|
1
|
Senthebane DA, Rowe A, Thomford NE,
Shipanga H, Munro D, Mazeedi MAMA, Almazyadi HAM, Kallmeyer K,
Dandara C, Pepper MS, et al: The role of tumor microenvironment in
chemoresistance: To survive, keep your enemies closer. Int J Mol
Sci. 18:15862017. View Article : Google Scholar
|
|
2
|
Yadav L, Puri N, Rastogi V, Satpute P and
Sharma V: Tumour angiogenesis and angiogenic inhibitors: A review.
J Clin Diagn Res. 9:XE01–XE05. 2015.PubMed/NCBI
|
|
3
|
Boilly B, Faulkner S, Jobling P and
Hondermarck H: Nerve dependence: From regeneration to cancer.
Cancer Cell. 31:342–354. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Amit M, Takahashi H, Dragomir MP,
Lindemann A, Gleber-Netto FO, Pickering CR, Anfossi S, Osman AA,
Cai Y, Wang R, et al: Loss of p53 drives neuron reprogramming in
head and neck cancer. Nature. 578:449–454. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mauffrey P, Tchitchek N, Barroca V,
Bemelmans AP, Firlej V, Allory Y, Roméo PH and Magnon C:
Progenitors from the central nervous system drive neurogenesis in
cancer. Nature. 569:672–678. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2018. CA Cancer J Clin. 68:7–30. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Rogers SN, Brown JS, Woolgar JA, Lowe D,
Magennis P, Shaw RJ, Sutton D, Errington D and Vaughan D: Survival
following primary surgery for oral cancer. Oral Oncol. 45:201–211.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Mu L and Sanders I: Human tongue
neuroanatomy: Nerve supply and motor endplates. Clin Anat.
23:777–791. 2010. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Bagan J, Sarrion G and Jimenez Y: Oral
cancer: Clinical features. Oral Oncol. 46:414–417. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Reyes-Gibby CC, Anderson KO, Merriman KW,
Todd KH, Shete SS and Hanna EY: Survival patterns in squamous cell
carcinoma of the head and neck: Pain as an independent prognostic
factor for survival. J Pain. 15:1015–1022. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
van den Beuken-van Everdingen MH, de Rijke
JM, Kessels AG, Schouten HC, van Kleef M and Patijn J: Prevalence
of pain in patients with cancer: A systematic review of the past 40
years. Ann Oncol. 18:1437–1449. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zahalka AH and Frenette PS: Nerves in
cancer. Nat Rev Cancer. 20:143–157. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Drissi H, Lieberherr M, Hott M, Marie PJ
and Lasmoles F: Calcitonin gene-related peptide (CGRP) increases
intracellular free Ca2+ concentrations but not cyclic AMP formation
in CGRP receptor-positive osteosarcoma cells (OHS-4). Cytokine.
11:200–207. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Papantoniou V, Tsiouris S, Sotiropoulou M,
Valsamaki P, Koutsikos J, Ptohis N, Dimitrakakis C, Sotiropoulou E,
Melissinou M, Nakopoulou L, et al: The potential role of calcitonin
gene-related peptide (CGRP) in breast carcinogenesis and its
correlation with 99mTc-(V)DMSA scintimammography. Am J Clin Oncol.
30:420–427. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Eftekhari S, Salvatore CA, Calamari A,
Kane SA, Tajti J and Edvinsson L: Differential distribution of
calcitonin gene-related peptide and its receptor components in the
human trigeminal ganglion. Neuroscience. 169:683–696. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Brain SD and Grant AD: Vascular actions of
calcitonin gene-related peptide and adrenomedullin. Physiol Rev.
