Open Access

The modulation relationship of genomic pattern of intratumor heterogeneity and immunity microenvironment heterogeneity in hepatocellular carcinoma

  • Authors:
    • Liu-Bo Li
    • Lu Yang
    • Guo-Qun Xie
    • Xiao-Cui Zhou
    • Xu-Bo Shen
    • Qiu-Lin Xu
    • Zheng-Yuan Ma
    • Xiao-Dong Guo
  • View Affiliations

  • Published online on: September 11, 2020     https://doi.org/10.3892/ol.2020.12096
  • Article Number: 233
  • Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world, with the second highest mortality rate among all cancer types. Growing evidence has demonstrated the notable effects of intratumor heterogeneity (ITH) and tumor immune microenvironment heterogeneity (TIMH) on the biological processes involved in HCC. However, the interactive mechanisms between ITH and TIMH is still unclear. The present study systematically screened the mRNA expression, simple nucleotide variation data and clinical data of samples from The Cancer Genome Atlas (TCGA). The mutant‑allele tumor heterogeneity (MATH) score was used to represent ITH, and TCGA cohort was divided into two groups according to the MATH score. Next, different immune‑related signaling pathways and enriched immune‑related genes were identified using Gene Set Enrichment Analysis of these two groups, and the results revealed that interleukin‑1α (IL1A) and serine/threonine‑protein kinase PAK4 were associated with prognosis. Furthermore, CIBERSORT was utilized to calculate the fractions of 22 types of leukocytes to represent TIMH, and the fractions of M1 and M2 macrophages were confirmed to be associated with prognosis. Therefore, PAK4, interleukin‑1α (IL1A), and M1/M2 ratio were selected as the key factors involved in the interaction between ITH and TIMH. Afterwards, microRNAs (miRNAs) that were linearly related to the M1/M2 ratio and the potential target genes of the miRNAs were screened. Finally, the regulatory network between PAK4, IL1A, and the M1/M2 ratio was established, bridged by the above miRNAs and the target genes. In addition, PAK4, heat shock protein 105 kDa and miRNA‑1911 were demonstrated to be a key factor involved in immune response via Weighted Correlation Network Analysis in HCC.
View Figures
View References

Related Articles

Journal Cover

November-2020
Volume 20 Issue 5

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Li L, Yang L, Xie G, Zhou X, Shen X, Xu Q, Ma Z and Guo X: The modulation relationship of genomic pattern of intratumor heterogeneity and immunity microenvironment heterogeneity in hepatocellular carcinoma. Oncol Lett 20: 233, 2020
APA
Li, L., Yang, L., Xie, G., Zhou, X., Shen, X., Xu, Q. ... Guo, X. (2020). The modulation relationship of genomic pattern of intratumor heterogeneity and immunity microenvironment heterogeneity in hepatocellular carcinoma. Oncology Letters, 20, 233. https://doi.org/10.3892/ol.2020.12096
MLA
Li, L., Yang, L., Xie, G., Zhou, X., Shen, X., Xu, Q., Ma, Z., Guo, X."The modulation relationship of genomic pattern of intratumor heterogeneity and immunity microenvironment heterogeneity in hepatocellular carcinoma". Oncology Letters 20.5 (2020): 233.
Chicago
Li, L., Yang, L., Xie, G., Zhou, X., Shen, X., Xu, Q., Ma, Z., Guo, X."The modulation relationship of genomic pattern of intratumor heterogeneity and immunity microenvironment heterogeneity in hepatocellular carcinoma". Oncology Letters 20, no. 5 (2020): 233. https://doi.org/10.3892/ol.2020.12096