|
1
|
Rizvi S, Khan SA, Hallemeier CL, Kelley RK
and Gores GJ: Cholangiocarcinoma-evolving concepts and therapeutic
strategies. Nat Rev Clin Oncol. 15:95–111. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kendall T, Verheij J, Gaudio E, Evert M,
Guido M, Goeppert B and Carpino G: Anatomical, histomorphological
and molecular classification of cholangiocarcinoma. Liver Int.
1:7–18. 2019. View Article : Google Scholar
|
|
3
|
Nakanishi Y, Zen Y, Kondo S, Itoh T,
Itatsu K and Nakanuma Y: Expression of cell cycle-related molecules
in biliary premalignant lesions: Biliary intraepithelial neoplasia
and biliary intraductal papillary neoplasm. Hum Pathol.
39:1153–1161. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Rizvi S and Gores GJ: Pathogenesis,
diagnosis, and management of cholangiocarcinoma. Gastroenterology.
145:1215–1229. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Everhart JE and Ruhl CE: Burden of
digestive diseases in the United States part III: Liver, biliary
tract, and pancreas. Gastroenterology. 136:1134–1144. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Massarweh NN and El-Serag HB: Epidemiology
of hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
Cancer Control. 24:10732748177292452017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Labib PL, Goodchild G and Pereira SP:
Molecular Pathogenesis of Cholangiocarcinoma. BMC Cancer.
19:1852019. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
McGee EE, Castro FA, Engels EA, Freedman
ND, Pfeiffer RM, Nogueira L, Stolzenberg-Solomon R, McGlynn KA,
Hemminki K and Koshiol J: Associations between autoimmune
conditions and hepatobiliary cancer risk among elderly US adults.
Int J Cancer. 144:707–717. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Brandi G, Venturi M, Pantaleo MA and
Ercolani G; GICO: Cholangiocarcinoma: Current opinion on clinical
practice diagnostic and therapeutic algorithms: A review of the
literature and a long-standing experience of a referral center. Dig
Liver Dis. 48:231–241. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Saeed A, Park R, Al-Jumayli M, Al-Rajabi R
and Sun W: Biologics, immunotherapy, and future directions in the
treatment of advanced cholangiocarcinoma. Clin Colorectal Cancer.
18:81–90. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ohaegbulam KC, Assal A, Lazar-Molnar E,
Yao Y and Zang X: Human cancer immunotherapy with antibodies to the
PD-1 and PD-L1 pathway. Trends Mol Med. 21:24–33. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sato Y, Kinoshita M, Takemura S, Tanaka S,
Hamano G, Nakamori S, Fujikawa M, Sugawara Y, Yamamoto T, Arimoto
A, et al: The PD-1/PD-L1 axis may be aberrantly activated in
occupational cholangiocarcinoma. Pathol Int. 67:163–170. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Im SJ, Hashimoto M, Gerner MY, Lee J,
Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH, et al:
Defining CD8+ T cells that provide the proliferative
burst after PD-1 therapy. Nature. 537:417–421. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Sabbatino F, Villani V, Yearley JH,
Deshpande V, Cai L, Konstantinidis IT, Moon C, Nota S, Wang Y,
Al-Sukaini A, et al: PD-L1 and HLA class I antigen expression and
clinical course of the disease in intrahepatic cholangiocarcinoma.
Clin Cancer Res. 22:470–478. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yi M, Jiao D, Xu H, Liu Q, Zhao W, Han X
and Wu K: Biomarkers for predicting efficacy of PD-1/PD-L1
inhibitors. Mol Cancer. 23:1292018. View Article : Google Scholar
|
|
16
|
Kwok G, Yau TC, Chiu JW, Tse E and Kwong
YL: Pembrolizumab (Keytruda). Hum Vaccin Immunother. 12:2777–2789.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Piha-Paul SA, Oh DY, Ueno M, Malka D,
Chung HC, Nagrial A, Kelley RK, Ros W, Italiano A, Nakagawa K, et
al: Efficacy and safety of pembrolizumab for the treatment of
advanced biliary cancer: Results from the KEYNOTE-158 and
KEYNOTE-028 studies. Int J Cancer. 15:2190–2198. 2020. View Article : Google Scholar
|
|
18
|
Finkelmeier F, Waidmann O and Trojan J:
Nivolumab for the treatment of hepatocellular carcinoma. Expert Rev
Anticancer Ther. 18:1169–1175. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Kim RD, Chung V, Alese OB, El-Rayes BF, Li
D, Al-Toubah TE, Schell MJ, Zhou JM, Mahipal A, Kim BH, et al: A
phase 2 multi-institutional study of nivolumab for patients with
advanced refractory biliary tract cance. JAMA Oncol. 6:1–8. 2020.
