Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2020 Volume 20 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Potential relationship between Sirt3 and autophagy in ovarian cancer (Review)

  • Authors:
    • Yuchuan Shi
    • Runhua He
    • Yu Yang
    • Yu He
    • Lei Zhan
    • Bing Wei
  • View Affiliations / Copyright

    Affiliations: Department of Gynaecology and Obstetrics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China, Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
    Copyright: © Shi et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 162
    |
    Published online on: August 26, 2020
       https://doi.org/10.3892/ol.2020.12023
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Sirtuin 3 (Sirt3) is an important member of the sirtuin protein family. It is a deacetylase that was previously reported to modulate the level of reactive oxygen species (ROS) production and limit the extent of oxidative damage in cellular components. As an important member of the class III type of histone deacetylases, Sirt3 has also been documented to mediate nuclear gene expression, metabolic control, neuroprotection, cell cycle and proliferation. In ovarian cancer (OC), Sirt3 has been reported to regulate cellular metabolism, apoptosis and autophagy. Sirt3 can regulate autophagy through a variety of different molecular signaling pathways, including the p62, 5'AMP‑activated protein kinase and mitochondrial ROS‑superoxide dismutase pathways. However, autophagy downstream of Sirt3 and its association with OC remains poorly understood. In the present review, the known characteristics of Sirt3 and autophagy were outlined, and their potential functional roles were discussed. Following a comprehensive analysis of the current literature, Sirt3 and autophagy may either serve positive or negative roles in the regulation of OC. Therefore, it is important to identify the appropriate expression level of Sirt3 to control the activation of autophagy in OC cells. This strategy may prove to be a novel therapeutic method to reduce the mortality of patients with OC. Finally, potential research directions into the association between Sirt3 and other signaling pathways were provided.
View Figures

Figure 1

Figure 2

View References

1 

Torre LA, Trabert B, DeSantis CE, Miller KD, Samimi G, Runowicz CD, Gaudet MM, Jemal A and Siegel RL: Ovarian cancer statistics, 2018. CA Cancer J Clin. 68:284–296. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Hackshaw A, Gershenson D and Ledermann J: Mucinous ovarian carcinoma. N Engl J Med. 381:e32019. View Article : Google Scholar : PubMed/NCBI

3 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Wang L, Wang Q, Xu Y and Han L: Advances in the treatment of ovarian cancer using PARP inhibitors and the underlying mechanism of resistance. Curr Drug Targets. 21:167–178. 2020. View Article : Google Scholar : PubMed/NCBI

5 

Hansen JM, Coleman RL and Sood AK: Targeting the tumour microenvironment in ovarian cancer. Eur J Cancer. 56:131–143. 2016. View Article : Google Scholar : PubMed/NCBI

6 

Liu J, Ren Y, Hou Y, Zhang C, Wang B, Li X, Sun R and Liu J: Dihydroartemisinin induces endothelial cell autophagy through suppression of the Akt/mTOR pathway. J Cancer. 10:6057–6064. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, et al: Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 90:1383–1435. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Melendez A and Neufeld TP: The cell biology of autophagy in metazoans: A developing story. Development. 135:2347–2360. 2008. View Article : Google Scholar : PubMed/NCBI

9 

Boya P, González-Polo RA, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, et al: Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol. 25:1025–1040. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Yue Z, Jin S, Yang C, Levine AJ and Heintz N: Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 100:15077–15082. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Coppola D, Khalil F, Eschrich SA, Boulware D, Yeatman T and Wang HG: Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma. Cancer. 113:2665–2670. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Boteon YL, Laing R, Mergental H, Reynolds GM, Mirza DF, Afford SC and Bhogal RH: Mechanisms of autophagy activation in endothelial cell and their targeting during normothermic machine liver perfusion. World J Gastroenterol. 23:8443–8451. 2017. View Article : Google Scholar : PubMed/NCBI

13 

Nussenzweig SC, Verma S and Finkel T: The role of autophagy in vascular biology. Circ Res. 116:480–488. 2015. View Article : Google Scholar : PubMed/NCBI

14 

Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh BH and Jung JU: Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol. 8:688–699. 2006. View Article : Google Scholar : PubMed/NCBI

