|
1
|
Galluzzi L, Vacchelli E, Bravo-San Pedro
JM, Buqué A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado
JP, Agostinis P, et al: Classification of current anticancer
immunotherapies. Oncotarget. 5:12472–12508. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Li X, Shao C, Shi Y and Han W: Lessons
learned from the blockade of immune checkpoints in cancer
immunotherapy. J Hematol Oncol. 11:312018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fang Z, Han H and Liang L: Progression in
chimeric antigen receptor T (CAR-T) cell therapy of solid tumors: A
review. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 35:944–948. 2019.(In
Chinese). PubMed/NCBI
|
|
4
|
Krishnamurthy A and Jimeno A: Bispecific
antibodies for cancer therapy: A review. Pharmacol Ther.
185:122–134. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Sadreddini S, Baradaran B, Aghebati-Maleki
A, Sadreddini S, Shanehbandi D, Fotouhi A and Aghebati-Maleki L:
Immune checkpoint blockade opens a new way to cancer immunotherapy.
J Cell Physiol. 234:8541–8549. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zhao Y, Yang W, Huang Y, Cui R, Li X and
Li B: Evolving roles for targeting CTLA-4 in cancer immunotherapy.
Cell Physiol Biochem. 47:721–734. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Weinmann SC and Pisetsky DS: Mechanisms of
immune-related adverse events during the treatment of cancer with
immune checkpoint inhibitors. Rheumatology (Oxford). 58 (Suppl
7):vii59–vii67. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Postow MA, Callahan MK and Wolchok JD:
Immune checkpoint blockade in cancer therapy. J Clin Oncol.
33:1974–1982. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Shergold AL, Millar R and Nibbs RJB:
Understanding and overcoming the resistance of cancer to PD-1/PD-L1
blockade. Pharmacol Res. 145:1042582019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wang J, Yuan R, Song W, Sun J, Liu D and
Li Z: PD-1, PD-L1 (B7-H1) and tumor-site immune modulation therapy:
The historical perspective. J Hematol Oncol. 10:342017. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhao X and Subramanian S: Intrinsic
resistance of solid tumors to immune checkpoint blockade therapy.
Cancer Res. 77:817–822. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Burugu S, Gao D, Leung S, Chia SK and
Nielsen TO: LAG-3+ tumor infiltrating lymphocytes in breast cancer:
Clinical correlates and association with PD-1/PD-L1+ tumors. Ann
Oncol. 28:2977–2984. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Triebel F, Jitsukawa S, Baixeras E,
Roman-Roman S, Genevee C, Viegas-Pequignot E and Hercend T: LAG-3,
a novel lymphocyte activation gene closely related to CD4. J Exp
Med. 171:1393–1405. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Huard B, Prigent P, Tournier M, Bruniquel
D and Triebel F: CD4/major histocompatibility complex class II
interaction analyzed with CD4- and lymphocyte activation gene-3
(LAG-3)-Ig fusion proteins. Eur J Immunol. 25:2718–2721. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dijkstra JM, Somamoto T, Moore L, Hordvik
I, Ototake M and Fischer U: Identification and characterization of
a second CD4-like gene in teleost fish. Mol Immunol. 43:410–419.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sierro S, Romero P and Speiser DE: The
CD4-like molecule LAG-3, biology and therapeutic applications.
Expert Opin Ther Targets. 15:91–101. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Workman CJ, Dugger KJ and Vignali DA:
Cutting edge: Molecular analysis of the negative regulatory
function of lymphocyte activation gene-3. J Immunol. 169:5392–5395.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Goldberg MV and Drake CG: LAG-3 in cancer
immunotherapy. Curr Top Microbiol Immunol. 344:269–278.
2011.PubMed/NCBI
|
|
19
|
Iouzalen N, Andreae S, Hannier S and
Triebel F: LAP, a lymphocyte activation gene-3 (LAG-3)-associated
protein that binds to a repeated EP motif in the intracellular
region of LAG-3, may participate in the down-regulation of the
CD3/TCR activation pathway. Eur J Immunol. 31:2885–2891. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li N, Wang Y, Forbes K, Vignali KM, Heale
BS, Saftig P, Hartmann D, Black RA, Rossi JJ, Blobel CP, et al:
Metalloproteases regulate T-cell proliferation and effector
function via LAG-3. EMBO J. 26:494–504. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Demeure CE, Wolfers J, Martin-Garcia N,
Gaulard P and Triebel F: T Lymphocytes infiltrating various tumour
types express the MHC class II ligand lymphocyte activation gene-3
(LAG-3): Role of LAG-3/MHC class II interactions in cell-cell
contacts. Eur J Cancer. 37:1709–1718. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Huard B, Mastrangeli R, Prigent P,
Bruniquel D, Donini S, El-Tayar N, Maigret B, Dréano M and Triebel
F: Characterization of the major histocompatibility complex class
II binding site on LAG-3 protein. Proc Natl Acad Sci USA.