View Article : Google Scholar
|
|
20
|
Pellino A, Loupakis F, Cadamuro M,
Dadduzio V, Fassan M, Guido M, Cillo U, Indraccolo S and Fabris L:
Precision medicine in cholangiocarcinoma. Transl Gastroenterol
Hepatol. 3:402018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Le DT, Uram JN, Wang H, Bartlett BR,
Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et
al: PD-1 blockade in tumors with mismatch-repair deficiency. N Engl
J Med. 372:2509–2520. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Le DT, Durham JN, Smith KN, Wang H,
Bartlett BR, Aulakh LK, Lu S, Kemberling H, Wilt C, Luber BS, et
al: Mismatch repair deficiency predicts response of solid tumors to
PD-1 blockade. Science. 357:409–413. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Snyder A, Makarov V, Merghoub T, Yuan J,
Zaretsky JM, Desrichard A, Walsh LA, Postow MA, Wong P, Ho TS, et
al: Genetic basis for clinical response to CTLA-4 blockade in
melanoma. N Engl J Med. 371:2189–2199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhu B, Tang L, Chen S, Yin C, Peng S, Li
X, Liu T, Liu W, Han C, Stawski L, et al: Targeting the upstream
transcriptional activator of PD-L1 as an alternative strategy in
melanoma therapy. Oncogene. 37:4941–4954. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Dudley JC, Lin MT, Le DT and Eshleman JR:
Microsatellite instability as a biomarker for PD-1 blockade. Clin
Cancer Res. 22:813–820. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Stoiber S, Cadilha BL, Benmebarek MR,
Lesch S, Endres S and Kobold S: Limitations in the design of
chimeric antigen receptors for cancer therapy. Cells. 8:4722019.
View Article : Google Scholar
|
|
27
|
Gomes da Silva D, Mukherjee M, Madhuwanti
S, Dakhova O, Liu H, Grilley B, Gee AP, Neelapu SS, Rooney CM,
Heslop HE, et al: Direct comparison of in vivo fate of second and
third-generation CD19-specific chimeric antigen receptor (CAR)-T
cells in patients with B-cell non-hodgkin lymphoma (B-NHL):
Reversal of toxicity from tonic signaling. Biol Blood Marrow
Transplant. 23:S55–S56. 2017. View Article : Google Scholar
|
|
28
|
Tokarew N, Ogonek J, Endres S, von
Bergwelt-Baildon M and Kobold S: Teaching an old dog new tricks:
Next-generation CAR T cells. Br J Cancer. 120:26–37. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang J, Endres S and Kobold S: Enhancing
tumor T cell infiltration to enable cancer immunotherapy.
Immunotherapy. 11:201–213. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Bielamowicz K, Fousek K, Byrd TT, Samaha
H, Mukherjee M, Aware N, Wu MF, Orange JS, Sumazin P, Man TK, et
al: Trivalent CAR T cells overcome interpatient antigenic
variability in glioblastoma. Neuro Oncol. 20:506–518. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yu S, Li A, Liu Q, Li T, Yuan X, Han X and
Wu K: Chimeric antigen receptor T cells: A novel therapy for solid
tumors. J Hematol Oncol. 10:782017. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Feng KC, Guo YL, Liu Y, Dai HR, Wang Y, Lv
HY, Huang JH, Yang QM and Hanet WD: Cocktail treatment with
EGFR-specific and CD133-specific chimeric antigen receptor-modified
T cells in a patient with advanced cholangiocarcinoma. J Hematol
Oncol. 10:42017. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q,
Wang Y, Jia H and Han W: Phase I study of chimeric antigen
receptor-modified T cells in patients with EGFR-positive advanced
biliary tract cancers. Clin Cancer Res. 24:1277–1286. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Yu L and Wang J: T cell-redirecting
bispecific antibodies in cancer immunotherapy: Recent advances. J
Cancer Res Clin Oncol. 145:941–956. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chiu D, Tavaré R, Haber L, Aina OH,
Vazzana K, Ram P, Danton M, Finney J, Jalal S, Krueger P, et al: A
PSMA-Targeting CD3 bispecific antibody induces antitumor responses
that are enhanced by 4-1BB costimulation. Cancer Immunol Res.
