|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Duska LR and Kohn EC: The new
classifications of ovarian, fallopian tube, and primary peritoneal
cancer and their clinical implications. Ann Oncol. 28
(Suppl_8):viii8–viii12. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Weidle UH, Birzele F, Kollmorgen G and
Rueger R: Mechanisms and targets involved in dissemination of
ovarian cancer. Cancer Genomics Proteomics. 13:407–423. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Tan DS, Agarwal R and Kaye SB: Mechanisms
of transcoelomic metastasis in ovarian cancer. Lancet Oncol.
7:925–934. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cho KR and Shih Ie M: Ovarian cancer. Annu
Rev Pathol. 4:287–313. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Piccart MJ, Lamb H and Vermorken JB:
Current and future potential roles of the platinum drugs in the
treatment of ovarian cancer. Ann Oncol. 12:1195–1203. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zhang SF, Wang XY, Fu ZQ, Peng QH, Zhang
JY, Ye F, Fu YF, Zhou CY, Lu WG, Cheng XD, et al: TXNDC17 promotes
paclitaxel resistance via inducing autophagy in ovarian cancer.
Autophagy. 11:225–238. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yang MF, Lou YL, Liu SS, Wang SS, Yin CH,
Cheng XH and Huang OP: Capn4 overexpression indicates poor
prognosis of ovarian cancer patients. J Cancer. 9:304–309. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
De A, De A, Papasian C, Hentges S,
Banerjee S, Haque I and Banerjee SK: Emblica officinalis extract
induces autophagy and inhibits human ovarian cancer cell
proliferation, angiogenesis, growth of mouse xenograft tumors. PLoS
One. 8:e727482013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Farzaei MH, Bahramsoltani R and Rahimi R:
Phytochemicals as adjunctive with conventional anticancer
therapies. Curr Pharm Des. 22:4201–4218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Prasad S and Aggarwal BB: Turmeric, the
Golden Spice: From traditional medicine to modern medicine. In
Herbal Medicine: Biomolecular and Clinical Aspects. Benzie IFF and
Wachtel-Galor S: Boca Raton (FL): 2011, View Article : Google Scholar
|
|
12
|
Zhou H, Beevers CS and Huang S: The
targets of curcumin. Curr Drug Targets. 12:332–347. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dobbin ZC and Landen CN: The importance of
the PI3K/AKT/MTOR pathway in the progression of ovarian cancer. Int
J Mol Sci. 14:8213–8227. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Salakou S, Kardamakis D, Tsamandas AC,
Zolota V, Apostolakis E, Tzelepi V, Papathanasopoulos P, Bonikos
DS, Papapetropoulos T, Petsas T, et al: Increased Bax/Bcl-2 ratio
up-regulates caspase-3 and increases apoptosis in the thymus of
patients with myasthenia gravis. In Vivo. 21:123–132.
2007.PubMed/NCBI
|
|
15
|
Yu Z, Wan Y, Liu Y, Yang J, Li L and Zhang
W: Curcumin induced apoptosis via PI3K/Akt-signalling pathways in
SKOV3 cells. Pharma Biol. 54:2026–2032. 2016. View Article : Google Scholar
|
|
16
|
Watson JL, Greenshields A, Hill R, Hilchie
A, Lee PW, Giacomantonio CA and Hoskin DW: Curcumin-induced
apoptosis in ovarian carcinoma cells is p53-independent and
involves p38 mitogen-activated protein kinase activation and
downregulation of Bcl-2 and survivin expression and Akt signaling.
Mol Carcinog. 49:13–24. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bowman T, Garcia R, Turkson J and Jove R:
STATs in oncogenesis. Oncogene. 19:2474–2488. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Saydmohammed M, Joseph D and Syed V:
Curcumin suppresses constitutive activation of STAT-3 by
up-regulating protein inhibitor of activated STAT-3 (PIAS-3) in
ovarian and endometrial cancer cells. J Cell Biochem. 110:447–456.