94:5744–5749. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kouo T, Huang L, Pucsek AB, Cao M, Solt S,
Armstrong T and Jaffee E: Galectin-3 shapes antitumor immune
responses by suppressing CD8+ T cells via LAG-3 and
inhibiting expansion of plasmacytoid dendritic cells. Cancer
Immunol Res. 3:412–423. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
O'Driscoll L, Linehan R, Liang YH, Joyce
H, Oglesby I and Clynes M: Galectin-3 expression alters adhesion,
motility and invasion in a lung cell line (DLKP), in vitro.
Anticancer Res. 22:3117–3125. 2002.PubMed/NCBI
|
|
25
|
Califice S, Castronovo V, Bracke M and van
den Brûle F: Dual activities of galectin-3 in human prostate
cancer: Tumor suppression of nuclear galectin-3 vs. tumor promotion
of cytoplasmic galectin-3. Oncogene. 23:7527–7536. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Wang C, Zhou X, Ma L, Zhuang Y, Wei Y,
Zhang L, Jin S, Liang W, Shen X, Li C, et al: Galectin-3 may serve
as a marker for poor prognosis in colorectal cancer: A
meta-analysis. Pathol Res Pract. 215:1526122019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Boutas I, Potiris A, Brenner W, Lebrecht
A, Hasenburg A, Kalantaridou S and Schmidt M: The expression of
galectin-3 in breast cancer and its association with
chemoresistance: A systematic review of the literature. Arch
Gynecol Obstet. 300:1113–1120. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Dumic J, Dabelic S and Flogel M:
Galectin-3: An open-ended story. Biochim Biophys Acta.
1760:616–635. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z,
Du X, Tang L and He F: LSECtin expressed on melanoma cells promotes
tumor progression by inhibiting antitumor T-cell responses. Cancer
Res. 74:3418–3428. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yang J, Wang H, Wang M, Liu B, Xu H, Xu F,
Zhao D, Hu B, Zhao N, Wang J, et al: Involvement of LSECtin in the
hepatic natural killer cell response. Biochem Biophys Res Commun.
476:49–55. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mao X, Ou MT, Karuppagounder SS, Kam TI,
Yin X, Xiong Y, Ge P, Umanah GE, Brahmachari S, Shin JH, et al:
Pathological α-synuclein transmission initiated by binding
lymphocyte-activation gene 3. Science. 353:aah33742016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang J, Sanmamed MF, Datar I, Su TT, Ji L,
Sun J, Chen L, Chen Y, Zhu G, Yin W, et al: Fibrinogen-like protein
1 is a major immune inhibitory ligand of LAG-3. Cell. 176:334–347
e312. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Visan I: New ligand for LAG-3. Nat
Immunol. 20:1112019. View Article : Google Scholar
|
|
34
|
Durham NM, Nirschl CJ, Jackson CM, et al:
Lymphocyte activation gene 3 (LAG-3) modulates the ability of CD4
T-cells to be suppressed in vivo. PLoS One. 9:e1090802014.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Pena J, Jones NG, Bousheri S, Bangsberg DR
and Cao H: Lymphocyte activation gene-3 expression defines a
discrete subset of HIV-specific CD8+ T cells that is associated
with lower viral load. AIDS Res Hum Retroviruses. 30:535–541. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Huang CT, Workman CJ, Flies D, Pan X,
Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI, et
al: Role of LAG-3 in regulatory T cells. Immunity. 21:503–513.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Huard B, Tournier M and Triebel F: LAG-3
does not define a specific mode of natural killing in human.
Immunol Lett. 61:109–112. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kisielow M, Kisielow J, Capoferri-Sollami
G and Karjalainen K: Expression of lymphocyte activation gene 3
(LAG-3) on B cells is induced by T cells. Eur J Immunol.
35:2081–2088. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Workman CJ, Wang Y, El Kasmi KC, Pardoll
DM, Murray PJ, Drake CG and Vignali DA: LAG-3 regulates
plasmacytoid dendritic cell homeostasis. J Immunol. 182:1885–1891.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wherry EJ, Ha SJ, Kaech SM, Haining WN,
Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL and Ahmed
R: Molecular signature of CD8+ T cell exhaustion during chronic
viral infection. Immunity. 27:670–684. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fourcade J, Sun Z, Pagliano O, Guillaume
P, Luescher IF, Sander C, Kirkwood JM, Olive D, Kuchroo V and
Zarour HM: CD8(+) T cells specific for tumor antigens can be
rendered dysfunctional by the tumor microenvironment through
upregulation of the inhibitory receptors BTLA and PD-1. Cancer Res.
