreinecker S,
Marian B, Holzmann K, Grasl-Kraupp B, et al: Fibroblast growth
factor receptors as therapeutic targets in human melanoma:
Synergism with BRAF inhibition. J Invest Dermatol. 131:2087–2095.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
André F, Bachelot T, Campone M, Dalenc F,
Perez-Garcia JM, Hurvitz SA, Turner N, Rugo H, Smith JW, Deudon S,
et al: Targeting FGFR with dovitinib (TKI258): Preclinical and
clinical data in breast cancer. Clin Cancer Res. 19:3693–3702.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Issa A, Gill JW, Heideman MR, Sahin O,
Wiemann S, Dey JH and Hynes NE: Combinatorial targeting of FGF and
ErbB receptors blocks growth and metastatic spread of breast cancer
models. Breast Cancer Res. 15:R82013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Holdman XB, Welte T, Rajapakshe K, Pond A,
Coarfa C, Mo Q, Huang S, Hilsenbeck SG, Edwards DP, Zhang X and
Rosen JM: Upregulation of EGFR signaling is correlated with tumor
stroma remodeling and tumor recurrence in FGFR1-driven breast
cancer. Breast Cancer Res. 17:1412015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
McConechy MK, Ding J, Cheang MC, Wiegand
K, Senz J, Tone A, Yang W, Prentice L, Tse K, Zeng T, et al: Use of
mutation profiles to refine the classification of endometrial
carcinomas. J Pathol. 228:20–30. 2012.PubMed/NCBI
|
|
59
|
Cancer Genome Atlas Research Network, .
Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H,
Robertson AG, Pashtan I, Shen R, et al: Integrated genomic
characterization of endometrial carcinoma. Nature. 497:67–73. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gozgit JM, Squillace RM, Wongchenko MJ,
Miller D, Wardwell S, Mohemmad Q, Narasimhan NI, Wang F, Clackson T
and Rivera VM: Combined targeting of FGFR2 and mTOR by ponatinib
and ridaforolimus results in synergistic antitumor activity in
FGFR2 mutant endometrial cancer models. Cancer Chemother Pharmacol.
71:1315–1323. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Packer LM, Geng X, Bonazzi VF, Ju RJ,
Mahon CE, Cummings MC, Stephenson SA and Pollock PM: PI3K
inhibitors synergize with FGFR inhibitors to enhance antitumor
responses in FGFR2mutant endometrial cancers. Mol Cancer Ther.
16:637–648. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Hall TG, Yu Y, Eathiraj S, Wang Y, Savage
RE, Lapierre JM, Schwartz B and Abbadessa G: Preclinical activity
of ARQ 087, a novel inhibitor targeting FGFR dysregulation. PLoS
One. 11:e01625942016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Chilà R, Hall GT, Abbadessa G, Broggini M
and Damia G: Multi-chemotherapeutic schedules containing the
pan-FGFR inhibitor ARQ 087 are safe and show antitumor activity in
different xenograft models. Transl Oncol. 10:153–157. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bestvina CM and Fleming GF: Chemotherapy
for endometrial cancer in adjuvant and advanced disease settings.
Oncologist. 21:1250–1259. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Byron SA, Loch DC and Pollock PM:
Fibroblast growth factor receptor inhibition synergizes with
paclitaxel and doxorubicin in endometrial cancer cells. Int J
Gynecol Cancer. 22:1517–1526. 2012.PubMed/NCBI
|
|
66
|
Meng X, Dizon DS, Yang S, Wang X, Zhu D,
Thiel KW and Leslie KK: Strategies for molecularly enhanced
chemotherapy to achieve synthetic lethality in endometrial tumors
with mutant p53. Obstet Gynecol Int. 2013:8281652013. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Cha HJ, Choi JH, Park IC, Kim CH, An SK,
Kim TJ and Lee JH: Selective FGFR inhibitor BGJ398 inhibits
phosphorylation of AKT and STAT3 and induces cytotoxicity in
sphere-cultured ovarian cancer cells. Int J Oncol. Mar
15–2017.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Schelch K, Hoda MA, Klikovits T, Münzker
J, Ghanim B, Wagner C, Garay T, Laszlo V, Setinek U, Dome B, et al:
Fibroblast growth factor receptor inhibition is active against
mesothelioma and synergizes with radio- and chemotherapy. Am J
Respir Crit Care Med. 190:763–772. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Liu R, Li J, Xie K, Zhang T, Lei Y, Chen
Y, Zhang L, Huang K, Wang K, Wu H, et al: FGFR4 promotes
stroma-induced epithelial-to-mesenchymal transition in colorectal
cancer. Cancer Res. 73:5926–5935. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Roidl A, Berger HJ, Kumar S, Bange J,
Knyazev P and Ullrich A: Resistance to chemotherapy is associated
with fibroblast growth factor receptor 4 up-regulation. Clin Cancer
Res. 15:2058–2066. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Turkington RC, Longley DB, Allen WL,
Stevenson L, McLaughlin K, Dunne PD, Blayney JK, Salto-Tellez M,
Van Schaeybroeck S and Johnston PG: Fibroblast growth factor
receptor 4 (FGFR4): A targetable regulator of drug resistance in
colorectal cancer. Cell Death Dis. 5:e10462014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Verstraete M, Debucquoy A, Gonnissen A,
Dok R, Isebaert S, Devos E, McBride W and Haustermans K: In vitro
and in vivo evaluation of the radiosensitizing effect of a
selective FGFR inhibitor (JNJ-42756493) for rectal cancer. BMC
Cancer. 15:9462015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ahmed MA, Selzer E, Dörr W, Jomrich G,
Harpain F, Silberhumer GR, Müllauer L, Holzmann K, Grasl-Kraupp B,
Grusch M, et al: Correction: Fibroblast growth factor receptor 4
induced resistance to radiation therapy in colorectal cancer.