2010.PubMed/NCBI
|
|
19
|
Seo JH, Jeong KJ, Oh WJ, Sul HJ, Sohn JS,
Kim YK, Cho DY, Kang JK, Park CG and Lee HY: Lysophosphatidic acid
induces STAT3 phosphorylation and ovarian cancer cell motility:
Their inhibition by curcumin. Cancer Lett. 288:50–56. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Capiod T: Cell proliferation, calcium
influx and calcium channels. Biochimie. 93:2075–2079. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Seo JA, Kim B, Dhanasekaran DN, Tsang BK
and Song YS: Curcumin induces apoptosis by inhibiting
Sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer
cells. Cancer Lett. 371:30–37. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kinose Y, Sawada K, Nakamura K and Kimura
T: The role of microRNAs in ovarian cancer. Biomed Res Int.
2014:2493932014. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Du Z and Sha X: Demethoxycurcumin
inhibited human epithelia ovarian cancer cells' growth via
up-regulating miR-551a. Tumour Biol. 39:10104283176943022017.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Meunier L, Puiffe ML, Le Page C,
Filali-Mouhim A, Chevrette M, Tonin PN, Provencher DM and
Mes-Masson AM: Effect of ovarian cancer ascites on cell migration
and gene expression in an epithelial ovarian cancer in vitro model.
Transl Oncol. 3:230–238. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhao J, Pan Y, Li X, Zhang X, Xue Y, Wang
T, Zhao S and Hou Y: Dihydroartemisinin and curcumin
synergistically induce apoptosis in SKOV3 cells via upregulation of
MiR-124 targeting Midkine. Cell Physiol Biochem. 43:589–601. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Takei Y, Kadomatsu K, Matsuo S, Itoh H,
Nakazawa K, Kubota S and Muramatsu T: Antisense
oligodeoxynucleotide targeted to Midkine, a heparin-binding growth
factor, suppresses tumorigenicity of mouse rectal carcinoma cells.
Cancer Res. 61:8486–8491. 2001.PubMed/NCBI
|
|
27
|
Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ
and Kan QC: Induction of microRNA-9 mediates cytotoxicity of
curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer
Prev. 15:3363–3368. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhan L, Zhang Y, Wang W, Song E, Fan Y, Li
J and Wei B: Autophagy as an emerging therapy target for ovarian
carcinoma. Oncotarget. 7:83476–83487. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Boutouja F, Stiehm CM and Platta HW: mTOR:
A cellular regulator interface in health and disease. Cells.
8:182019. View Article : Google Scholar
|
|
30
|
Liu LD, Pang YX, Zhao XR, Li R, Jin CJ,
Xue J, Dong RY and Liu PS: Curcumin induces apoptotic cell death
and protective autophagy by inhibiting AKT/mTOR/p70S6K pathway in
human ovarian cancer cells. Arch Gynecol Obstet. 299:1627–1639.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Qu W, Xiao J, Zhang H, Chen Q, Wang Z, Shi
H, Gong L, Chen J, Liu Y, Cao R and Lv J: B19, a novel monocarbonyl
analogue of curcumin, induces human ovarian cancer cell apoptosis
via activation of endoplasmic reticulum stress and the autophagy
signaling pathway. Int J Biol Sci. 9:766–777. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim I, Xu W and Reed JC: Cell death and
endoplasmic reticulum stress: Disease relevance and therapeutic
opportunities. Nat Rev Drug Discov. 7:1013–1030. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Al-Alem L and Curry TE Jr: Ovarian cancer:
Involvement of the matrix metalloproteinases. Reproduction.
150:R55–R64. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Choe SR, Kim YN, Park CG, Cho KH, Cho DY
and Lee HY: RCP induces FAK phosphorylation and ovarian cancer cell
invasion with inhibition by curcumin. Exp Mol Med. 50:522018.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lv J, Shao Q, Wang H, Shi H, Wang T, Gao
W, Song B, Zheng G, Kong B and Qu X: Effects and mechanisms of
curcumin and basil polysaccharide on the invasion of SKOV3 cells
and dendritic cells. Mol Med Rep. 8:1580–1586. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Pei H, Yang Y, Cui L, Yang J, Li X, Yang Y
and Duan H: Bisdemethoxycurcumin inhibits ovarian cancer via
reducing oxidative stress mediated MMPs expressions. Sci Rep.
