Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review)

  • Authors:
    • Yun-Bo Yan
    • Qing Tian
    • Ji-Fang Zhang
    • Ying Xiang
  • View Affiliations / Copyright

    Affiliations: Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, P.R. China
    Copyright: © Yan et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 141
    |
    Published online on: August 20, 2020
       https://doi.org/10.3892/ol.2020.12001
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ovarian cancer is a common malignancy and the second leading cause of mortality among females with genital tract cancer. At present, postoperative platinum drugs and paclitaxel‑based chemotherapy is the gold standard treatment for ovarian cancer. However, patients who receive this chemotherapy often develop cumulative toxic effects and are prone to chemotherapy resistance. Therefore, it is necessary to determine more effective treatment options that would be better tolerated by patients. Recent studies have reported the therapeutic effects of numerous natural products in patients with ovarian cancer. Notably, these natural ingredients do not induce adverse effects in healthy cells and tissues, suggesting that natural products may serve as a safe alternative treatment for ovarian cancer. The antitumor effects of natural products are attributed to suppression of cell proliferation and metastasis, stimulation of autophagy, improved chemotherapy sensitivity, and induction of apoptosis. The present review focused on the antitumor effects of several natural products, including curcumin, resveratrol, ginsenosides, (‑)‑epigallocatechin‑3‑gallate and quercetin, which are increasingly being investigated as therapeutic options in ovarian cancer, and discussed the molecular mechanisms involved in cell proliferation, apoptosis, autophagy, metastasis and sensitization.
View Figures
View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Duska LR and Kohn EC: The new classifications of ovarian, fallopian tube, and primary peritoneal cancer and their clinical implications. Ann Oncol. 28 (Suppl_8):viii8–viii12. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Weidle UH, Birzele F, Kollmorgen G and Rueger R: Mechanisms and targets involved in dissemination of ovarian cancer. Cancer Genomics Proteomics. 13:407–423. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Tan DS, Agarwal R and Kaye SB: Mechanisms of transcoelomic metastasis in ovarian cancer. Lancet Oncol. 7:925–934. 2006. View Article : Google Scholar : PubMed/NCBI

5 

Cho KR and Shih Ie M: Ovarian cancer. Annu Rev Pathol. 4:287–313. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Piccart MJ, Lamb H and Vermorken JB: Current and future potential roles of the platinum drugs in the treatment of ovarian cancer. Ann Oncol. 12:1195–1203. 2001. View Article : Google Scholar : PubMed/NCBI

7 

Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang JY, Ye F, Fu YF, Zhou CY, Lu WG, Cheng XD, et al: TXNDC17 promotes paclitaxel resistance via inducing autophagy in ovarian cancer. Autophagy. 11:225–238. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Yang MF, Lou YL, Liu SS, Wang SS, Yin CH, Cheng XH and Huang OP: Capn4 overexpression indicates poor prognosis of ovarian cancer patients. J Cancer. 9:304–309. 2018. View Article : Google Scholar : PubMed/NCBI

9 

De A, De A, Papasian C, Hentges S, Banerjee S, Haque I and Banerjee SK: Emblica officinalis extract induces autophagy and inhibits human ovarian cancer cell proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS One. 8:e727482013. View Article : Google Scholar : PubMed/NCBI

10 

Farzaei MH, Bahramsoltani R and Rahimi R: Phytochemicals as adjunctive with conventional anticancer therapies. Curr Pharm Des. 22:4201–4218. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Prasad S and Aggarwal BB: Turmeric, the Golden Spice: From traditional medicine to modern medicine. In Herbal Medicine: Biomolecular and Clinical Aspects. Benzie IFF and Wachtel-Galor S: Boca Raton (FL): 2011, View Article : Google Scholar

12 

Zhou H, Beevers CS and Huang S: The targets of curcumin. Curr Drug Targets. 12:332–347. 2011. View Article : Google Scholar : PubMed/NCBI

13 

Dobbin ZC and Landen CN: The importance of the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int J Mol Sci. 14:8213–8227. 2013. View Article : Google Scholar : PubMed/NCBI

14 

Salakou S, Kardamakis D, Tsamandas AC, Zolota V, Apostolakis E, Tzelepi V, Papathanasopoulos P, Bonikos DS, Papapetropoulos T, Petsas T, et al: Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo. 21:123–132. 2007.PubMed/NCBI