15 

Bishop E and Bradshaw TD: Autophagy modulation: A prudent approach in cancer treatment? Cancer Chemother Pharmacol. 82:913–922. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Li YJ, Lei YH, Yao N, Wang CR, Hu N, Ye WC, Zhang DM and Chen ZS: Autophagy and multidrug resistance in cancer. Chin J Cancer. 36:522017. View Article : Google Scholar : PubMed/NCBI

17 

Haigis MC, Deng CX, Finley LW, Kim HS and Gius D: SIRT3 is a mitochondrial tumor suppressor: A scientific tale that connects aberrant cellular ROS, the Warburg effect, and carcinogenesis. Cancer Res. 72:2468–2472. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Sack MN and Finkel T: Mitochondrial metabolism, sirtuins, and aging. Cold Spring Harb Perspect Biol. 4:a0131022012. View Article : Google Scholar : PubMed/NCBI

19 

Michan S and Sinclair D: Sirtuins in mammals: Insights into their biological function. Biochem J. 404:1–13. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Verdin E, Hirschey MD, Finley LW and Haigis MC: Sirtuin regulation of mitochondria: Energy production, apoptosis, and signaling. Trends Biochem Sci. 35:669–675. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Anderson KA and Hirschey MD: Mitochondrial protein acetylation regulates metabolism. Essays Biochem. 52:23–35. 2012. View Article : Google Scholar : PubMed/NCBI

22 

Alhazzazi TY, Kamarajan P, Joo N, Huang JY, Verdin E, D'Silva NJ and Kapila YL: Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer. 117:1670–1678. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Shi T, Wang F, Stieren E and Tong Q: SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes. J Biol Chemy. 280:13560–13567. 2005. View Article : Google Scholar

24 

Kong X, Wang R, Xue Y, Liu X, Zhang H, Chen Y, Fang F and Chang Y: Sirtuin 3, a new target of PGC-1alpha, plays an important role in the suppression of ROS and mitochondrial biogenesis. PLoS One. 5:e117072010. View Article : Google Scholar : PubMed/NCBI

25 

Guarente L: Introduction: Sirtuins in aging and diseases. Methods Mol Biol. 1077:3–10. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Resendis-Antonio O, Checa A and Encarnacion S: Modeling core metabolism in cancer cells: Surveying the topology underlying the Warburg effect. PLoS One. 5:e123832010. View Article : Google Scholar : PubMed/NCBI

27 

Madhok BM, Yeluri S, Perry SL, Hughes TA and Jayne DG: Targeting glucose metabolism: An emerging concept for anticancer therapy. Am J Clin Oncol. 34:628–635. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S and Ilkayeva OR: SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature. 464:121–125. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Bagul PK, Katare PB, Bugga P, Dinda AK and Banerjee SK: SIRT-3 modulation by resveratrol improves mitochondrial oxidative phosphorylation in diabetic heart through deacetylation of TFAM. Cells. 7:2352018. View Article : Google Scholar

30 

Dai SH, Chen T, Li X, Yue KY, Luo P, Yang LK, Zhu J, Wang YH, Fei Z and Jiang XF: Sirt3 confers protection against neuronal ischemia by inducing autophagy: Involvement of the AMPK-mTOR pathway. Free Radic Biol Med. 108:345–353. 2017. View Article : Google Scholar : PubMed/NCBI

31 

Pi H, Xu S, Reiter RJ, Guo P, Zhang L, Li Y, Li M, Cao Z, Tian L, Xie J, et al: SIRT3-SOD2-mROS-dependent autophagy in cadmium-induced hepatotoxicity and salvage by melatonin. Autophagy. 11:1037–1051. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Li Y, Ma Y, Song L, Yu L, Zhang L, Zhang Y, Xing Y, Yin Y and Ma H: SIRT3 deficiency exacerbates p53/Parkin-mediated mitophagy inhibition and promotes mitochondrial dysfunction: Implication for aged hearts. Int J Mol Med. 41:3517–3526. 2018.PubMed/NCBI

33 

Edgett BA, Hughes MC, Matusiak JB, Perry CG, Simpson CA and Gurd BJ: SIRT3 gene expression but not SIRT3 subcellular localization is altered in response to fasting and exercise in human skeletal muscle. Exp Physiol. 101:1101–1113. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Chen Y, Fu LL, Wen X, Wang XY, Liu J, Cheng Y and Huang J: Sirtuin-3 (SIRT3), a therapeutic target with oncogenic and tumor-suppressive function in cancer. Cell Death Dis. 5:e10472014. View Article : Google Scholar : PubMed/NCBI