6:287732016. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Slack-Davis JK, Atkins KA, Harrer C,
Hershey ED and Conaway M: Vascular cell adhesion molecule-1 is a
regulator of ovarian cancer peritoneal metastasis. Cancer Res.
69:1469–1476. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cornelison R, Llaneza DC and Landen CN:
Emerging therapeutics to overcome chemoresistance in epithelial
ovarian cancer: A Mini-review. Int J Mol Sci. 18:21712017.
View Article : Google Scholar
|
|
39
|
Yallapu MM, Maher DM, Sundram V, Bell MC,
Jaggi M and Chauhan SC: Curcumin induces chemo/radio-sensitization
in ovarian cancer cells and curcumin nanoparticles inhibit ovarian
cancer cell growth. J Ovarian Res. 3:112010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhao MD, Li JQ, Chen FY, Dong W, Wen LJ,
Fei WD, Zhang X, Yang PL, Zhang XM and Zheng CH: Co-Delivery of
Curcumin and paclitaxel by ‘Core-Shell’ targeting Amphiphilic
copolymer to reverse resistance in the treatment of ovarian cancer.
Int J Nanomedicine. 14:9453–9467. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhang J, Liu J, Xu X and Li L: Curcumin
suppresses cisplatin resistance development partly via modulating
extracellular vesicle-mediated transfer of MEG3 and miR-214 in
ovarian cancer. Cancer Chemother Pharmacol. 79:479–487. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Yang H, Kong W, He L, Zhao JJ, O'Donnell
JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV and Cheng JQ:
MicroRNA expression profiling in human ovarian cancer: miR-214
induces cell survival and cisplatin resistance by targeting PTEN.
Cancer Res. 68:425–433. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Daleprane JB and Abdalla DS: Emerging
roles of propolis: Antioxidant, cardioprotective, and
antiangiogenic actions. Evid Based Complement Alternat Med.
2013:1751352013. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Baur JA and Sinclair DA: Therapeutic
potential of resveratrol: The in vivo evidence. Nat Rev Drug
Discov. 5:493–506. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Liberti MV and Locasale JW: The Warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the Warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pavlova NN and Thompson CB: The Emerging
hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tan L, Wang W, He G, Kuick RD, Gossner G,
Kueck AS, Wahl H, Opipari AW and Liu JR: Resveratrol inhibits
ovarian tumor growth in an in vivo mouse model. Cancer.
122:722–729. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gwak H, Kim S, Dhanasekaran DN and Song
YS: Resveratrol triggers ER stress-mediated apoptosis by disrupting
N-linked glycosylation of proteins in ovarian cancer cells. Cancer
Lett. 371:347–353. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Majewska E and Szeliga M: AKT/GSK3β
signaling in Glioblastoma. Neurochem Res. 42:918–924. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Tino AB, Chitcholtan K, Sykes PH and
Garrill A: Resveratrol and acetyl-resveratrol modulate activity of
VEGF and IL-8 in ovarian cancer cell aggregates via attenuation of
the NF-κB protein. J Ovarian Res. 9:842016. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Vergara D, Simeone P, Toraldo D, Del
Boccio P, Vergaro V, Leporatti S, Pieragostino D, Tinelli A, De
Domenico S, Alberti S, et al: Resveratrol downregulates Akt/GSK and
ERK signalling pathways in OVCAR-3 ovarian cancer cells. Mol
Biosyst. 8:1078–1087. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Lang F, Qin Z, Li F, Zhang H, Fang Z and
Hao E: Apoptotic cell death induced by resveratrol is partially
mediated by the autophagy pathway in human ovarian cancer cells.
PLoS One. 10:e01291962015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kroemer G, Marino G and Levine B:
Autophagy and the integrated stress response. Mol Cell. 40:280–293.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kang R, Zeh HJ, Lotze MT and Tang D: The
Beclin 1 network regulates autophagy and apoptosis. Cell Death
Differ. 18:571–580. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhong LX, Zhang Y, Wu ML, Liu YN, Zhang P,
Chen XY, Kong QY, Liu J and Li H: Resveratrol and STAT inhibitor
enhance autophagy in ovarian cancer cells. Cell Death Discov.