8:596–608. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Yoon A, Lee S, Lee S, Lim S, Park YY, Song
E, Kim DS, Kim K and Lim Y: A novel T cell-engaging bispecific
antibody for treating mesothelin-positive solid tumors.
Biomolecules. 10:3992020. View Article : Google Scholar
|
|
37
|
Thakur A, Scholler J, Schalk DL, June CH
and Lum LG: Enhanced cytotoxicity against solid tumors by
bispecific antibody-armed CD19 CAR T cells: A proof-of-concept
study. J Cancer Res Clin Oncol. 146:2007–2016. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lum LG, Thakur A, Elhakiem A, Alameer L,
Dinning E and Huang M: Anti-CS1 × anti-CD3 bispecific antibody
(BiAb)-armed anti-CD3 activated T cells (CS1-BATs) kill
CS1+ myeloma cells and release type-1 cytokines. Front
Oncol. 10:5442020. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Cebada J, Flores A, Bandala C,
Lizaliturri-Flores I, Villa-Ruano N and Perez-Santos M: Bispecific
anti-PD-1/LAG-3 antibodies for treatment of advanced or metastatic
solid tumors: A patent evaluation of US2018326054. Expert Opin Ther
Pat. 30:1–8. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Yoshida H, Katayose Y, Unno M, Suzuki M,
Kodama H, Takemura Si, Asano R, Hayashi H, Yamamoto K, Matsuno S,
et al: A novel adenovirus expressing human 4-1BB ligand enhances
antitumor immunity. Cancer Immunol Immunother. 52:97–106. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hill C and Carlisle R: Achieving systemic
delivery of oncolytic viruses. Expert Opin Drug Deliv. 16:607–620.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Groeneveldt C, van Hall T, van der Burg
SH, Ten Dijke P and van Montfoort N: Immunotherapeutic potential of
TGF-β inhibition and oncolytic viruses. Trends Immunol. 41:406–420.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Marelli G, Howells A, Lemoine NR and Wang
Y: Oncolytic viral therapy and the immune system: A double-edged
sword against cancer. Front Immunol. 9:8662018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Cervera-Carrascon V, Quixabeira DC,
Havunen R, Santos JM, Kutvonen E, Clubb JH, Siurala M, Heiniö C,
Zafar S, Koivula T, et al: Comparison of clinically relevant
oncolytic virus platforms for enhancing T cell therapy of solid
tumors. Mol Ther Oncolytics. 17:47–60. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Hamid O, Ismail R and Puzanov I:
Intratumoral immunotherapy-update 2019. Oncologist. 25:e423–e438.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ahmed J, Chard LS, Yuan M, Wang J, Howells
A, Li Y, Li H, Zhang Z, Lu S, Gao D, et al: A new oncolytic
vacciniavirus augments antitumor immune responses to prevent tumor
recurrence and metastasis after surgery. J Immunother Cancer.
8:e0004152020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zheng M, Huang J, Tong A and Yang H:
Oncolytic viruses for cancer therapy: Barriers and recent advances.
Mol Ther Oncolytics. 15:234–247. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Reale A, Vitiello A, Conciatori V, Parolin
C, Calistri A and Palù G: Perspectives on immunotherapy via
oncolytic viruses. Infect Agent Cancer. 14:52019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lange S, Lampe J, Bossow S, Zimmermann M,
Neubert W, Bitzer M and Laueret UM: A novel armed oncolytic measles
vaccine virus for the treatment of cholangiocarcinoma. Hum Gene
Ther. 24:554–564. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhu ZB, Chen Y, Makhija SK, Lu B, Wang M,
Rivera AA, Yamamoto M, Wang S, Siegal GP, Curiel DT and McDonald
JM: Survivin promoter-based conditionally replicative adenoviruses
target cholangiocarcinoma. Int J Oncol. 29:1319–1329.