15 

Yu Z, Wan Y, Liu Y, Yang J, Li L and Zhang W: Curcumin induced apoptosis via PI3K/Akt-signalling pathways in SKOV3 cells. Pharma Biol. 54:2026–2032. 2016. View Article : Google Scholar

16 

Watson JL, Greenshields A, Hill R, Hilchie A, Lee PW, Giacomantonio CA and Hoskin DW: Curcumin-induced apoptosis in ovarian carcinoma cells is p53-independent and involves p38 mitogen-activated protein kinase activation and downregulation of Bcl-2 and survivin expression and Akt signaling. Mol Carcinog. 49:13–24. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Bowman T, Garcia R, Turkson J and Jove R: STATs in oncogenesis. Oncogene. 19:2474–2488. 2000. View Article : Google Scholar : PubMed/NCBI

18 

Saydmohammed M, Joseph D and Syed V: Curcumin suppresses constitutive activation of STAT-3 by up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in ovarian and endometrial cancer cells. J Cell Biochem. 110:447–456. 2010.PubMed/NCBI

19 

Seo JH, Jeong KJ, Oh WJ, Sul HJ, Sohn JS, Kim YK, Cho DY, Kang JK, Park CG and Lee HY: Lysophosphatidic acid induces STAT3 phosphorylation and ovarian cancer cell motility: Their inhibition by curcumin. Cancer Lett. 288:50–56. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Capiod T: Cell proliferation, calcium influx and calcium channels. Biochimie. 93:2075–2079. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Seo JA, Kim B, Dhanasekaran DN, Tsang BK and Song YS: Curcumin induces apoptosis by inhibiting Sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Lett. 371:30–37. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Kinose Y, Sawada K, Nakamura K and Kimura T: The role of microRNAs in ovarian cancer. Biomed Res Int. 2014:2493932014. View Article : Google Scholar : PubMed/NCBI

23 

Du Z and Sha X: Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a. Tumour Biol. 39:10104283176943022017. View Article : Google Scholar : PubMed/NCBI

24 

Meunier L, Puiffe ML, Le Page C, Filali-Mouhim A, Chevrette M, Tonin PN, Provencher DM and Mes-Masson AM: Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol. 3:230–238. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Zhao J, Pan Y, Li X, Zhang X, Xue Y, Wang T, Zhao S and Hou Y: Dihydroartemisinin and curcumin synergistically induce apoptosis in SKOV3 cells via upregulation of MiR-124 targeting Midkine. Cell Physiol Biochem. 43:589–601. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Takei Y, Kadomatsu K, Matsuo S, Itoh H, Nakazawa K, Kubota S and Muramatsu T: Antisense oligodeoxynucleotide targeted to Midkine, a heparin-binding growth factor, suppresses tumorigenicity of mouse rectal carcinoma cells. Cancer Res. 61:8486–8491. 2001.PubMed/NCBI

27 

Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ and Kan QC: Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev. 15:3363–3368. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li J and Wei B: Autophagy as an emerging therapy target for ovarian carcinoma. Oncotarget. 7:83476–83487. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Boutouja F, Stiehm CM and Platta HW: mTOR: A cellular regulator interface in health and disease. Cells. 8:182019. View Article : Google Scholar

30 

Liu LD, Pang YX, Zhao XR, Li R, Jin CJ, Xue J, Dong RY and Liu PS: Curcumin induces apoptotic cell death and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in human ovarian cancer cells. Arch Gynecol Obstet. 299:1627–1639. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi H, Gong L, Chen J, Liu Y, Cao R and Lv J: B19, a novel monocarbonyl analogue of curcumin, induces human ovarian cancer cell apoptosis via activation of endoplasmic reticulum stress and the autophagy signaling pathway. Int J Biol Sci. 9:766–777. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Kim I, Xu W and Reed JC: Cell death and endoplasmic reticulum stress: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 7:1013–1030. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Al-Alem L and Curry TE Jr: Ovarian cancer: Involvement of the matrix metalloproteinases. Reproduction. 150:R55–R64. 2015. View Article : Google Scholar : PubMed/NCBI

34 

Choe SR, Kim YN, Park CG, Cho KH, Cho DY and Lee HY: RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin. Exp Mol Med. 50:522018. View Article : Google Scholar : PubMed/NCBI

