Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2021 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review)

  • Authors:
    • Hong-Jiao Li
    • Yi Wang
    • Bing-Xin Li
    • Yang Yang
    • Feng  Guan
    • Xing-Chen Pang
    • Xiang Li
  • View Affiliations / Copyright

    Affiliations: Key Laboratory of Resource Biology and Biotechnology Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, P.R. China, Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi 710069, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 1
    |
    Published online on: November 3, 2020
       https://doi.org/10.3892/ol.2020.12262
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Members of the ten‑eleven translocation (TET) protein family of which three mammalian TET proteins have been discovered so far, catalyze the sequential oxidation of 5‑methylcytosine to 5‑hydroxymethylcytosine, 5‑formylcytosine, and 5‑carboxylcytosine which serve an important role in embryonic development and tumor progression. O‑GlcNAcylation (O‑linked β‑N‑acetylglucosaminylation) is a reversible post‑translational modification known to serve important roles in tumorigenesis and metastasis especially in hematopoietic malignancies such as myelodysplastic syndromes, chronic myelomonocytic leukemia and acute myeloid leukemia. O‑GlcNAcylation activity requires only two enzymes: O‑GlcNAc transferase (OGT) and O‑GlcNAcase (OGA). OGT catalyzes attachment of GlcNAc sugar to serine, threonine and cytosine residues in proteins, while OGA hydrolyzes O‑GlcNAc attached to proteins. Numerous recent studies have demonstrated that TETs can be O‑GlcNAcylated by OGT, with consequent alteration of TET activity and stability. The present review focuses on the cellular, biological and biochemical functions of TET and its O‑GlcNAcylated form and proposes a model of the role of TET/OGT complex in regulation of target proteins during cancer development. In addition, the present review provides directions for future research in this area.
View Figures

Figure 1

Figure 2

View References

1 

Schubeler D: Function and information content of DNA methylation. Nature. 517:321–326. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Scott-Browne JP, Lio CJ and Rao A: TET proteins in natural and induced differentiation. Curr Opin Genet Dev. 46:202–208. 2017. View Article : Google Scholar : PubMed/NCBI

3 

Yang X and Qian K: Protein O-GlcNAcylation: Emerging mechanisms and functions. Nat Rev Mol Cell Biol. 18:452–465. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Wells L, Vosseller K and Hart GW: Glycosylation of nucleocytoplasmic proteins: Signal transduction and O-GlcNAc. Science. 291:2376–2378. 2001. View Article : Google Scholar : PubMed/NCBI

5 

Hart GW, Housley MP and Slawson C: Cycling of O-linked beta-N-acetylglucosamine on nucleocytoplasmic proteins. Nature. 446:1017–1022. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Vella P, Scelfo A, Jammula S, Chiacchiera F, Williams K, Cuomo A, Roberto A, Christensen J, Bonaldi T, Helin K and Pasini D: Tet proteins connect the O-linked N-acetylglucosamine transferase Ogt to chromatin in embryonic stem cells. Mol Cell. 49:645–656. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Hrit J, Goodrich L, Li C, Wang BA, Nie J, Cui X, Martin EA, Simental E, Fernandez J, Liu MY, et al: OGT binds a conserved C-terminal domain of TET1 to regulate TET1 activity and function in development. Elife. 7:e348702018. View Article : Google Scholar : PubMed/NCBI

8 

Baylin SB and Jones PA: A decade of exploring the cancer epigenome-biological and translational implications. Nat Rev Cancer. 11:726–734. 2011. View Article : Google Scholar : PubMed/NCBI

9 

Darılmaz Yüce G and Ortaç Ersoy E: Lung cancer and epigenetic modifications. Tuberk Toraks. 64:163–170. 2016.(In Turkish). View Article : Google Scholar : PubMed/NCBI

10 

Sasanakietkul T, Murtha TD, Javid M, Korah R and Carling T: Epigenetic modifications in poorly differentiated and anaplastic thyroid cancer. Mol Cell Endocrinol. 469:23–37. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Alam R, Abdolmaleky HM and Zhou JR: Microbiome, inflammation, epigenetic alterations, and mental diseases. Am J Med Genet B Neuropsychiatr Genet. 174:651–660. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Ciesielski P, Jozwiak P and Krzeslak A: TET proteins and epigenetic modifications in cancers. Postepy Hig Med Dosw (Online). 69:1371–1383. 2015.(In Polish). View Article : Google Scholar : PubMed/NCBI