35 

Dong XC, Jing LM, Wang WX and Gao YX: Down-regulation of SIRT3 promotes ovarian carcinoma metastasis. Biochem Biophys Res Commun. 475:245–250. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Yang Y, Cao Y, Chen L, Liu F, Qi Z, Cheng X and Wang Z: Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells. Cancer Med. 7:4610–4618. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Xiang XY, Kang JS, Yang XC, Su J, Wu Y, Yan XY, Xue YN, Xu Y, Liu YH, Yu CY, et al: SIRT3 participates in glucose metabolism interruption and apoptosis induced by BH3 mimetic S1 in ovarian cancer cells. Int J Oncol. 49:773–784. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Signorile A, De Rasmo D, Cormio A, Musicco C, Rossi R, Fortarezza F, Palese LL, Loizzi V, Resta L, Scillitani G, et al: Human ovarian cancer tissue exhibits increase of mitochondrial biogenesis and cristae remodeling. Cancers (Basel). 11:13502019. View Article : Google Scholar

39 

Hou L, Wang R, Wei H, Li S, Liu L, Lu X, Yu H and Liu Z: ABT737 enhances ovarian cancer cells sensitivity to cisplatin through regulation of mitochondrial fission via Sirt3 activation. Life Sci. 232:1165612019. View Article : Google Scholar : PubMed/NCBI

40 

Li J, Yue H, Yu H, Lu X and Xue X: Development and validation of SIRT3-related nomogram predictive of overall survival in patients with serous ovarian cancer. J Ovarian Res. 12:472019. View Article : Google Scholar : PubMed/NCBI

41 

Yang Y and Klionsky DJ: Autophagy and disease: Unanswered questions. Cell Death Differ. 27:858–871. 2020. View Article : Google Scholar : PubMed/NCBI

42 

Wilde L, Tanson K, Curry J and Martinez-Outschoorn U: Autophagy in cancer: A complex relationship. Biochem J. 475:1939–1954. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Glick D, Barth S and Macleod KF: Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12. 2010. View Article : Google Scholar : PubMed/NCBI

44 

Bednarczyk M, Zmarzly N, Grabarek B, Mazurek U and Muc-Wierzgon M: Genes involved in the regulation of different types of autophagy and their participation in cancer pathogenesis. Oncotarget. 9:34413–34428. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Zhi X, Feng W, Rong Y and Liu R: Anatomy of autophagy: From the beginning to the end. Cell Mol Life SciS. 75:815–831. 2018. View Article : Google Scholar

46 

Burman C and Ktistakis NT: Autophagosome formation in mammalian cells. Semin Immunopathol. 32:397–413. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Schaeffer V, Lavenir I, Ozcelik S, Tolnay M, Winkler DT and Goedert M: Stimulation of autophagy reduces neurodegeneration in a mouse model of human tauopathy. Brain. 135:2169–2177. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Liao X, Sluimer JC, Wang Y, Subramanian M, Brown K, Pattison JS, Robbins J, Martinez J and Tabas I: Macrophage autophagy plays a protective role in advanced atherosclerosis. Cell Metab. 15:545–553. 2012. View Article : Google Scholar : PubMed/NCBI

49 

Dikic I, Johansen T and Kirkin V: Selective autophagy in cancer development and therapy. Cancer Res. 70:3431–3434. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Kim JJ, Lee HM, Shin DM, Kim W, Yuk JM, Jin HS, Lee SH, Cha GH, Kim JM, Lee ZW, et al: Host cell autophagy activated by antibiotics is required for their effective antimycobacterial drug action. Cell Host Microbe. 11:457–468. 2012. View Article : Google Scholar : PubMed/NCBI