35 

Lv J, Shao Q, Wang H, Shi H, Wang T, Gao W, Song B, Zheng G, Kong B and Qu X: Effects and mechanisms of curcumin and basil polysaccharide on the invasion of SKOV3 cells and dendritic cells. Mol Med Rep. 8:1580–1586. 2013. View Article : Google Scholar : PubMed/NCBI

36 

Pei H, Yang Y, Cui L, Yang J, Li X, Yang Y and Duan H: Bisdemethoxycurcumin inhibits ovarian cancer via reducing oxidative stress mediated MMPs expressions. Sci Rep. 6:287732016. View Article : Google Scholar : PubMed/NCBI

37 

Slack-Davis JK, Atkins KA, Harrer C, Hershey ED and Conaway M: Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer Res. 69:1469–1476. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Cornelison R, Llaneza DC and Landen CN: Emerging therapeutics to overcome chemoresistance in epithelial ovarian cancer: A Mini-review. Int J Mol Sci. 18:21712017. View Article : Google Scholar

39 

Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M and Chauhan SC: Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res. 3:112010. View Article : Google Scholar : PubMed/NCBI

40 

Zhao MD, Li JQ, Chen FY, Dong W, Wen LJ, Fei WD, Zhang X, Yang PL, Zhang XM and Zheng CH: Co-Delivery of Curcumin and paclitaxel by ‘Core-Shell’ targeting Amphiphilic copolymer to reverse resistance in the treatment of ovarian cancer. Int J Nanomedicine. 14:9453–9467. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Zhang J, Liu J, Xu X and Li L: Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol. 79:479–487. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV and Cheng JQ: MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 68:425–433. 2008. View Article : Google Scholar : PubMed/NCBI

43 

Daleprane JB and Abdalla DS: Emerging roles of propolis: Antioxidant, cardioprotective, and antiangiogenic actions. Evid Based Complement Alternat Med. 2013:1751352013. View Article : Google Scholar : PubMed/NCBI

44 

Baur JA and Sinclair DA: Therapeutic potential of resveratrol: The in vivo evidence. Nat Rev Drug Discov. 5:493–506. 2006. View Article : Google Scholar : PubMed/NCBI

45 

Liberti MV and Locasale JW: The Warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

47 

Pavlova NN and Thompson CB: The Emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Tan L, Wang W, He G, Kuick RD, Gossner G, Kueck AS, Wahl H, Opipari AW and Liu JR: Resveratrol inhibits ovarian tumor growth in an in vivo mouse model. Cancer. 122:722–729. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Gwak H, Kim S, Dhanasekaran DN and Song YS: Resveratrol triggers ER stress-mediated apoptosis by disrupting N-linked glycosylation of proteins in ovarian cancer cells. Cancer Lett. 371:347–353. 2016. View Article : Google Scholar : PubMed/NCBI

50 

Majewska E and Szeliga M: AKT/GSK3β signaling in Glioblastoma. Neurochem Res. 42:918–924. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Tino AB, Chitcholtan K, Sykes PH and Garrill A: Resveratrol and acetyl-resveratrol modulate activity of VEGF and IL-8 in ovarian cancer cell aggregates via attenuation of the NF-κB protein. J Ovarian Res. 9:842016. View Article : Google Scholar : PubMed/NCBI

52 

Vergara D, Simeone P, Toraldo D, Del Boccio P, Vergaro V, Leporatti S, Pieragostino D, Tinelli A, De Domenico S, Alberti S, et al: Resveratrol downregulates Akt/GSK and ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol Biosyst. 8:1078–1087. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Lang F, Qin Z, Li F, Zhang H, Fang Z and Hao E: Apoptotic cell death induced by resveratrol is partially mediated by the autophagy pathway in human ovarian cancer cells. PLoS One. 10:e01291962015. View Article : Google Scholar : PubMed/NCBI

54 

Kroemer G, Marino G and Levine B: Autophagy and the integrated stress response. Mol Cell. 40:280–293. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Kang R, Zeh HJ, Lotze MT and Tang D: The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Zhong LX, Zhang Y, Wu ML, Liu YN, Zhang P, Chen XY, Kong QY, Liu J and Li H: Resveratrol and STAT inhibitor enhance autophagy in ovarian cancer cells. Cell Death Discov. 2:150712016. View Article : Google Scholar : PubMed/NCBI