13 

Li D and Zeng Z: Epigenetic regulation of histone H3 in the process of hepatocellular tumorigenesis. Biosci Rep. 39:BSR201918152019. View Article : Google Scholar : PubMed/NCBI

14 

Losi L, Lauriola A, Tazzioli E, Gozzi G, Scurani L, D'Arca D and Benhattar J: Involvement of epigenetic modification of TERT promoter in response to all-trans retinoic acid in ovarian cancer cell lines. J Ovarian Res. 12:622019. View Article : Google Scholar : PubMed/NCBI

15 

Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L and Rao A: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 324:930–935. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Song J, Moscinski L, Zhang H, Zhang X and Hussaini M: Does SF3B1/TET2 double mutation portend better or worse prognosis Than Isolated SF3B1 or TET2 Mutation? Cancer Genomics Proteomics. 16:91–98. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Shen L, Wu H, Diep D, Yamaguchi S, D'Alessio AC, Fung HL, Zhang K and Zhang Y: Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell. 153:692–706. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Ko M, An J, Bandukwala HS, Chavez L, Aijö T, Pastor WA, Segal MF, Li H, Koh KP, Lähdesmäki H, et al: Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature. 497:122–126. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Good CR, Madzo J, Patel B, Maegawa S, Engel N, Jelinek J and Issa JJ: A novel isoform of TET1 that lacks a CXXC domain is overexpressed in cancer. Nucleic Acids Res. 45:8269–8281. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Koh KP, Yabuuchi A, Rao S, Huang Y, Cunniff K, Nardone J, Laiho A, Tahiliani M, Sommer CA, Mostoslavsky G, et al: Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell. 8:200–213. 2011. View Article : Google Scholar : PubMed/NCBI

21 

Dawlaty MM, Breiling A, Le T, Barrasa MI, Raddatz G, Gao Q, Powell BE, Cheng AW, Faull KF, Lyko F and Jaenisch R: Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell. 29:102–111. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Gu TP, Guo F, Yang H, Wu HP, Xu GF, Liu W, Xie ZG, Shi L, He X, Jin SG, et al: The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 477:606–610. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C and Zhang Y: Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science. 333:1300–1303. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Cheng J, Guo S, Chen S, Mastriano SJ, Liu C, D'Alessio AC, Hysolli E, Guo Y, Yao H, Megyola CM, et al: An extensive network of TET2-targeting microRNAs regulates malignant hematopoiesis. Cell Rep. 5:471–481. 2013. View Article : Google Scholar : PubMed/NCBI

25 

Yang H, Liu Y, Bai F, Zhang JY, Ma SH, Liu J, Xu ZD, Zhu HG, Ling ZQ, Ye D, et al: Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene. 32:663–669. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, Schnittger S, Sanada M, Kon A, Alpermann T, et al: Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia. 28:241–247. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Fernandez-Mercado M, Yip BH, Pellagatti A, Davies C, Larrayoz MJ, Kondo T, Pérez C, Killick S, McDonald EJ, Odero MD, et al: Mutation patterns of 16 genes in primary and secondary acute myeloid leukemia (AML) with normal cytogenetics. PLoS One. 7:e423342012. View Article : Google Scholar : PubMed/NCBI

28 

Shih AH, Abdel-Wahab O, Patel JP and Levine RL: The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 12:599–612. 2012. View Article : Google Scholar : PubMed/NCBI

29 

Li R, Zhou Y, Cao Z, Liu L, Wang J, Chen Z, Xing W, Chen S, Bai J, Yuan W, et al: TET2 loss dysregulates the behavior of bone marrow mesenchymal stromal cells and accelerates Tet2−/−Driven myeloid malignancy progression. Stem Cell Reports. 10:166–179. 2018. View Article : Google Scholar : PubMed/NCBI

30 

Li Z, Cai X, Cai CL, Wang J, Zhang W, Petersen BE, Yang FC and Xu M: Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood. 118:4509–4518. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Wang L, Ozark PA, Smith ER, Zhao Z, Marshall SA, Rendleman EJ, Piunti A, Ryan C, Whelan AL, Helmin KA, et al: TET2 coactivates gene expression through demethylation of enhancers. Sci Adv. 4:eaau69862018. View Article : Google Scholar : PubMed/NCBI