2:150712016. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Lu Z and Bast RC Jr: The tumor suppressor
gene ARHI (DIRAS3) inhibits ovarian cancer cell migration through
multiple mechanisms. Cell Adh Migr. 7:232–236. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhong LX, Nie JH, Liu J and Lin LZ:
Correlation of ARHI upregulation with growth suppression and STAT3
inactivation in resveratrol-treated ovarian cancer cells. Cancer
Biomark. 21:787–795. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Ferraresi A, Phadngam S, Morani F, Galetto
A, Alabiso O, Chiorino G and Isidoro C: Resveratrol inhibits
IL-6-induced ovarian cancer cell migration through epigenetic
up-regulation of autophagy. Mol Carcinog. 56:1164–1181. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Ferraresi A, Titone R, Follo C,
Castiglioni A, Chiorino G, Dhanasekaran DN and Isidoro C: The
protein restriction mimetic Resveratrol is an autophagy inducer
stronger than amino acid starvation in ovarian cancer cells. Mol
Carcinog. 56:2681–2691. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Mikula-Pietrasik J, Sosinska P and Ksiazek
K: Resveratrol inhibits ovarian cancer cell adhesion to peritoneal
mesothelium in vitro by modulating the production of alpha5β1
integrins and hyaluronic acid. Gynecol Oncol. 134:624–630. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Park SY, Jeong KJ, Lee J, Yoon DS, Choi
WS, Kim YK, Han JW, Kim YM, Kim BK and Lee HY: Hypoxia enhances
LPA-induced HIF-1alpha and VEGF expression: Their inhibition by
resveratrol. Cancer Lett. 258:63–69. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Sopo M, Anttila M, Hamalainen K, Kivela A,
Yla-Herttuala S, Kosma VM, Keski-Nisula L and Sallinen H:
Expression profiles of VEGF-A, VEGF-D and VEGFR1 are higher in
distant metastases than in matched primary high grade epithelial
ovarian cancer. BMC Cancer. 19:5842019. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Wang H, Peng Y, Wang J, Gu A, Li Q, Mao D
and Guo L: Effect of autophagy on the resveratrol-induced apoptosis
of ovarian cancer SKOV3 cells. J Cell Biochem. Nov 18–2018.(Epub
ahead of print).
|
|
65
|
Nessa MU, Beale P, Chan C, Yu JQ and Huq
F: Combinations of resveratrol, cisplatin and oxaliplatin applied
to human ovarian cancer cells. Anticancer Res. 32:53–59.
2012.PubMed/NCBI
|
|
66
|
Engelke LH, Hamacher A, Proksch P and
Kassack MU: Ellagic acid and resveratrol prevent the development of
cisplatin resistance in the epithelial ovarian cancer cell line
A2780. J Cancer. 7:353–363. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Nag SA, Qin JJ, Wang W, Wang MH, Wang H
and Zhang R: Ginsenosides as anticancer agents: In vitro and in
vivo activities, Structure-activity relationships, and molecular
mechanisms of action. Front Pharmacol. 3:252012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Ahuja A, Kim JH, Kim JH, Yi YS and Cho JY:
Functional role of ginseng-derived compounds in cancer. J Ginseng
Res. 42:248–254. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li J, Liu T, Zhao L, Chen W, Hou H, Ye Z
and Li X: Ginsenoside 20(S)Rg3 inhibits the Warburg effect through
STAT3 pathways in ovarian cancer cells. Int J Oncol. 46:775–781.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Zheng X, Zhou Y, Chen W, Chen L, Lu J, He
F, Li X and Zhao L: Ginsenoside 20(S)-Rg3 prevents PKM2-targeting
miR-324-5p from H19 sponging to antagonize the Warburg effect in
ovarian cancer cells. Cell Physiol Biochem. 51:1340–1353. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Lu J, Wang L, Chen W, Wang Y, Zhen S, Chen
H, Cheng J, Zhou Y, Li X and Zhao L: miR-603 targeted hexokinase-2
to inhibit the malignancy of ovarian cancer cells. Arch Biochem
Biophys. 661:1–9. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Bian S, Zhao Y, Li F, Lu S, Wang S, Bai X,
Liu M, Zhao D, Wang J and Guo D: 20(S)-Ginsenoside Rg3 promotes
HeLa cell apoptosis by regulating autophagy. Molecules.