57 

Lu Z and Bast RC Jr: The tumor suppressor gene ARHI (DIRAS3) inhibits ovarian cancer cell migration through multiple mechanisms. Cell Adh Migr. 7:232–236. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Zhong LX, Nie JH, Liu J and Lin LZ: Correlation of ARHI upregulation with growth suppression and STAT3 inactivation in resveratrol-treated ovarian cancer cells. Cancer Biomark. 21:787–795. 2018. View Article : Google Scholar : PubMed/NCBI

59 

Ferraresi A, Phadngam S, Morani F, Galetto A, Alabiso O, Chiorino G and Isidoro C: Resveratrol inhibits IL-6-induced ovarian cancer cell migration through epigenetic up-regulation of autophagy. Mol Carcinog. 56:1164–1181. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Ferraresi A, Titone R, Follo C, Castiglioni A, Chiorino G, Dhanasekaran DN and Isidoro C: The protein restriction mimetic Resveratrol is an autophagy inducer stronger than amino acid starvation in ovarian cancer cells. Mol Carcinog. 56:2681–2691. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Mikula-Pietrasik J, Sosinska P and Ksiazek K: Resveratrol inhibits ovarian cancer cell adhesion to peritoneal mesothelium in vitro by modulating the production of alpha5β1 integrins and hyaluronic acid. Gynecol Oncol. 134:624–630. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Park SY, Jeong KJ, Lee J, Yoon DS, Choi WS, Kim YK, Han JW, Kim YM, Kim BK and Lee HY: Hypoxia enhances LPA-induced HIF-1alpha and VEGF expression: Their inhibition by resveratrol. Cancer Lett. 258:63–69. 2007. View Article : Google Scholar : PubMed/NCBI

63 

Sopo M, Anttila M, Hamalainen K, Kivela A, Yla-Herttuala S, Kosma VM, Keski-Nisula L and Sallinen H: Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in distant metastases than in matched primary high grade epithelial ovarian cancer. BMC Cancer. 19:5842019. View Article : Google Scholar : PubMed/NCBI

64 

Wang H, Peng Y, Wang J, Gu A, Li Q, Mao D and Guo L: Effect of autophagy on the resveratrol-induced apoptosis of ovarian cancer SKOV3 cells. J Cell Biochem. Nov 18–2018.(Epub ahead of print).

65 

Nessa MU, Beale P, Chan C, Yu JQ and Huq F: Combinations of resveratrol, cisplatin and oxaliplatin applied to human ovarian cancer cells. Anticancer Res. 32:53–59. 2012.PubMed/NCBI

66 

Engelke LH, Hamacher A, Proksch P and Kassack MU: Ellagic acid and resveratrol prevent the development of cisplatin resistance in the epithelial ovarian cancer cell line A2780. J Cancer. 7:353–363. 2016. View Article : Google Scholar : PubMed/NCBI

67 

Nag SA, Qin JJ, Wang W, Wang MH, Wang H and Zhang R: Ginsenosides as anticancer agents: In vitro and in vivo activities, Structure-activity relationships, and molecular mechanisms of action. Front Pharmacol. 3:252012. View Article : Google Scholar : PubMed/NCBI

68 

Ahuja A, Kim JH, Kim JH, Yi YS and Cho JY: Functional role of ginseng-derived compounds in cancer. J Ginseng Res. 42:248–254. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Li J, Liu T, Zhao L, Chen W, Hou H, Ye Z and Li X: Ginsenoside 20(S)Rg3 inhibits the Warburg effect through STAT3 pathways in ovarian cancer cells. Int J Oncol. 46:775–781. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Zheng X, Zhou Y, Chen W, Chen L, Lu J, He F, Li X and Zhao L: Ginsenoside 20(S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell Physiol Biochem. 51:1340–1353. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Lu J, Wang L, Chen W, Wang Y, Zhen S, Chen H, Cheng J, Zhou Y, Li X and Zhao L: miR-603 targeted hexokinase-2 to inhibit the malignancy of ovarian cancer cells. Arch Biochem Biophys. 661:1–9. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Bian S, Zhao Y, Li F, Lu S, Wang S, Bai X, Liu M, Zhao D, Wang J and Guo D: 20(S)-Ginsenoside Rg3 promotes HeLa cell apoptosis by regulating autophagy. Molecules. 24:36552019. View Article : Google Scholar