32 

Pan W, Zhu S, Qu K, Meeth K, Cheng J, He K, Ma H, Liao Y, Wen X, Roden C, et al: The DNA Methylcytosine Dioxygenase Tet2 sustains immunosuppressive function of Tumor-infiltrating myeloid cells to promote melanoma progression. Immunity. 47:284–297.e5. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Itoh H, Kadomatsu T, Tanoue H, Yugami M, Miyata K, Endo M, Morinaga J, Kobayashi E, Miyamoto T, Kurahashi R, et al: TET2-dependent IL-6 induction mediated by the tumor microenvironment promotes tumor metastasis in osteosarcoma. Oncogene. 37:2903–2920. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Levine ZG and Walker S: The Biochemistry of O-GlcNAc Transferase: Which functions make it essential in mammalian cells? Annu Rev Biochem. 85:631–657. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Ma J, Banerjee P, Whelan SA, Liu T, Wei AC, Ramirez-Correa G, McComb ME, Costello CE, O'Rourke B, Murphy A and Hart GW: Comparative proteomics reveals dysregulated mitochondrial O-GlcNAcylation in diabetic hearts. J Proteome Res. 15:2254–2264. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Hart GW, Slawson C, Ramirez-Correa G and Lagerlof O: Cross talk between O-GlcNAcylation and phosphorylation: Roles in signaling, transcription, and chronic disease. Annu Rev Biochem. 80:825–858. 2011. View Article : Google Scholar : PubMed/NCBI

37 

Love DC and Hanover JA: The hexosamine signaling pathway: Deciphering the ‘O-GlcNAc code’. Sci STKE. 2005:re132005.PubMed/NCBI

38 

Gambetta MC and Muller J: A critical perspective of the diverse roles of O-GlcNAc transferase in chromatin. Chromosoma. 124:429–442. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Bond MR and Hanover JA: O-GlcNAc cycling: A link between metabolism and chronic disease. Annu Rev Nutr. 33:205–229. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Hanover JA, Krause MW and Love DC: Bittersweet memories: Linking metabolism to epigenetics through O-GlcNAcylation. Nat Rev Mol Cell Biol. 13:312–321. 2012. View Article : Google Scholar : PubMed/NCBI

41 

Mulloy B, Dell A, Stanley P and James HP: Structural analysis of glycans. In: Essentials of Glycobiology 3rd. Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al: Cold Spring Harbor; NY: pp. 639–652. 2015, PubMed/NCBI

42 

Maynard JC, Burlingame AL and Medzihradszky KF: Cysteine S-linked N-acetylglucosamine (S-GlcNAcylation), A new post-translational modification in mammals. Mol Cell Proteomics. 15:3405–3411. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Berthier A, Vinod M, Porez G, Steenackers A, Alexandre J, Yamakawa N, Gheeraert C, Ploton M, Maréchal X, Dubois-Chevalier J, et al: Combinatorial regulation of hepatic cytoplasmic signaling and nuclear transcriptional events by the OGT/REV-ERBα complex. Proc Natl Acad Sci USA. 115:E11033–E11042. 2018. View Article : Google Scholar : PubMed/NCBI

44 

Gao J, Yang Y, Qiu R, Zhang K, Teng X, Liu R and Wang Y: Proteomic analysis of the OGT interactome: Novel links to epithelial-mesenchymal transition and metastasis of cervical cancer. Carcinogenesis. 39:1222–1234. 2018. View Article : Google Scholar : PubMed/NCBI

45 

Biwi J, Clarisse C, Biot C, Kozak RP, Madunic K, Mortuaire M, Wuhrer M, Spencer DIR, Schulz C, Guerardel Y, et al: OGT Controls the expression and the glycosylation of E-cadherin, and affects glycosphingolipid structures in human colon cell lines. Proteomics. 19:e18004522019. View Article : Google Scholar : PubMed/NCBI

46 

Shi Y, Tomic J, Wen F, Shaha S, Bahlo A, Harrison R, Dennis JW, Williams R, Gross BJ, Walker S, et al: Aberrant O-GlcNAcylation characterizes chronic lymphocytic leukemia. Leukemia. 24:1588–1598. 2010. View Article : Google Scholar : PubMed/NCBI

47 

Hayakawa K, Hirosawa M, Tabei Y, Arai D, Tanaka S, Murakami N, Yagi S and Shiota K: Epigenetic switching by the metabolism- sensing factors in the generation of orexin neurons from mouse embryonic stem cells. J Biol Chem. 288:17099–17110. 2013. View Article : Google Scholar : PubMed/NCBI

48 

Toleman C, Paterson AJ, Whisenhunt TR and Kudlow JE: Characterization of the histone acetyltransferase (HAT) domain of a bifunctional protein with activable O-GlcNAcase and HAT activities. J Biol Chem. 279:53665–53673. 2004. View Article : Google Scholar : PubMed/NCBI