51 

White E and DiPaola RS: The double-edged sword of autophagy modulation in cancer. Clin Cancer Res. 15:5308–5316. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Pu Z, Wu L, Guo Y, Li G, Xiang M, Liu L, Zhan H, Zhou X and Tan H: LncRNA MEG3 contributes to adenosine-induced cytotoxicity in hepatoma HepG2 cells by downregulated ILF3 and autophagy inhibition via regulation PI3K-AKT-mTOR and beclin-1 signaling pathway. J Cell Biochem. 120:18172–18185. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Li X, Lou X, Xu S, Wang Q, Shen M and Miao J: Knockdown of miR-372 Inhibits nerve cell apoptosis induced by spinal cord ischemia/reperfusion injury via enhancing autophagy by Up-regulating Beclin-1. J Mol Neurosci. 66:437–444. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Cai M, Hu Z, Liu J, Gao J, Liu C, Liu D, Tan M, Zhang D and Lin B: Beclin 1 expression in ovarian tissues and its effects on ovarian cancer prognosis. Int J Mol Sci. 15:5292–5303. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Hennessy BT, Smith DL, Ram PT, Lu Y and Mills GB: Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 4:988–1004. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C and Gonzalez-Baron M: PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 30:193–204. 2004. View Article : Google Scholar : PubMed/NCBI

57 

Carnero A, Blanco-Aparicio C, Renner O, Link W and Leal JF: The PTEN/PI3K/AKT signalling pathway in cancer, therapeutic implications. Curr Cancer Drug Targets. 8:187–198. 2008. View Article : Google Scholar : PubMed/NCBI

58 

Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P and Ogier-Denis E: The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem. 276:35243–35246. 2001. View Article : Google Scholar : PubMed/NCBI

59 

Li H, Zeng J and Shen K: PI3K/AKT/mTOR signaling pathway as a therapeutic target for ovarian cancer. Arch Gynecol Obstet. 290:1067–1078. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Hu L, Zaloudek C, Mills GB, Gray J and Jaffe RB: In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin Cancer Res. 6:880–886. 2000.PubMed/NCBI

61 

Engel JB, Schönhals T, Häusler S, Krockenberger M, Schmidt M, Horn E, Köster F, Dietl J, Wischhusen J and Honig A: Induction of programmed cell death by inhibition of AKT with the alkylphosphocholine perifosine in in vitro models of platinum sensitive and resistant ovarian cancers. Arch Gynecol Obstet. 283:603–610. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Sun H, Yu T and Li J: Co-administration of perifosine with paclitaxel synergistically induces apoptosis in ovarian cancer cells: More than just AKT inhibition. Cancer Lett. 310:118–128. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Yu Y, Hall T, Eathiraj S, Wick MJ, Schwartz B and Abbadessa G: In-vitro and in-vivo combined effect of ARQ 092, an AKT inhibitor, with ARQ 087, a FGFR inhibitor. Anticancer Drugs. 28:503–513. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Ichikawa K, Abe T, Nagase H, Saito H, Fujita R, Okada M, Yonekura K, Shimomura T and Utsugi T: Abstract C177: TAS-117, a highly selective non-ATP competitive inhibitor of AKT demonstrated antitumor activity in combination with chemotherapeutic agents and molecular targeted drugs. Mol Cancer Ther. 12 (Suppl 11):C1772013.

65 

Son Y, An Y, Jung J, Shin S, Park I, Gwak J, Ju BG, Chung YH, Na M and Oh S: Protopine isolated from Nandina domestica induces apoptosis and autophagy in colon cancer cells by stabilizing p53. Phytother Res. 33:1689–1696. 2019. View Article : Google Scholar : PubMed/NCBI

66 

Brooks CL and Gu W: Ubiquitination, phosphorylation and acetylation: The molecular basis for p53 regulation. Curr Opin Cell Biol. 15:164–171. 2003. View Article : Google Scholar : PubMed/NCBI

67 

Brooks CL and Gu W: The impact of acetylation and deacetylation on the p53 pathway. Protein Cell. 2:456–462. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Feng Z, Hu W, de Stanchina E, Teresky AK, Jin S, Lowe S and Levine AJ: The regulation of AMPK beta1, TSC2, and PTEN expression by p53: Stress, cell and tissue specificity, and the role of these gene products in modulating the IGF-1-AKT-mTOR pathways. Cancer Res. 67:3043–3053. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Crighton D, Wilkinson S, O'Prey J, Syed N, Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM: DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Tasdemir E, Maiuri MC, Galluzzi L, Vitale I, Djavaheri-Mergny M, D'Amelio M, Criollo A, Morselli E, Zhu C, Harper F, et al: Regulation of autophagy by cytoplasmic p53. Nat Cell Biol. 10:676–687. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Chen N and Karantza-Wadsworth V: Role and regulation of autophagy in cancer. Biochim Biophys Acta. 1793:1516–1523. 2009. View Article : Google Scholar : PubMed/NCBI