Oncotarget. 10:5385–5386. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Ader I, Delmas C, Skuli N, Bonnet J,
Schaeffer P, Bono F, Cohen-Jonathan-Moyal E and Toulas C:
Preclinical evidence that SSR128129E-a novel small-molecule
multi-fibroblast growth factor receptor blocker-radiosensitises
human glioblastoma. Eur J Cancer. 50:2351–2359. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Karlsson AK and Saleh SN: Checkpoint
inhibitors for malignant melanoma: A systematic review and
meta-analysis. Clin Cosmet Investig Dermatol. 10:325–339. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Giroux Leprieur E, Dumenil C, Julie C,
Giraud V, Dumoulin J, Labrune S and Chinet T: Immunotherapy
revolutionises non-small-cell lung cancer therapy: Results,
perspectives and new challenges. Eur J Cancer. 78:16–23. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Sharma P, Retz M, Siefker-Radtke A, Baron
A, Necchi A, Bedke J, Plimack ER, Vaena D, Grimm MO, Bracarda S, et
al: Nivolumab in metastatic urothelial carcinoma after platinum
therapy (CheckMate 275): A multicentre, single-arm, phase 2 trial.
Lancet Oncol. 18:312–322. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Weber J, Mandala M, Del Vecchio M, Gogas
HJ, Arance AM, Cowey CL, Dalle S, Schenker M, Chiarion-Sileni V,
Marquez-Rodas I, et al: Adjuvant nivolumab versus ipilimumab in
resected stage III or IV melanoma. N Engl J Med. 377:1824–1835.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Antonia SJ, Villegas A, Daniel D, Vicente
D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, de Wit M, et
al: Durvalumab after chemoradiotherapy in stage III non-small-cell
lung cancer. N Engl J Med. 377:1919–1929. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yost KE, Satpathy AT, Wells DK, Qi Y, Wang
C, Kageyama R, McNamara KL, Granja JM, Sarin KY, Brown RA, et al:
Clonal replacement of tumor-specific T cells following PD-1
blockade. Nat Med. 25:1251–1259. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu X and Cho WC: Precision medicine in
immune checkpoint blockade therapy for non-small cell lung cancer.
Clin Transl Med. 6:72017. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kroemer G, Galluzzi L, Kepp O and Zitvogel
L: Immunogenic cell death in cancer therapy. Annu Rev Immunol.
31:51–72. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sweis RF, Spranger S, Bao R, Paner GP,
Stadler WM, Steinberg G and Gajewski TF: Molecular drivers of the
Non-T-cell-inflamed tumor microenvironment in urothelial bladder
cancer. Cancer Immunol Res. 4:563–568. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Li P, Huang T, Zou Q, Liu D, Wang Y, Tan
X, Wei Y and Qiu H: FGFR2 promotes expression of PD-L1 in
colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol.
202:3065–3075. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Palakurthi S, Kuraguchi M, Zacharek SJ,
Zudaire E, Huang W, Bonal DM, Liu J, Dhaneshwar A, DePeaux K,
Gowaski MR, et al: The combined effect of FGFR inhibition and PD-1
blockade promotes tumor-intrinsic induction of antitumor immunity.
Cancer Immunol Res. 7:1457–1471. 2019. View Article : Google Scholar : PubMed/NCBI
|