2006.PubMed/NCBI
|
|
51
|
Thomas S and Prendergast GC: Cancer
vaccines: A brief overview. Methods Mol Biol. 1403:755–761. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kobayashi M, Sakabe T, Abe H, Tanii M,
Takahashi H, Chiba A, Yanagida E, Shibamoto Y, Ogasawara M,
Tsujitani Si, et al: Dendritic cell-based immunotherapy targeting
synthesized peptides for advanced biliary tract cancer. J
Gastrointest Surg. 17:1609–1617. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jiraviriyakul A, Songjang W, Kaewthet P,
Tanawatkitichai P, Bayan P and Pongcharoen S: Honokiol-enhanced
cytotoxic T lymphocyte activity against cholangiocarcinoma cells
mediated by dendritic cells pulsed with damage-associated molecular
patterns. World J Gastroenterol. 25:3941–3955. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shimizu K, Kotera Y, Aruga A, Takeshita N,
Takasaki K and Yamamoto M: Clinical utilization of postoperative
dendritic cell vaccine plus activated T-cell transfer in patients
with intrahepatic cholangiocarcinoma. J Hepatobiliary Pancreat Sci.
19:171–178. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q,
Yan N, Ma R, Wang L, Yao M and Wang K: Successful response to the
combination of immunotherapy and chemotherapy in cholangiocarcinoma
with high tumour mutational burden and PD-L1 expression: A case
report. BMC Cancer. 18:11052018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Feng K, Liu Y, Zhao Y, Yang Q, Dong L, Liu
J, Li X, Zhao Z, Mei Q and Han W: Efficacy and biomarker analysis
of nivolumab plus gemcitabine and cisplatin in patients with
unresectable or metastatic biliary tract cancers: Results from a
phase II study. J Immunother Cancer. 8:e0003672020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Valle J, Wasan H, Palmer DH, Cunningham D,
Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira
SP, et al: Cisplatin plus gemcitabine versus gemcitabine for
biliary tract cancer. N Engl J Med. 362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Malka D, Cervera P, Foulon S, Trarbach T,
de la Fouchardière C, Boucher E, Fartoux L, Faivre S, Blanc JF,
Viret F, et al: Gemcitabine and oxaliplatin with or without
cetuximab in advanced biliary-tract cancer (BINGO): A randomised,
open-label, non-comparative phase 2 trial. Lancet Oncol.
15:819–828. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sui M, Li Y, Wang H, Luo Y, Wan T, Wang X,
Hu B, Cheng Y, Lv X, Xin X, et al: Two cases of intrahepatic
cholangiocellular carcinoma with high insertion-deletion ratios
that achieved a complete response following chemotherapy combined
with PD-1 blockade. J Immunother Cancer. 7:1252019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Formenti SC: Immunological aspects of
local radiotherapy: Clinical relevance. Discov Med. 9:119–124.
2010.PubMed/NCBI
|
|
61
|
Liu X, Yao J, Song L, Zhang S, Huang T and
Li Y: Local and abscopal responses in advanced intrahepatic
cholangiocarcinoma with low TMB, MSS, pMMR and negative PD-L1
expression following combined therapy of SBRT with PD-1 blockade. J
Immunother Cancer. 7:2042019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jarnagin WR, Zager JS, Hezel M, Stanziale
SF, Adusumilli PS, Gonen M, Ebright MI, Culliford A, Gusani NJ,
Fong Y, et al: Treatment of cholangiocarcinoma with oncolytic
herpes simplex virus combined with external beam radiation therapy.
Cancer Gene Ther. 13:326–334. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Churi CR, Shroff R, Wang Y, Rashid A, Kang
HC, Weatherly J, Zuo M, Zinner R, Hong D, Meric-Bernstam F, et al:
Mutation profiling in cholangiocarcinoma: Prognostic and
therapeutic implications. PLoS One. 9:e1153832014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Mazzaferro V, El-Rayes BF, Busset MD,
Cotsoglou C, Harris WP, Damjanov N, Masi G, Rimassa L, Personeni N,
Braiteh F, et al: Derazantinib (ARQ 087) in advanced or inoperable
FGFR2 gene fusion-positive intrahepatic cholangiocarcinoma. Br J
Cancer. 120:165–171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Abou-Alfa GK, Sahai V, Hollebecque A,
Vaccaro G, Melisi D, Al-Rajabi R, Paulson AS, Borad MJ, Gallinson
D, Murphy AG, et al: Pemigatinib for previously treated, locally
advanced or metastatic cholangiocarcinoma: A multicentre,
open-label, phase 2 study. Lancet Oncol. 21:671–684. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Suyama K and Iwase H: Lenvatinib: A
promising molecular targeted agent for multiple cancers. Cancer
Control. 25:10732748187893612018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Chen WX, Li GX, Hu ZN, Zhu P, Zhang BX and
Ding ZY: Significant response to anti-PD-1 based immunotherapy plus
lenvatinib for recurrent intrahepatic cholangiocarcinoma with bone
metastasis: A case report and literature review. Medicine
(Baltimore). 98:e178322019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Klein O, Kee D, Nagrial A, Markman B,
Underhill C, Michael M, Jackett L, Lum C, Behren A, Palmer J, et
al: Evaluation of combination nivolumab and ipilimumab
immunotherapy in patients with advanced biliary tract cancers:
Subgroup analysis of a phase 2 nonrandomized clinical trial. JAMA
Oncol. 30:e2028142020.