73 

Zheng X, Chen W, Hou H, Li J, Li H, Sun X, Zhao L and Li X: Ginsenoside 20(S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed Pharmacother. 85:620–626. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Li J, Xi W, Li X, Sun H and Li Y: Advances in inhibition of protein-protein interactions targeting hypoxia-inducible factor-1 for cancer therapy. Bioorg Med Chem. 27:1145–1158. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, Ding L and Li X: Ginsenoside 20(S)-Rg3 targets HIF-1α to block hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells. PLoS One. 9:e1038872014. View Article : Google Scholar : PubMed/NCBI

76 

Liu T, Zhao L, Hou H, Ding L, Chen W and Li X: Ginsenoside 20(S)-Rg3 suppresses ovarian cancer migration via hypoxia-inducible factor 1 alpha and nuclear factor-kappa B signals. Tumour Biol. 39:10104283176922252017.PubMed/NCBI

77 

Liu D, Liu T, Teng Y, Chen W, Zhao L and Li X: Ginsenoside Rb1 inhibits hypoxia-induced epithelial-mesenchymal transition in ovarian cancer cells by regulating microRNA-25. Exp Ther Med. 14:2895–2902. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Lengyel E: Ovarian cancer development and metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Yun UJ, Lee JH, Koo KH, Ye SK, Kim SY, Lee CH and Kim YN: Lipid raft modulation by Rp1 reverses multidrug resistance via inactivating MDR-1 and Src inhibition. Biochem Pharmacol. 85:1441–1453. 2013. View Article : Google Scholar : PubMed/NCBI

80 

Deng S, Wong CKC, Lai HC and Wong AST: Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem cells via simultaneous inhibition of Wnt/β-catenin signaling and epithelial-to-mesenchymal transition. Oncotarget. 8:25897–25914. 2017. View Article : Google Scholar : PubMed/NCBI

81 

Metodiewa D, Jaiswal AK, Cenas N, Dickancaite E and Segura-Aguilar J: Quercetin may act as a cytotoxic prooxidant after its metabolic activation to semiquinone and quinoidal product. Free Radic Biol Med. 26:107–116. 1999. View Article : Google Scholar : PubMed/NCBI

82 

Vargas AJ and Burd R: Hormesis and synergy: Pathways and mechanisms of quercetin in cancer prevention and management. Nutr Rev. 68:418–428. 2010. View Article : Google Scholar : PubMed/NCBI

83 

Hashemzaei M, Delarami Far A, Yari A, Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K, Kouretas D, Tzanakakis G, et al: Anticancer and apoptosisinducing effects of quercetin in vitro and in vivo. Oncol Rep. 38:819–828. 2017. View Article : Google Scholar : PubMed/NCBI

84 

Ren MX, Deng XH, Ai F, Yuan GY and Song HY: Effect of quercetin on the proliferation of the human ovarian cancer cell line SKOV-3 in vitro. Exp Ther Med. 10:579–583. 2015. View Article : Google Scholar : PubMed/NCBI

85 

Zhou J, Gong J, Ding C and Chen G: Quercetin induces the apoptosis of human ovarian carcinoma cells by upregulating the expression of microRNA-145. Mol Med Rep. 12:3127–3131. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Teekaraman D, Elayapillai SP, Viswanathan MP and Jagadeesan A: Quercetin inhibits human metastatic ovarian cancer cell growth and modulates components of the intrinsic apoptotic pathway in PA-1cell line. Chem Biol Interact. 300:91–100. 2019. View Article : Google Scholar : PubMed/NCBI

87 

Liu Y, Gong W, Yang ZY, Zhou XS, Gong C, Zhang TR, Wei X, Ma D, Ye F and Gao QL: Quercetin induces protective autophagy and apoptosis through ER stress via the p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis. 22:544–557. 2017. View Article : Google Scholar : PubMed/NCBI

88 

Yamauchi K, Afroze SH, Mitsunaga T, McCormick TC, Kuehl TJ, Zawieja DC and Uddin MN: 3,4′,7-O-trimethylquercetin inhibits invasion and migration of ovarian cancer cells. Anticancer Res. 37:2823–2829. 2017.PubMed/NCBI