84:903–934. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Russell FA, King R, Smillie SJ, Kodji X
and Brain SD: Calcitonin gene-related peptide: Physiology and
pathophysiology. Physiol Rev. 94:1099–1142. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Rosenfeld MG, Mermod JJ, Amara SG, Swanson
LW, Sawchenko PE, Rivier J, Vale WW and Evans RM: Production of a
novel neuropeptide encoded by the calcitonin gene via
tissue-specific RNA processing. Nature. 304:129–135. 1983.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
McLatchie LM, Fraser NJ, Main MJ, Wise A,
Brown J, Thompson N, Solari R, Lee MG and Foord SM: RAMPs regulate
the transport and ligand specificity of the
calcitonin-receptor-like receptor. Nature. 393:333–339. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Luebke AE, Dahl GP, Roos BA and Dickerson
IM: Identification of a protein that confers calcitonin
gene-related peptide responsiveness to oocytes by using a cystic
fibrosis transmembrane conductance regulator assay. Proc Natl Acad
Sci USA. 93:3455–3460. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Negro A and Martelletti P: Gepants for the
treatment of migraine. Expert Opin Investig Drugs. 28:555–567.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Edvinsson L, Haanes KA, Warfvinge K and
Krause DN: CGRP as the target of new migraine therapies-successful
translation from bench to clinic. Nat Rev Neurol. 14:338–350. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ferrari MD, Diener HC, Ning X, Galic M,
Cohen JM, Yang R, Mueller M, Ahn AH, Schwartz YC, Grozinski-Wolff
M, et al: Fremanezumab versus placebo for migraine prevention in
patients with documented failure to up to four migraine preventive
medication classes (FOCUS): A randomised, double-blind,
placebo-controlled, phase 3b trial. Lancet. 394:1030–1040. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Goadsby PJ, Dodick DW, Leone M, Bardos JN,
Oakes TM, Millen BA, Zhou C, Dowsett SA, Aurora SK, Ahn AH, et al:
Trial of galcanezumab in prevention of episodic cluster headache. N
Engl J Med. 381:132–141. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Reuter U, Goadsby PJ, Lanteri-Minet M, Wen
S, Hours-Zesiger P, Ferrari MD and Klatt J: Efficacy and
tolerability of erenumab in patients with episodic migraine in whom
two-to-four previous preventive treatments were unsuccessful: A
randomised, double-blind, placebo-controlled, phase 3b study.
Lancet. 392:2280–2287. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Dodick DW, Lipton RB, Ailani J, Lu K,
Finnegan M, Trugman JM and Szegedi A: Ubrogepant for the treatment
of migraine. N Engl J Med. 381:2230–2241. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lipton RB, Dodick DW, Ailani J, Lu K,
Finnegan M, Szegedi A and Trugman JM: Effect of ubrogepant vs
placebo on pain and the most bothersome associated symptom in the
acute treatment of migraine: The ACHIEVE II randomized clinical
trial. JAMA. 322:1887–1898. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Lipton RB, Croop R, Stock EG, Stock DA,
Morris BA, Frost M, Dubowchik GM, Conway CM, Coric V and Goadsby
PJ: Rimegepant, an oral calcitonin gene-related peptide receptor
antagonist, for migraine. N Engl J Med. 381:142–149. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Croop R, Goadsby PJ, Stock DA, Conway CM,
Forshaw M, Stock EG, Coric V and Lipton RB: Efficacy, safety, and
tolerability of rimegepant orally disintegrating tablet for the
acute treatment of migraine: A randomised, phase 3, double-blind,
placebo-controlled trial. Lancet. 394:737–745. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Portenoy RK, Payne D and Jacobsen P:
Breakthrough pain: Characteristics and impact in patients with
cancer pain. Pain. 81:129–134. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Truscott BM: Carcinoma of the breast; an
analysis of the symptoms, factors affecting prognosis, results of
treatment and recurrences in 1211 cases treated at the middlesex
hospital. Br J Cancer. 1:129–145. 1947. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Slagelse C, Munch T, Glazer C, Greene K,
Finnerup NB, Kashani-Sabet M, Leong SP, Petersen KL and Rowbotham
MC: Natural history of pain associated with melanoma surgery. Pain
Rep. 3:e6892018. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yeh CF, Li WY, Chu PY, Kao SY, Chen YW,
Lee TL, Hsu YB, Yang CC and Tai SK: Pretreatment pain predicts
perineural invasion in oral squamous cell carcinoma: A prospective
study. Oral Oncol. 61:115–119. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Brain SD: Sensory neuropeptides: Their
role in inflammation and wound healing. Immunopharmacology.