24:36552019. View Article : Google Scholar
|
|
73
|
Zheng X, Chen W, Hou H, Li J, Li H, Sun X,
Zhao L and Li X: Ginsenoside 20(S)-Rg3 induced autophagy to inhibit
migration and invasion of ovarian cancer. Biomed Pharmacother.
85:620–626. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li J, Xi W, Li X, Sun H and Li Y: Advances
in inhibition of protein-protein interactions targeting
hypoxia-inducible factor-1 for cancer therapy. Bioorg Med Chem.
27:1145–1158. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou
H, Ding L and Li X: Ginsenoside 20(S)-Rg3 targets HIF-1α to block
hypoxia-induced epithelial-mesenchymal transition in ovarian cancer
cells. PLoS One. 9:e1038872014. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Liu T, Zhao L, Hou H, Ding L, Chen W and
Li X: Ginsenoside 20(S)-Rg3 suppresses ovarian cancer migration via
hypoxia-inducible factor 1 alpha and nuclear factor-kappa B
signals. Tumour Biol. 39:10104283176922252017.PubMed/NCBI
|
|
77
|
Liu D, Liu T, Teng Y, Chen W, Zhao L and
Li X: Ginsenoside Rb1 inhibits hypoxia-induced
epithelial-mesenchymal transition in ovarian cancer cells by
regulating microRNA-25. Exp Ther Med. 14:2895–2902. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lengyel E: Ovarian cancer development and
metastasis. Am J Pathol. 177:1053–1064. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Yun UJ, Lee JH, Koo KH, Ye SK, Kim SY, Lee
CH and Kim YN: Lipid raft modulation by Rp1 reverses multidrug
resistance via inactivating MDR-1 and Src inhibition. Biochem
Pharmacol. 85:1441–1453. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Deng S, Wong CKC, Lai HC and Wong AST:
Ginsenoside-Rb1 targets chemotherapy-resistant ovarian cancer stem
cells via simultaneous inhibition of Wnt/β-catenin signaling and
epithelial-to-mesenchymal transition. Oncotarget. 8:25897–25914.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Metodiewa D, Jaiswal AK, Cenas N,
Dickancaite E and Segura-Aguilar J: Quercetin may act as a
cytotoxic prooxidant after its metabolic activation to semiquinone
and quinoidal product. Free Radic Biol Med. 26:107–116. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Vargas AJ and Burd R: Hormesis and
synergy: Pathways and mechanisms of quercetin in cancer prevention
and management. Nutr Rev. 68:418–428. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Hashemzaei M, Delarami Far A, Yari A,
Heravi RE, Tabrizian K, Taghdisi SM, Sadegh SE, Tsarouhas K,
Kouretas D, Tzanakakis G, et al: Anticancer and apoptosisinducing
effects of quercetin in vitro and in vivo. Oncol Rep.
38:819–828. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Ren MX, Deng XH, Ai F, Yuan GY and Song
HY: Effect of quercetin on the proliferation of the human ovarian
cancer cell line SKOV-3 in vitro. Exp Ther Med. 10:579–583.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhou J, Gong J, Ding C and Chen G:
Quercetin induces the apoptosis of human ovarian carcinoma cells by
upregulating the expression of microRNA-145. Mol Med Rep.