|
|
69
|
Simone V, Brunetti O, Lupo L, Testini M,
Maiorano E, Simone M, Longo V, Rolfo C, Peeters M, Scarpa A, et al:
Targeting angiogenesis in biliary tract cancers: An open option.
Int J Mol Sci. 18:4182017. View Article : Google Scholar
|
|
70
|
Fukumura D, Kloepper J, Amoozgar Z, Duda
DG and Jain RK: Enhancing cancer immunotherapy using
antiangiogenics: Opportunities and challenges. Nat Rev Clin Oncol.
15:325–340. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yoshikawa D, Ojima H, Iwasaki M, Hiraoka
N, Kosuge T, Kasai S, Hirohashi S and Shibata T:
Clinicopathological and prognostic significance of EGFR, VEGF, and
HER2 expression in cholangiocarcinoma. Br J Cancer. 98:418–425.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Fukumura D, Xavier R, Sugiura T, Chen Y,
Park EC, Lu N, Selig M, Nielsen G, Taksir T, Jain RK and Seed B:
Tumor induction of VEGF promoter activity in stromal cells. Cell.
94:715–725. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Guion-Dusserre JF, Lorgis V, Vincent J,
Bengrine L and Ghiringhelli F: FOLFIRI plus bevacizumab as a
second-line therapy for metastatic intrahepatic cholangiocarcinoma.
World J Gastroenterol. 21:2096–2101. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pan TT, Wang W, Jia WD and Xu GL: A
single-center experience of sorafenib monotherapy in patients with
advanced intrahepatic cholangiocarcinoma. Oncol Lett. 13:2957–2964.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Sun W, Patel A, Normolle D, Patel K, Ohr
J, Lee JJ, Bahary N, Chu E, Streeter N and Drummond S: A phase 2
trial of regorafenib as a single agent in patients with
chemotherapy-refractory, advanced, and metastatic biliary tract
adenocarcinoma. Cancer. 125:902–909. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Schmittnaegel M, Rigamonti N, Kadioglu E,
Cassará A, Rmili CW, Kiialainen A, Kienast Y, Mueller HJ, Ooi CH,
Laoui D and De Palma M: Dual angiopoietin-2 and VEGFA inhibition
elicits antitumor immunity that is enhanced by PD-1 checkpoint
blockade. Sci Transl Med. 9:eaak96702017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Allen E, Jabouille A, Rivera LB,
Lodewijckx I, Missiaen R, Steri V, Feyen K, Tawney J, Hanahan D,
Michael IP and Bergers G: Combined antiangiogenic and anti-PD-L1
therapy stimulates tumor immunity through HEV formation. Sci Transl
Med. 9:eaak96792017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Arkenau HT, Martin-Liberal J, Calvo E,
Penel N, Krebs MG, Herbst RS, Walgren RA, Widau RC, Mi G, Jin J, et
al: Ramucirumab plus pembrolizumab in patients with previously
treated advanced or metastatic biliary tract cancer: Nonrandomized,
open-label, phase i trial (JVDF). Oncologist. 23:e1407–e1436. 2018.
View Article : Google Scholar
|
|
79
|
Marabelle A, Le DT, Ascierto PA, Di
Giacomo AM, De Jesus-Acosta AD, Delord JP, Geva R, Gottfried M,
Penel N, Hansen AR, et al: Efficacy of pembrolizumab in patients
with noncolorectal high microsatellite instability/mismatch
repair-deficient cancer: Results from the phase II KEYNOTE-158
study. J Clin Oncol. 38:1–10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ott PA, Bang YJ, Piha-Paul SA, Razak AR,
Bennouna J, Soria JC, Rugo HS, Cohen RB, ONeil BH, Mehnert JM, et
al: T-Cell-Inflamed gene-expression profile, programmed death
ligand 1 expression, and tumor mutational burden predict efficacy
in patients treated with pembrolizumab across 20 cancers:
KEYNOTE-028. J Clin Oncol. 37:318–327. 2019. View Article : Google Scholar : PubMed/NCBI
|