37:133–152. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Abdelaziz DM, Stone LS and Komarova SV:
Localized experimental bone metastasis drives osteolysis and
sensory hypersensitivity at distant non-tumor-bearing sites. Breast
Cancer Res Treat. 153:9–20. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Auer J, Reeh PW and Fischer MJ:
Acid-induced CGRP release from the stomach does not depend on TRPV1
or ASIC3. Neurogastroenterol Motil. 22:680–687. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Afroz S, Arakaki R, Iwasa T, Oshima M,
Hosoki M, Inoue M, Baba O, Okayama Y and Matsuka Y: CGRP induces
differential regulation of cytokines from satellite glial cells in
trigeminal ganglia and orofacial nociception. Int J Mol Sci.
20:7112019. View Article : Google Scholar
|
|
38
|
Hansen RR, Vacca V, Pitcher T, Clark AK
and Malcangio M: Role of extracellular calcitonin gene-related
peptide in spinal cord mechanisms of cancer-induced bone pain.
Pain. 157:666–676. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Niiyama Y, Kawamata T, Yamamoto J, Omote K
and Namiki A: Bone cancer increases transient receptor potential
vanilloid subfamily 1 expression within distinct subpopulations of
dorsal root ganglion neurons. Neuroscience. 148:560–572. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Jimenez-Andrade JM, Bloom AP, Stake JI,
Mantyh WG, Taylor RN, Freeman KT, Ghilardi JR, Kuskowski MA and
Mantyh PW: Pathological sprouting of adult nociceptors in chronic
prostate cancer-induced bone pain. J Neurosci. 30:14649–14656.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Bloom AP, Jimenez-Andrade JM, Taylor RN,
Castañeda-Corral G, Kaczmarska MJ, Freeman KT, Coughlin KA,
Ghilardi JR, Kuskowski MA and Mantyh PW: Breast cancer-induced bone
remodeling, skeletal pain, and sprouting of sensory nerve fibers. J
Pain. 12:698–711. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wakabayashi H, Wakisaka S, Hiraga T, Hata
K, Nishimura R, Tominaga M and Yoneda T: Decreased sensory nerve
excitation and bone pain associated with mouse Lewis lung cancer in
TRPV1-deficient mice. J Bone Miner Metab. 36:274–285. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wacnik PW, Baker CM, Herron MJ, Kren BT,
Blazar BR, Wilcox GL, Hordinsky MK, Beitz AJ and Ericson ME:
Tumor-induced mechanical hyperalgesia involves CGRP receptors and
altered innervation and vascularization of DsRed2 fluorescent
hindpaw tumors. Pain. 115:95–106. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nagamine K, Ozaki N, Shinoda M, Asai H,
Nishiguchi H, Mitsudo K, Tohnai I, Ueda M and Sugiura Y: Mechanical
allodynia and thermal hyperalgesia induced by experimental squamous
cell carcinoma of the lower gingiva in rats. J Pain. 7:659–670.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Levy MJ, Classey JD, Maneesri S, Meeran K,
Powell M and Goadsby PJ: The association between calcitonin
gene-related peptide (CGRP), substance P and headache in pituitary
tumours. Pituitary. 7:67–71. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Dottorini ME, Assi A, Sironi M, Sangalli
G, Spreafico G and Colombo L: Multivariate analysis of patients
with medullary thyroid carcinoma. Prognostic significance and
impact on treatment of clinical and pathologic variables. Cancer.
77:1556–1565. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Goadsby PJ, Edvinsson L and Ekman R:
Release of vasoactive peptides in the extracerebral circulation of
humans and the cat during activation of the trigeminovascular
system. Ann Neurol. 23:193–196. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kelley MJ, Snider RH, Becker KL and
Johnson BE: Small cell lung carcinoma cell lines express mRNA for
calcitonin and alpha- and beta-calcitonin gene related peptides.