72:887–896. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Brown KE, Freeman GJ, Wherry EJ and Sharpe
AH: Role of PD-1 in regulating acute infections. Curr Opin Immunol.
22:397–401. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Vieyra-Lobato MR, Vela-Ojeda J,
Montiel-Cervantes L, Lopez-Santiago R and Moreno-Lafont MC:
Description of CD8(+) regulatory T lymphocytes and their specific
intervention in graft-versus-host and infectious diseases,
autoimmunity, and cancer. J Immunol Res. 2018:37587132018.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Haanen JB, Thienen H and Blank CU:
Toxicity patterns with immunomodulating antibodies and their
combinations. Semi Oncol. 42:423–428. 2015. View Article : Google Scholar
|
|
45
|
Pardoll DM: The blockade of immune
checkpoints in cancer immunotherapy. Nat Rev Cancer. 12:252–264.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Huard B, Tournier M, Hercend T, Triebel F
and Faure F: Lymphocyte-activation gene 3/major histocompatibility
complex class II interaction modulates the antigenic response of
CD4+ T lymphocytes. Eur J Immunol. 24:3216–3221. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Joller N and Kuchroo VK: Tim-3, Lag-3, and
TIGIT. Curr Top Microbiol Immunol. 410:127–156. 2017.PubMed/NCBI
|
|
48
|
Grosso JF, Kelleher CC, Harris TJ, Maris
CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC,
et al: LAG-3 regulates CD8+ T cell accumulation and effector
function in murine self- and tumor-tolerance systems. J Clin
Invest. 117:3383–3392. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Workman CJ and Vignali DA: Negative
regulation of T cell homeostasis by lymphocyte activation gene-3
(CD223). J Immunol. 174:688–695. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Baitsch L, Legat A, Barba L, Fuertes
Marraco SA, Rivals JP, Baumgaertner P, Christiansen-Jucht C,
Bouzourene H, Rimoldi D, Pircher H, et al: Extended co-expression
of inhibitory receptors by human CD8 T-cells depending on
differentiation, antigen-specificity and anatomical localization.
PLoS One. 7:e308522012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Baitsch L, Baumgaertner P, Devêvre E,
Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke
B, Romero P, et al: Exhaustion of tumor-specific CD8(+) T cells in
metastases from melanoma patients. J Clin Invest. 121:2350–2360.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
McLane LM, Abdel-Hakeem MS and Wherry EJ:
CD8 T cell exhaustion during chronic viral infection and cancer.
Annu Rev Immunol. 37:457–495. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Andrews LP, Marciscano AE, Drake CG and
Vignali DA: LAG3 (CD223) as a cancer immunotherapy target. Immunol
Rev. 276:80–96. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
He Y, Rivard CJ, Rozeboom L, Yu H, Ellison
K, Kowalewski A, Zhou C and Hirsch FR: Lymphocyte-activation
gene-3, an important immune checkpoint in cancer. Cancer Sci.
107:1193–1197. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Woo SR, Turnis ME, Goldberg MV, Bankoti J,
Selby M, Nirschl CJ, Bettini ML, Gravano DM, Vogel P, Liu CL, et
al: Immune inhibitory molecules LAG-3 and PD-1 synergistically
regulate T-cell function to promote tumoral immune escape. Cancer
Res. 72:917–927. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Casati C, Camisaschi C, Rini F, Arienti F,
Rivoltini L, Triebel F, Parmiani G and Castelli C: Soluble human
LAG-3 molecule amplifies the in vitro generation of type 1
tumor-specific immunity. Cancer Res. 66:4450–4460. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bettini M, Szymczak-Workman AL, Forbes K,
Castellaw AH, Selby M, Pan X, Drake CG, Korman AJ and Vignali DA:
Cutting edge: Accelerated autoimmune diabetes in the absence of
LAG-3. J Immunol. 187:3493–3498. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Burugu S, Dancsok AR and Nielsen TO:
Emerging targets in cancer immunotherapy. Semin Cancer Biol.
52:39–52. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kuchroo VK, Anderson AC and Petrovas C:
Coinhibitory receptors and CD8 T cell exhaustion in chronic
infections. Curr Opin HIV AIDS. 9:439–445. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hannier S and Triebel F: The MHC class II
ligand lymphocyte activation gene-3 is co-distributed with CD8 and
CD3-TCR molecules after their engagement by mAb or peptide-MHC
class I complexes. Int Immunol. 11:1745–1752. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Triebel F: LAG-3: A regulator of T-cell
and DC responses and its use in therapeutic vaccination. Trends
Immunol. 24:619–622. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Villadolid J and Amin A: Immune checkpoint
inhibitors in clinical practice: Update on management of
immune-related toxicities. Transl Lung Cancer Res. 4:560–575.