72 

Liang M and Zhao J: Protein expressions of AIB1, p53 and Bcl-2 in epithelial ovarian cancer and their correlations with the clinical pathological features and prognosis. Eur Rev Med Pharmacol Sci. 22:5134–5139. 2018.PubMed/NCBI

73 

Chen YN, Ren CC, Yang L, Nai MM, Xu YM, Zhang F and Liu Y: MicroRNA let7d5p rescues ovarian cancer cell apoptosis and restores chemosensitivity by regulating the p53 signaling pathway via HMGA1. Int J Oncol. 54:1771–1784. 2019.PubMed/NCBI

74 

Cho CS, Lombard DB and Lee JH: SIRT3 as a regulator of hepatic autophagy. Hepatology. 66:700–702. 2017. View Article : Google Scholar : PubMed/NCBI

75 

Gao J, Feng Z, Wang X, Zeng M, Liu J, Han S, Xu J, Chen L, Cao K, Long J, et al: SIRT3/SOD2 maintains osteoblast differentiation and bone formation by regulating mitochondrial stress. Cell Death Differ. 25:229–240. 2018. View Article : Google Scholar : PubMed/NCBI

76 

Liu H, Li S, Liu X, Chen Y and Deng H: SIRT3 overexpression inhibits growth of kidney tumor cells and enhances mitochondrial biogenesis. J Proteome Res. 17:3143–3152. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Shi H, Deng HX, Gius D, Schumacker PT, Surmeier DJ and Ma YC: Sirt3 protects dopaminergic neurons from mitochondrial oxidative stress. Hum Mol Genet. 26:1915–1926. 2017. View Article : Google Scholar : PubMed/NCBI

78 

Duran A, Amanchy R, Linares JF, Joshi J, Abu-Baker S, Porollo A, Hansen M, Moscat J and Diaz-Meco MT: p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell. 44:134–146. 2011. View Article : Google Scholar : PubMed/NCBI

79 

Wang ZG, Li H, Huang Y, Li R, Wang XF, Yu LX, Guang XQ, Li L, Zhang HY, Zhao YZ, et al: Nerve growth factor-induced Akt/mTOR activation protects the ischemic heart via restoring autophagic flux and attenuating ubiquitinated protein accumulation. Oncotarget. 8:5400–5413. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Ma Q, Zhang Z, Shim JK, Venkatraman TN, Lascola CD, Quinones QJ, Mathew JP, Terrando N and Podgoreanu MV: Annexin A1 bioactive peptide promotes resolution of neuroinflammation in a rat model of exsanguinating cardiac arrest treated by emergency preservation and resuscitation. Front Neurosci. 13:6082019. View Article : Google Scholar : PubMed/NCBI

81 

Tong W, Ju L, Qiu M, Xie Q, Chen Y, Shen W, Sun W, Wang W and Tian J: Liraglutide ameliorates non-alcoholic fatty liver disease by enhancing mitochondrial architecture and promoting autophagy through the SIRT1/SIRT3-FOXO3a pathway. Hepatol Res. 46:933–943. 2016. View Article : Google Scholar : PubMed/NCBI

82 

Zhang M, Lin J, Wang S, Cheng Z, Hu J, Wang T, Man W, Yin T, Guo W, Gao E, et al: Melatonin protects against diabetic cardiomyopathy through Mst1/Sirt3 signaling. J Pineal Res. May 8–2017.(Epub ahead of print). doi: 10.1111/jpi.12418. View Article : Google Scholar

83 

Xiang X, Huang J, Song S, Wang Y, Zeng Y, Wu S and Ruan Y: 17β-estradiol inhibits H2O2-induced senescence in HUVEC cells through upregulating SIRT3 expression and promoting autophagy. Biogerontology. Mar 14–2020.(Epub ahead of print). doi: 10.1007/s10522-020-09868-w. View Article : Google Scholar