Cancer Lett. 81:19–25. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Takami H, Shikata J, Horie H, Horiuchi J,
Sakurai H and Ito K: Radioimmunoassay of plasma calcitonin
gene-related peptide (CGRP) levels in patients with endocrine
tumor. Gan To Kagaku Ryoho. 16:2219–2225. 1989.PubMed/NCBI
|
|
50
|
Nagakawa O, Ogasawara M, Fujii H, Murakami
K, Murata J, Fuse H and Saiki I: Effect of prostatic neuropeptides
on invasion and migration of PC-3 prostate cancer cells. Cancer
Lett. 133:27–33. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Nagakawa O, Ogasawara M, Murata J, Fuse H
and Saiki I: Effect of prostatic neuropeptides on migration of
prostate cancer cell lines. Int J Urol. 8:65–70. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Wimalawansa SJ: CGRP radioreceptor assay:
A new diagnostic tool for medullary thyroid carcinoma. J Bone Miner
Res. 8:467–473. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Angenendt L, Bormann E, Pabst C, Alla V,
Görlich D, Braun L, Dohlich K, Schwöppe C, Bohlander SK, Arteaga
MF, et al: The neuropeptide receptor calcitonin receptor-like
(CALCRL) is a potential therapeutic target in acute myeloid
leukemia. Leukemia. 33:2830–2841. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Toda M, Suzuki T, Hosono K, Hayashi I,
Hashiba S, Onuma Y, Amano H, Kurihara Y, Kurihara H, Okamoto H, et
al: Neuronal system-dependent facilitation of tumor angiogenesis
and tumor growth by calcitonin gene-related peptide. Proc Natl Acad
Sci USA. 105:13550–13555. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ostrovskaya A, Hick C, Hutchinson DS,
Stringer BW, Wookey PJ, Wootten D, Sexton PM and Furness SGB:
Expression and activity of the calcitonin receptor family in a
sample of primary human high-grade gliomas. BMC Cancer. 19:1572019.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Dallmayer M, Li J, Ohmura S, Alba Rubio R,
Baldauf MC, Hölting TLB, Musa J, Knott MML, Stein S, Cidre-Aranaz
F, et al: Targeting the CALCB/RAMP1 axis inhibits growth of Ewing
sarcoma. Cell Death Dis. 10:1162019. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Höppener JW, Steenbergh PH, Slebos RJ,
Visser A, Lips CJ, Jansz HS, Bechet JM, Lenoir GM, Born W,
Haller-Brem S, et al: Expression of the second
calcitonin/calcitonin gene-related peptide gene in Ewing sarcoma
cell lines. J Clin Endocrinol Metab. 64:809–817. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Gutierrez S and Boada MD:
Neuropeptide-induced modulation of carcinogenesis in a metastatic
breast cancer cell line (MDA-MB-231LUC+). Cancer Cell
Int. 18:2162018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Fristad I, Vandevska-Radunovic V, Fjeld K,
Wimalawansa SJ and Hals Kvinnsland I: NK1, NK2, NK3 and CGRP1
receptors identified in rat oral soft tissues, and in bone and
dental hard tissue cells. Cell Tissue Res. 311:383–391. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Warburg O: On the origin of cancer cells.