2015.PubMed/NCBI
|
|
63
|
Sharma P and Allison JP: The future of
immune checkpoint therapy. Science. 348:56–61. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhou G, Sprengers D, Boor PPC, Doukas M,
Schutz H, Mancham S, Pedroza-Gonzalez A, Polak WG, de Jonge J,
Gaspersz M, et al: Antibodies against immune checkpoint molecules
restore functions of tumor-infiltrating T cells in hepatocellular
carcinomas. Gastroenterology. 153:1107–1119.e10. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
He Y, Yu H, Rozeboom L, Rivard CJ, Ellison
K, Dziadziuszko R, Suda K, Ren S, Wu C, Hou L, et al: LAG-3 protein
expression in non-small cell lung cancer and its relationship with
PD-1/PD-L1 and tumor-infiltrating lymphocytes. J Thorac Oncol.
12:814–823. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Matsuzaki J, Gnjatic S, Mhawech-Fauceglia
P, Beck A, Miller A, Tsuji T, Eppolito C, Qian F, Lele S, Shrikant
P, Old LJ and Odunsi K: Tumor-infiltrating NY-ESO-1-specific CD8+ T
cells are negatively regulated by LAG-3 and PD-1 in human ovarian
cancer. Proc Natl Acad Sci USA. 107:7875–7880. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ma QY, Huang DY, Zhang HJ, Wang S and Chen
XF: Function and regulation of LAG3 on
CD4+CD25− T cells in non-small cell lung
cancer. Exp Cell Res. 360:358–364. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hald SM, Rakaee M, Martinez I, Richardsen
E, Al-Saad S, Paulsen EE, Blix ES, Kilvaer T, Andersen S, Busund
LT, et al: LAG-3 in non-small-cell lung cancer: expression in
primary tumors and metastatic lymph nodes is associated with
improved survival. Clin Lung Cancer. 19:249–259.e2. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Li FJ, Zhang Y, Jin GX, Yao L and Wu DQ:
Expression of LAG-3 is coincident with the impaired effector
function of HBV-specific CD8(+) T cell in HCC patients. Immunol
Lett. 150:116–122. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Camisaschi C, Casati C, Rini F, Perego M,
De Filippo A, Triebel F, Parmiani G, Belli F, Rivoltini L and
Castelli C: LAG-3 expression defines a subset of
CD4(+)CD25(high)Foxp3(+) regulatory T cells that are expanded at
tumor sites. J Immunol. 184:6545–6551. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen J and Chen Z: The effect of immune
microenvironment on the progression and prognosis of colorectal
cancer. Med Oncol. 31:822014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Gagliani N, Magnani CF, Huber S, Gianolini
ME, Pala M, Licona-Limon P, Guo B, Herbert DR, Bulfone A, Trentini
F, et al: Coexpression of CD49b and LAG-3 identifies human and
mouse T regulatory type 1 cells. Nat Med. 19:739–746. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen BJ, Dashnamoorthy R, Galera P,
Makarenko V, Chang H, Ghosh S and Evens AM: The immune checkpoint
molecules PD-1, PD-L1, TIM-3 and LAG-3 in diffuse large B-cell
lymphoma. Oncotarget. 10:2030–2040. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Wierz M, Pierson S, Guyonnet L, Viry E,
Lequeux A, Oudin A, Niclou SP, Ollert M, Berchem G, Janji B, et al:
Dual PD1/LAG3 immune checkpoint blockade limits tumor development
in a murine model of chronic lymphocytic leukemia. Blood.
131:1617–1621. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Huang RY, Eppolito C, Lele S, Shrikant P,
Matsuzaki J and Odunsi K: LAG3 and PD1 co-inhibitory molecules
collaborate to limit CD8+ T cell signaling and dampen
antitumor immunity in a murine ovarian cancer model. Oncotarget.
6:27359–27377. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Baumeister SH, Freeman GJ, Dranoff G and
Sharpe AH: Coinhibitory pathways in immunotherapy for cancer. Annu
Rev Immunol. 34:539–573. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Li B, Chan HL and Chen P: Immune
checkpoint inhibitors: Basics and challenges. Curr Med Chem.
26:3009–3025. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Akinleye A and Rasool Z: Immune checkpoint
inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol.
12:922019. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Llosa NJ, Cruise M, Tam A, Wicks EC,
Hechenbleikner EM, Taube JM, Blosser RL, Fan H, Wang H, Luber BS,
et al: The vigorous immune microenvironment of microsatellite
instable colon cancer is balanced by multiple counter-inhibitory
checkpoints. Cancer Discov. 5:43–51. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Vilgelm AE, Johnson DB and Richmond A:
Combinatorial approach to cancer immunotherapy: Strength in
numbers. J Leukoc Biol. 100:275–290. 2016. View Article : Google Scholar : PubMed/NCBI
|