12:3127–3131. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Teekaraman D, Elayapillai SP, Viswanathan
MP and Jagadeesan A: Quercetin inhibits human metastatic ovarian
cancer cell growth and modulates components of the intrinsic
apoptotic pathway in PA-1cell line. Chem Biol Interact. 300:91–100.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Liu Y, Gong W, Yang ZY, Zhou XS, Gong C,
Zhang TR, Wei X, Ma D, Ye F and Gao QL: Quercetin induces
protective autophagy and apoptosis through ER stress via the
p-STAT3/Bcl-2 axis in ovarian cancer. Apoptosis. 22:544–557. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yamauchi K, Afroze SH, Mitsunaga T,
McCormick TC, Kuehl TJ, Zawieja DC and Uddin MN:
3,4′,7-O-trimethylquercetin inhibits invasion and migration of
ovarian cancer cells. Anticancer Res. 37:2823–2829. 2017.PubMed/NCBI
|
|
89
|
Wang Y, Han A, Chen E, Singh RK,
Chichester CO, Moore RG, Singh AP and Vorsa N: The cranberry
flavonoids PAC DP-9 and quercetin aglycone induce cytotoxicity and
cell cycle arrest and increase cisplatin sensitivity in ovarian
cancer cells. Int J Oncol. 46:1924–1934. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yang Z, Liu Y, Liao J, Gong C, Sun C, Zhou
X, Wei X, Zhang T, Gao Q, Ma D and Chen G: Quercetin induces
endoplasmic reticulum stress to enhance cDDP cytotoxicity in
ovarian cancer: Involvement of STAT3 signaling. FEBS J.
282:1111–1125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Gong C, Yang Z, Zhang L, Wang Y, Gong W
and Liu Y: Quercetin suppresses DNA double-strand break repair and
enhances the radiosensitivity of human ovarian cancer cells via
p53-dependent endoplasmic reticulum stress pathway. Onco Targets
Ther. 11:17–27. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yi L, Zongyuan Y, Cheng G, Lingyun Z,
Guilian Y and Wei G: Quercetin enhances apoptotic effect of tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) in
ovarian cancer cells through reactive oxygen species (ROS) mediated
CCAAT enhancer-binding protein homologous protein (CHOP)-death
receptor 5 pathway. Cancer Sci. 105:520–527. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ouellet V, Le Page C, Madore J, Guyot MC,
Barres V, Lussier C, Tonin PN, Provencher DM and Mes-Masson AM: An
apoptotic molecular network identified by microarray: On the TRAIL
to new insights in epithelial ovarian cancer. Cancer. 110:297–308.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Tillhon M, Guaman Ortiz LM, Lombardi P and
Scovassi AI: Berberine: New perspectives for old remedies. Biochem
Pharmacol. 84:1260–1267. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sun Y, Xun K, Wang Y and Chen X: A
systematic review of the anticancer properties of berberine, a
natural product from Chinese herbs. Anticancer Drugs. 20:757–769.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Liu L, Fan J, Ai G, Liu J, Luo N, Li C and
Cheng Z: Berberine in combination with cisplatin induces
necroptosis and apoptosis in ovarian cancer cells. Biol Res.
52:372019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Nakanishi M and Rosenberg DW: Multifaceted
roles of PGE2 in inflammation and cancer. Semin Immunopathol.
35:123–137. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Zhao Y, Cui L, Pan Y, Shao D, Zheng X,
Zhang F, Zhang H, He K and Chen L: Berberine inhibits the
chemotherapy-induced repopulation by suppressing the arachidonic
acid metabolic pathway and phosphorylation of FAK in ovarian
cancer. Cell Prolif. 50:e123932017. View Article : Google Scholar
|
|
99
|
Zhi D, Zhou K, Yu D, Fan X, Zhang J, Li X
and Dong M: hERG1 is involved in the pathophysiological process and
inhibited by berberine in SKOV3 cells. Oncol Lett. 17:5653–5661.