Science. 123:309–314. 1956. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sasahira T and Kirita T: Hallmarks of
cancer-related newly prognostic factors of oral squamous cell
carcinoma. Int J Mol Sci. 19:24132018. View Article : Google Scholar
|
|
62
|
Kurihara-Shimomura M, Sasahira T,
Nakashima C, Kuniyasu H, Shimomura H and Kirita T: The multifarious
functions of pyruvate kinase M2 in oral cancer cells. Int J Mol
Sci. 19:29072018. View Article : Google Scholar
|
|
63
|
Lu H, Li X, Luo Z, Liu J and Fan Z:
Cetuximab reverses the Warburg effect by inhibiting HIF-1-regulated
LDH-A. Mol Cancer Ther. 12:2187–2199. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhai X, Yang Y, Wan J, Zhu R and Wu Y:
Inhibition of LDH-A by oxamate induces G2/M arrest, apoptosis and
increases radiosensitivity in nasopharyngeal carcinoma cells. Oncol
Rep. 30:2983–2991. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Rossetti L, Farrace S, Choi SB, Giaccari
A, Sloan L, Frontoni S and Katz MS: Multiple metabolic effects of
CGRP in conscious rats: Role of glycogen synthase and
phosphorylase. Am J Physiol. 264:E1–E10. 1993.PubMed/NCBI
|
|
66
|
Tang W and Fan Y: SIRT6 as a potential
target for treating insulin resistance. Life Sci. 231:1165582019.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Danaher RN, Loomes KM, Leonard BL, Whiting
L, Hay DL, Xu LY, Kraegen EW, Phillips AR and Cooper GJ: Evidence
that alpha-calcitonin gene-related peptide is a neurohormone that
controls systemic lipid availability and utilization.
Endocrinology. 149:154–160. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Faubert B, Vincent EE, Poffenberger MC and
Jones RG: The AMP-activated protein kinase (AMPK) and cancer: Many
faces of a metabolic regulator. Cancer Lett. 356:165–170. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zelissen PM, Koppeschaar HP, Lips CJ and
Hackeng WH: Calcitonin gene-related peptide in human obesity.
Peptides. 12:861–863. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gram DX, Hansen AJ, Wilken M, Elm T,
Svendsen O, Carr RD, Ahrén B and Brand CL: Plasma calcitonin
gene-related peptide is increased prior to obesity, and sensory
nerve desensitization by capsaicin improves oral glucose tolerance
in obese Zucker rats. Eur J Endocrinol. 153:963–969. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jan CI, Tsai MH, Chiu CF, Huang YP, Liu CJ
and Chang NW: Fenofibrate suppresses oral tumorigenesis via
reprogramming metabolic processes: Potential drug repurposing for
oral cancer. Int J Biol Sci. 12:786–798. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Hu Q, Peng J, Chen X, Li H, Song M, Cheng
B and Wu T: Obesity and genes related to lipid metabolism predict
poor survival in oral squamous cell carcinoma. Oral Oncol.
89:14–22. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Eichel K, Jullié D and von Zastrow M:
β-Arrestin drives MAP kinase signalling from clathrin-coated
structures after GPCR dissociation. Nat Cell Biol. 18:303–310.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Calebiro D, Nikolaev VO, Gagliani MC, de
Filippis T, Dees C, Tacchetti C, Persani L and Lohse MJ: Persistent
cAMP-signals triggered by internalized G-protein-coupled receptors.
PLoS Biol. 7:e10001722009. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kuwasako K, Shimekake Y, Masuda M,
Nakahara K, Yoshida T, Kitaura M, Kitamura K, Eto T and Sakata T:
Visualization of the calcitonin receptor-like receptor and its
receptor activity-modifying proteins during internalization and
recycling. J Biol Chem. 275:29602–29609. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yarwood RE, Imlach WL, Lieu T, Veldhuis
NA, Jensen DD, Klein Herenbrink C, Aurelio L, Cai Z, Christie MJ,
Poole DP, et al: Endosomal signaling of the receptor for calcitonin
gene-related peptide mediates pain transmission. Proc Natl Acad Sci
USA. 114:12309–12314. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Mantyh PW, DeMaster E, Malhotra A,
Ghilardi JR, Rogers SD, Mantyh CR, Liu H, Basbaum AI, Vigna SR,
Maggio JE, et al: Receptor endocytosis and dendrite reshaping in
spinal neurons after somatosensory stimulation. Science.