89 

Wang Y, Han A, Chen E, Singh RK, Chichester CO, Moore RG, Singh AP and Vorsa N: The cranberry flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and cell cycle arrest and increase cisplatin sensitivity in ovarian cancer cells. Int J Oncol. 46:1924–1934. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Yang Z, Liu Y, Liao J, Gong C, Sun C, Zhou X, Wei X, Zhang T, Gao Q, Ma D and Chen G: Quercetin induces endoplasmic reticulum stress to enhance cDDP cytotoxicity in ovarian cancer: Involvement of STAT3 signaling. FEBS J. 282:1111–1125. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Gong C, Yang Z, Zhang L, Wang Y, Gong W and Liu Y: Quercetin suppresses DNA double-strand break repair and enhances the radiosensitivity of human ovarian cancer cells via p53-dependent endoplasmic reticulum stress pathway. Onco Targets Ther. 11:17–27. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Yi L, Zongyuan Y, Cheng G, Lingyun Z, Guilian Y and Wei G: Quercetin enhances apoptotic effect of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in ovarian cancer cells through reactive oxygen species (ROS) mediated CCAAT enhancer-binding protein homologous protein (CHOP)-death receptor 5 pathway. Cancer Sci. 105:520–527. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Ouellet V, Le Page C, Madore J, Guyot MC, Barres V, Lussier C, Tonin PN, Provencher DM and Mes-Masson AM: An apoptotic molecular network identified by microarray: On the TRAIL to new insights in epithelial ovarian cancer. Cancer. 110:297–308. 2007. View Article : Google Scholar : PubMed/NCBI

94 

Tillhon M, Guaman Ortiz LM, Lombardi P and Scovassi AI: Berberine: New perspectives for old remedies. Biochem Pharmacol. 84:1260–1267. 2012. View Article : Google Scholar : PubMed/NCBI

95 

Sun Y, Xun K, Wang Y and Chen X: A systematic review of the anticancer properties of berberine, a natural product from Chinese herbs. Anticancer Drugs. 20:757–769. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Liu L, Fan J, Ai G, Liu J, Luo N, Li C and Cheng Z: Berberine in combination with cisplatin induces necroptosis and apoptosis in ovarian cancer cells. Biol Res. 52:372019. View Article : Google Scholar : PubMed/NCBI

97 

Nakanishi M and Rosenberg DW: Multifaceted roles of PGE2 in inflammation and cancer. Semin Immunopathol. 35:123–137. 2013. View Article : Google Scholar : PubMed/NCBI

98 

Zhao Y, Cui L, Pan Y, Shao D, Zheng X, Zhang F, Zhang H, He K and Chen L: Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer. Cell Prolif. 50:e123932017. View Article : Google Scholar

99 

Zhi D, Zhou K, Yu D, Fan X, Zhang J, Li X and Dong M: hERG1 is involved in the pathophysiological process and inhibited by berberine in SKOV3 cells. Oncol Lett. 17:5653–5661. 2019.PubMed/NCBI

100 

Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang B, Yu Y, Duan J, Qiu F and Kang N: Berberine represses human gastric cancer cell growth in vitro and in vivo by inducing cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt signaling pathways. Biomed Pharmacother. 128:1102452020. View Article : Google Scholar : PubMed/NCBI

101 

Hu Q, Li L, Zou X, Xu L and Yi P: Berberine attenuated proliferation, invasion and migration by targeting the AMPK/HNF4α/WNT5A pathway in gastric carcinoma. Front Pharmacol. 9:11502018. View Article : Google Scholar : PubMed/NCBI

102 

Wang Y and Zhang S: Berberine suppresses growth and metastasis of endometrial cancer cells via miR-101/COX-2. Biomed Pharmacother. 103:1287–1293. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Marverti G, Ligabue A, Lombardi P, Ferrari S, Monti MG, Frassineti C and Costi MP: Modulation of the expression of folate cycle enzymes and polyamine metabolism by berberine in cisplatin-sensitive and -resistant human ovarian cancer cells. Int J Oncol. 43:1269–1280. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Liu S, Fang Y, Shen H, Xu W and Li H: Berberine sensitizes ovarian cancer cells to cisplatin through miR-21/PDCD4 axis. Acta Biochim Biophys Sin (Shanghai). 45:756–762. 2013. View Article : Google Scholar : PubMed/NCBI

105 

Wei ZT, Zhang X, Wang XY, Gao F, Zhou CJ, Zhu FL, Wang Q, Gao Q, Ma CH, Sun WS, et al: PDCD4 inhibits the malignant phenotype of ovarian cancer cells. Cancer Sci. 100:1408–1413. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Chen Q, Qin R, Fang Y and Li H: Berberine sensitizes human ovarian cancer cells to cisplatin through miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem. 36:956–965. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Hou D, Xu G, Zhang C, Li B, Qin J, Hao X, Liu Q, Zhang X, Liu J, Wei J, et al: Berberine induces oxidative DNA damage and impairs homologous recombination repair in ovarian cancer cells to confer increased sensitivity to PARP inhibition. Cell Death Dis. 8:e30702017. View Article : Google Scholar : PubMed/NCBI