2019.PubMed/NCBI
|
|
100
|
Zhang Q, Wang X, Cao S, Sun Y, He X, Jiang
B, Yu Y, Duan J, Qiu F and Kang N: Berberine represses human
gastric cancer cell growth in vitro and in vivo by inducing
cytostatic autophagy via inhibition of MAPK/mTOR/p70S6K and Akt
signaling pathways. Biomed Pharmacother. 128:1102452020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Hu Q, Li L, Zou X, Xu L and Yi P:
Berberine attenuated proliferation, invasion and migration by
targeting the AMPK/HNF4α/WNT5A pathway in gastric carcinoma. Front
Pharmacol. 9:11502018. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Wang Y and Zhang S: Berberine suppresses
growth and metastasis of endometrial cancer cells via
miR-101/COX-2. Biomed Pharmacother. 103:1287–1293. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Marverti G, Ligabue A, Lombardi P, Ferrari
S, Monti MG, Frassineti C and Costi MP: Modulation of the
expression of folate cycle enzymes and polyamine metabolism by
berberine in cisplatin-sensitive and -resistant human ovarian
cancer cells. Int J Oncol. 43:1269–1280. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Liu S, Fang Y, Shen H, Xu W and Li H:
Berberine sensitizes ovarian cancer cells to cisplatin through
miR-21/PDCD4 axis. Acta Biochim Biophys Sin (Shanghai). 45:756–762.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wei ZT, Zhang X, Wang XY, Gao F, Zhou CJ,
Zhu FL, Wang Q, Gao Q, Ma CH, Sun WS, et al: PDCD4 inhibits the
malignant phenotype of ovarian cancer cells. Cancer Sci.
100:1408–1413. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chen Q, Qin R, Fang Y and Li H: Berberine
sensitizes human ovarian cancer cells to cisplatin through
miR-93/PTEN/Akt signaling pathway. Cell Physiol Biochem.
36:956–965. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Hou D, Xu G, Zhang C, Li B, Qin J, Hao X,
Liu Q, Zhang X, Liu J, Wei J, et al: Berberine induces oxidative
DNA damage and impairs homologous recombination repair in ovarian
cancer cells to confer increased sensitivity to PARP inhibition.
Cell Death Dis. 8:e30702017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Xinqiang S, Mu Z, Lei C and Mun LY:
Bioinformatics analysis on molecular mechanism of green tea
compound epigallocatechin-3-gallate against ovarian cancer. Clin
Transl Sci. 10:302–307. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Huh SW, Bae SM, Kim YW, Lee JM, Namkoong
SE, Lee IP, Kim SH, Kim CK and Ahn WS: Anticancer effects of
(−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines.
Gynecol Oncol. 94:760–768. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Chen H, Landen CN, Li Y, Alvarez RD and
Tollefsbol TO: Enhancement of Cisplatin-mediated apoptosis in
ovarian cancer cells through potentiating G2/M Arrest and p21
upregulation by combinatorial epigallocatechin gallate and
sulforaphane. J Oncol. 2013:8729572013. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Yan C, Yang J, Shen L and Chen X:
Inhibitory effect of Epigallocatechin gallate on ovarian cancer
cell proliferation associated with aquaporin 5 expression. Arch
Gynecol Obstet. 285:459–467. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhao L, Liu S, Xu J, Li W, Duan G, Wang H,
Yang H, Yang Z and Zhou R: A new molecular mechanism underlying the
EGCG-mediated autophagic modulation of AFP in HepG2 cells. Cell
Death Dis. 8:e31602017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Tian M, Tian D, Qiao X, Li J and Zhang L:
Modulation of Myb-induced NF-kB-STAT3 signaling and resulting
cisplatin resistance in ovarian cancer by dietary factors. J Cell
Physiol. 234:21126–21134. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Chan MM, Soprano KJ, Weinstein K and Fong
D: Epigallocatechin-3-gallate delivers hydrogen peroxide to induce
death of ovarian cancer cells and enhances their cisplatin
susceptibility. J Cell Physiol. 207:389–396. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang X, Jiang P, Wang P, Yang CS, Wang X
and Feng Q: EGCG enhances cisplatin sensitivity by regulating
expression of the copper and cisplatin influx transporter CTR1 in
ovary cancer. PLoS One. 10:e01254022015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Wang X, Jiang P, Wang P, Yang CS, Wang X
and Feng Q: Correction: EGCG enhances cisplatin sensitivity by
regulating expression of the copper and cisplatin influx
transporter CTR1 in ovary cancer. PLoS One. 10:e01320862015.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Chen H, Landen CN, Li Y, Alvarez RD and
Tollefsbol TO: Epigallocatechin gallate and sulforaphane
combination treatment induce apoptosis in paclitaxel-resistant
ovarian cancer cells through hTERT and Bcl-2 down-regulation. Exp
Cell Res. 319:697–706. 2013. View Article : Google Scholar : PubMed/NCBI
|