84 

Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang YH, de Velasco G, Jeong KJ, Akbani R, Hadjipanayis A, et al: A pan-cancer proteogenomic atlas of PI3K/AKT/mTOR pathway alterations. Cancer Cell. 31:820–832.e3. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Sun Y, Huang YH, Huang FY, Mei WL, Liu Q, Wang CC, Lin YY, Huang C, Li YN, Dai HF and Tan GH: 3′-epi-12β-hydroxyfroside, a new cardenolide, induces cytoprotective autophagy via blocking the Hsp90/Akt/mTOR axis in lung cancer cells. Theranostics. 8:2044–2060. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Quan Y, Wang N, Chen Q, Xu J, Cheng W, Di M, Xia W and Gao WQ: SIRT3 inhibits prostate cancer by destabilizing oncoprotein c-MYC through regulation of the PI3K/Akt pathway. Oncotarget. 6:26494–26507. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Wang G, Wang JJ, Wang YZ, Feng S, Jing G and Fu XL: Myricetin nanoliposomes induced SIRT3-mediated glycolytic metabolism leading to glioblastoma cell death. Artif Cells Nanomed Biotechnol. 46 (Suppl 3):S180–S191. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Diotte NM, Xiong Y, Gao J, Chua BH and Ho YS: Attenuation of doxorubicin-induced cardiac injury by mitochondrial glutaredoxin 2. Biochim Biophys Acta. 1793:427–438. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Zhao M and Klionsky DJ: AMPK-dependent phosphorylation of ULK1 induces autophagy. Cell Metab. 13:119–120. 2011. View Article : Google Scholar : PubMed/NCBI

91 

Garcia D and Shaw RJ: AMPK: Mechanisms of cellular energy sensing and restoration of metabolic balance. Mol Cell. 66:789–800. 2017. View Article : Google Scholar : PubMed/NCBI

92 

Inoki K, Kim J and Guan KL: AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol. 52:381–400. 2012. View Article : Google Scholar : PubMed/NCBI

93 

Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI

94 

Zhao W, Zhang L, Chen R, Lu H, Sui M, Zhu Y and Zeng L: SIRT3 protects against acute kidney injury via AMPK/mTOR-regulated autophagy. Front Physiol. 9:15262018. View Article : Google Scholar : PubMed/NCBI

95 

Inoki K, Zhu T and Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell. 115:577–590. 2003. View Article : Google Scholar : PubMed/NCBI

96 

Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE and Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell. 30:214–226. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Shackelford DB and Shaw RJ: The LKB1-AMPK pathway: Metabolism and growth control in tumour suppression. Nat Rev Cancer. 9:563–575. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Zhang M, Deng YN, Zhang JY, Liu J, Li YB, Su H and Qu QM: SIRT3 protects rotenone-induced injury in SH-SY5Y cells by promoting autophagy through the LKB1-AMPK-mTOR pathway. Aging Dis. 9:273–286. 2018. View Article : Google Scholar : PubMed/NCBI

99 

Bazhin AV, Philippov PP and Karakhanova S: Reactive oxygen species in cancer biology and anticancer therapy. Oxid Med Cell Longev. 2016:41978152016. View Article : Google Scholar : PubMed/NCBI

100 

Shi L, Zhang T, Zhou Y, Zeng X, Ran L, Zhang Q, Zhu J and Mi M: Dihydromyricetin improves skeletal muscle insulin sensitivity by inducing autophagy via the AMPK-PGC-1alpha-Sirt3 signaling pathway. Endocrine. 50:378–389. 2015. View Article : Google Scholar : PubMed/NCBI

101 

Lv W, Sui L, Yan X, Xie H, Jiang L, Geng C, Li Q, Yao X, Kong Y and Cao J: ROS-dependent Atg4 upregulation mediated autophagy plays an important role in Cd-induced proliferation and invasion in A549 cells. Chem Biol Interact. 279:136–144. 2018. View Article : Google Scholar : PubMed/NCBI

102 

Li ZY, Yang Y, Ming M and Liu B: Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun. 414:5–8. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Xia C, He Z, Liang S, Chen R, Xu W, Yang J, Xiao G and Jiang S: Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur J Pharmacol. 848:62–69. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Qiu X, Brown K, Hirschey MD, Verdin E and Chen D: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab. 12:662–667. 2010. View Article : Google Scholar : PubMed/NCBI

105 

Tan WX, Xu TM, Zhou ZL, Lv XJ, Liu J, Zhang WJ and Cui MH: TRP14 promotes resistance to cisplatin by inducing autophagy in ovarian cancer. Oncol Rep. 42:1343–1354. 2019.