268:1629–1632. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Steinhoff MS, von Mentzer B, Geppetti P,
Pothoulakis C and Bunnett NW: Tachykinins and their receptors:
Contributions to physiological control and the mechanisms of
disease. Physiol Rev. 94:265–301. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Godbole A, Lyga S, Lohse MJ and Calebiro
D: Publisher correction: Internalized TSH receptors en route to the
TGN induce local Gs-protein signaling and gene transcription. Nat
Commun. 9:54592018. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Steinman L: Elaborate interactions between
the immune and nervous systems. Nat Immunol. 5:575–581. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sternberg EM: Neural regulation of innate
immunity: A coordinated nonspecific host response to pathogens. Nat
Rev Immunol. 6:318–328. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Antúnez C, Torres MJ, López S,
Rodriguez-Pena R, Blanca M, Mayorga C and Santamaría-Babi LF:
Calcitonin gene-related peptide modulates interleukin-13 in
circulating cutaneous lymphocyte-associated antigen-positive T
cells in patients with atopic dermatitis. Br J Dermatol.
161:547–553. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Xing L, Guo J and Wang X: Induction and
expression of beta-calcitonin gene-related peptide in rat T
lymphocytes and its significance. J Immunol. 165:4359–4366. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Bracci-Laudiero L, Aloe L, Buanne P, Finn
A, Stenfors C, Vigneti E, Theodorsson E and Lundeberg T: NGF
modulates CGRP synthesis in human B-lymphocytes: A possible
anti-inflammatory action of NGF? J Neuroimmunol. 123:58–65. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Bracci-Laudiero L, Aloe L, Caroleo MC,
Buanne P, Costa N, Starace G and Lundeberg T: Endogenous NGF
regulates CGRP expression in human monocytes, and affects HLA-DR
and CD86 expression and IL-10 production. Blood. 106:3507–3514.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ding W, Stohl LL, Wagner JA and Granstein
RD: Calcitonin gene-related peptide biases Langerhans cells toward
Th2-type immunity. J Immunol. 181:6020–6026. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Harzenetter MD, Novotny AR, Gais P, Molina
CA, Altmayr F and Holzmann B: Negative regulation of TLR responses
by the neuropeptide CGRP is mediated by the transcriptional
repressor ICER. J Immunol. 179:607–615. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Wang F, Millet I, Bottomly K and Vignery
A: Calcitonin gene-related peptide inhibits interleukin 2
production by murine T lymphocytes. J Biol Chem. 267:21052–21057.
1992.PubMed/NCBI
|
|
90
|
Kawamura N, Tamura H, Obana S, Wenner M,
Ishikawa T, Nakata A and Yamamoto H: Differential effects of
neuropeptides on cytokine production by mouse helper T cell
subsets. Neuroimmunomodulation. 5:9–15. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Hosoi J, Murphy GF, Egan CL, Lerner EA,
Grabbe S, Asahina A and Granstein RD: Regulation of langerhans cell
function by nerves containing calcitonin gene-related peptide.
Nature. 363:159–163. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Carucci JA, Ignatius R, Wei Y, Cypess AM,
Schaer DA, Pope M, Steinman RM and Mojsov S: Calcitonin
gene-related peptide decreases expression of HLA-DR and CD86 by
human dendritic cells and dampens dendritic cell-driven T
cell-proliferative responses via the type I calcitonin gene-related
peptide receptor. J Immunol. 164:3494–3499. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Holzmann B: Modulation of immune responses
by the neuropeptide CGRP. Amino Acids. 45:1–7. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nguyen MQ, Wu Y, Bonilla LS, von Buchholtz
LJ and Ryba NJP: Diversity amongst trigeminal neurons revealed by
high throughput single cell sequencing. PLoS One. 12:e01855432017.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Zeisel A, Hochgerner H, Lönnerberg P,
Johnsson A, Memic F, vander Zwan J, Häring M, Braun E, Borm LE, La
Manno G, et al: Molecular architecture of the mouse nervous system.
Cell. 174:999–1014 e22. 2018. View Article : Google Scholar : PubMed/NCBI
|