108 

Xinqiang S, Mu Z, Lei C and Mun LY: Bioinformatics analysis on molecular mechanism of green tea compound epigallocatechin-3-gallate against ovarian cancer. Clin Transl Sci. 10:302–307. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Huh SW, Bae SM, Kim YW, Lee JM, Namkoong SE, Lee IP, Kim SH, Kim CK and Ahn WS: Anticancer effects of (−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol Oncol. 94:760–768. 2004. View Article : Google Scholar : PubMed/NCBI

110 

Chen H, Landen CN, Li Y, Alvarez RD and Tollefsbol TO: Enhancement of Cisplatin-mediated apoptosis in ovarian cancer cells through potentiating G2/M Arrest and p21 upregulation by combinatorial epigallocatechin gallate and sulforaphane. J Oncol. 2013:8729572013. View Article : Google Scholar : PubMed/NCBI

111 

Yan C, Yang J, Shen L and Chen X: Inhibitory effect of Epigallocatechin gallate on ovarian cancer cell proliferation associated with aquaporin 5 expression. Arch Gynecol Obstet. 285:459–467. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Zhao L, Liu S, Xu J, Li W, Duan G, Wang H, Yang H, Yang Z and Zhou R: A new molecular mechanism underlying the EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell Death Dis. 8:e31602017. View Article : Google Scholar : PubMed/NCBI

113 

Tian M, Tian D, Qiao X, Li J and Zhang L: Modulation of Myb-induced NF-kB-STAT3 signaling and resulting cisplatin resistance in ovarian cancer by dietary factors. J Cell Physiol. 234:21126–21134. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Chan MM, Soprano KJ, Weinstein K and Fong D: Epigallocatechin-3-gallate delivers hydrogen peroxide to induce death of ovarian cancer cells and enhances their cisplatin susceptibility. J Cell Physiol. 207:389–396. 2006. View Article : Google Scholar : PubMed/NCBI

115 

Wang X, Jiang P, Wang P, Yang CS, Wang X and Feng Q: EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One. 10:e01254022015. View Article : Google Scholar : PubMed/NCBI

116 

Wang X, Jiang P, Wang P, Yang CS, Wang X and Feng Q: Correction: EGCG enhances cisplatin sensitivity by regulating expression of the copper and cisplatin influx transporter CTR1 in ovary cancer. PLoS One. 10:e01320862015. View Article : Google Scholar : PubMed/NCBI

117 

Chen H, Landen CN, Li Y, Alvarez RD and Tollefsbol TO: Epigallocatechin gallate and sulforaphane combination treatment induce apoptosis in paclitaxel-resistant ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp Cell Res. 319:697–706. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yan Y, Tian Q, Zhang J and Xiang Y: Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review). Oncol Lett 20: 141, 2020.
APA
Yan, Y., Tian, Q., Zhang, J., & Xiang, Y. (2020). Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review). Oncology Letters, 20, 141. https://doi.org/10.3892/ol.2020.12001
MLA
Yan, Y., Tian, Q., Zhang, J., Xiang, Y."Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review)". Oncology Letters 20.5 (2020): 141.
Chicago
Yan, Y., Tian, Q., Zhang, J., Xiang, Y."Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review)". Oncology Letters 20, no. 5 (2020): 141. https://doi.org/10.3892/ol.2020.12001
Copy and paste a formatted citation
x
Spandidos Publications style
Yan Y, Tian Q, Zhang J and Xiang Y: Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review). Oncol Lett 20: 141, 2020.
APA
Yan, Y., Tian, Q., Zhang, J., & Xiang, Y. (2020). Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review). Oncology Letters, 20, 141. https://doi.org/10.3892/ol.2020.12001
MLA
Yan, Y., Tian, Q., Zhang, J., Xiang, Y."Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review)". Oncology Letters 20.5 (2020): 141.
Chicago
Yan, Y., Tian, Q., Zhang, J., Xiang, Y."Antitumor effects and molecular mechanisms of action of natural products in ovarian cancer (Review)". Oncology Letters 20, no. 5 (2020): 141. https://doi.org/10.3892/ol.2020.12001
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team