106 

Qiu S, Sun L, Zhang Y and Han S: Downregulation of BAG3 attenuates cisplatin resistance by inhibiting autophagy in human epithelial ovarian cancer cells. Oncol Lett. 18:1969–1978. 2019.PubMed/NCBI

107 

Xie Z, Guo Z, Wang Y, Lei J and Yu J: Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy. Phytother Res. 32:2256–2263. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Zhu H, Diao S, Lim V, Hu L and Hu J: FAM83D inhibits autophagy and promotes proliferation and invasion of ovarian cancer cells via PI3K/AKT/mTOR pathway. Acta Biochim Biophys Sin (Shanghai). 51:509–516. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Wu Y, Gao WN, Xue YN, Zhang LC, Zhang JJ, Lu SY, Yan XY, Yu HM, Su J and Sun LK: SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells. Exp Cell Res. 367:137–149. 2018. View Article : Google Scholar : PubMed/NCBI

110 

Zou G, Bai J, Li D and Chen Y: Effect of metformin on the proliferation, apoptosis, invasion and autophagy of ovarian cancer cells. Exp Ther Med. 18:2086–2094. 2019.PubMed/NCBI

111 

Li X, Su J, Xia M, Li H, Xu Y, Ma C, Ma L, Kang J, Yu H, Zhang Z and Sun L: Caspase-mediated cleavage of Beclin1 inhibits autophagy and promotes apoptosis induced by S1 in human ovarian cancer SKOV3 cells. Apoptosis. 21:225–238. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Liu N, Xu Y, Sun JT, Su J, Xiang XY, Yi HW, Zhang ZC and Sun LK: The BH3 mimetic S1 induces endoplasmic reticulum stress-associated apoptosis in cisplatin-resistant human ovarian cancer cells although it activates autophagy. Oncol Rep. 30:2677–2684. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Yang X, Xiang X, Xia M, Su J, Wu Y, Shen L, Xu Y and Sun L: Inhibition of JNK3 promotes apoptosis induced by BH3 mimetic S1 in chemoresistant human ovarian cancer cells. Anat Rec (Hoboken). 298:386–395. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Yang Y, Li N, Chen T, Zhang C, Li J, Liu L, Qi Y, Zheng X, Zhang C and Bu P: Sirt3 promotes sensitivity to sunitinib-induced cardiotoxicity via inhibition of GTSP1/JNK/autophagy pathway in vivo and in vitro. Arch Toxicol. 93:3249–3260. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shi Y, He R, Yang Y, He Y, Zhan L and Wei B: Potential relationship between Sirt3 and autophagy in ovarian cancer (Review). Oncol Lett 20: 162, 2020.
APA
Shi, Y., He, R., Yang, Y., He, Y., Zhan, L., & Wei, B. (2020). Potential relationship between Sirt3 and autophagy in ovarian cancer (Review). Oncology Letters, 20, 162. https://doi.org/10.3892/ol.2020.12023
MLA
Shi, Y., He, R., Yang, Y., He, Y., Zhan, L., Wei, B."Potential relationship between Sirt3 and autophagy in ovarian cancer (Review)". Oncology Letters 20.5 (2020): 162.
Chicago
Shi, Y., He, R., Yang, Y., He, Y., Zhan, L., Wei, B."Potential relationship between Sirt3 and autophagy in ovarian cancer (Review)". Oncology Letters 20, no. 5 (2020): 162. https://doi.org/10.3892/ol.2020.12023
Copy and paste a formatted citation
x
Spandidos Publications style
Shi Y, He R, Yang Y, He Y, Zhan L and Wei B: Potential relationship between Sirt3 and autophagy in ovarian cancer (Review). Oncol Lett 20: 162, 2020.
APA
Shi, Y., He, R., Yang, Y., He, Y., Zhan, L., & Wei, B. (2020). Potential relationship between Sirt3 and autophagy in ovarian cancer (Review). Oncology Letters, 20, 162. https://doi.org/10.3892/ol.2020.12023
MLA
Shi, Y., He, R., Yang, Y., He, Y., Zhan, L., Wei, B."Potential relationship between Sirt3 and autophagy in ovarian cancer (Review)". Oncology Letters 20.5 (2020): 162.
Chicago
Shi, Y., He, R., Yang, Y., He, Y., Zhan, L., Wei, B."Potential relationship between Sirt3 and autophagy in ovarian cancer (Review)". Oncology Letters 20, no. 5 (2020): 162. https://doi.org/10.3892/ol.2020.12023
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team