49 

Singh JP, Qian K, Lee JS, Zhou J, Han X, Zhang B, Ong Q, Ni W, Jiang M, Ruan HB, et al: O-GlcNAcase targets pyruvate kinase M2 to regulate tumor growth. Oncogene. 39:560–573. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Macauley MS, Shan X, Yuzwa SA, Gloster TM and Vocadlo DJ: Elevation of Global O-GlcNAc in rodents using a selective O-GlcNAcase inhibitor does not cause insulin resistance or perturb glucohomeostasis. Chem Biol. 17:949–958. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Fuentes-García G, Castañeda-Patlan MC, Vercoutter-Edouart AS, Lefebvre T and Robles-Flores M: O-GlcNAcylation Is Involved in the regulation of stem cell markers expression in colon cancer cells. Front Endocrinol (Lausanne). 10:2892019. View Article : Google Scholar : PubMed/NCBI

52 

Jang H, Kim TW, Yoon S, Choi SY, Kang TW, Kim SY, Kwon YW, Cho EJ and Youn HD: O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell. 11:62–74. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Olivier-Van Stichelen S, Wang P, Comly M, Love DC and Hanover JA: Nutrient-driven O-linked N-acetylglucosamine (O-GlcNAc) cycling impacts neurodevelopmental timing and metabolism. J Biol Chem. 292:6076–6085. 2017. View Article : Google Scholar : PubMed/NCBI

54 

Abramowitz LK, Harly C, Das A, Bhandoola A and Hanover JA: Blocked O-GlcNAc cycling disrupts mouse hematopoeitic stem cell maintenance and early T cell development. Sci Rep. 9:125692019. View Article : Google Scholar : PubMed/NCBI

55 

Delatte B and Fuks F: TET proteins: On the frenetic hunt for new cytosine modifications. Brief Funct Genomics. 12:191–204. 2013. View Article : Google Scholar : PubMed/NCBI

56 

Ito R, Katsura S, Shimada H, Tsuchiya H, Hada M, Okumura T, Sugawara A and Yokoyama A: TET3-OGT interaction increases the stability and the presence of OGT in chromatin. Genes Cells. 19:52–65. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Shi FT, Kim H, Lu W, He Q, Liu D, Goodell MA, Wan M and Songyang Z: Ten-eleven translocation 1 (Tet1) is regulated by O-linked N-acetylglucosamine transferase (Ogt) for target gene repression in mouse embryonic stem cells. J Biol Chem. 288:20776–20784. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Zhang Q, Liu X, Gao W, Li P, Hou J, Li J and Wong J: Differential regulation of the ten-eleven translocation (TET) family of dioxygenases by O-linked β-N-acetylglucosamine transferase (OGT). J Biol Chem. 289:5986–5996. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Bauer C, Gobel K, Nagaraj N, Colantuoni C, Wang M, Müller U, Kremmer E, Rottach A and Leonhardt H: Phosphorylation of TET proteins is regulated via O-GlcNAcylation by the O-linked N-acetylglucosamine transferase (OGT). J Biol Chem. 290:4801–4812. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Singh JP, Zhang K, Wu J and Yang X: O-GlcNAc signaling in cancer metabolism and epigenetics. Cancer Lett. 356:244–250. 2015. View Article : Google Scholar : PubMed/NCBI

61 

Fujiki R, Hashiba W, Sekine H, Yokoyama A, Chikanishi T, Ito S, Imai Y, Kim J, He HH, Igarashi K, et al: GlcNAcylation of histone H2B facilitates its monoubiquitination. Nature. 480:557–560. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Chen Q, Chen Y, Bian C, Fujiki R and Yu X: TET2 promotes histone O-GlcNAcylation during gene transcription. Nature. 493:561–564. 2013. View Article : Google Scholar : PubMed/NCBI

63 

Deplus R, Delatte B, Schwinn MK, Defrance M, Mendez J, Murphy N, Dawson MA, Volkmar M, Putmans P, Calonne E, et al: TET2 and TET3 regulate GlcNAcylation and H3K4 methylation through OGT and SET1/COMPASS. EMBO J. 32:645–655. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Hsu CH, Peng KL, Kang ML, Chen YR, Yang YC, Tsai CH, Chu CS, Jeng YM, Chen YT, Lin FM, et al: TET1 suppresses cancer invasion by activating the tissue inhibitors of metalloproteinases. Cell Rep. 2:568–579. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Guan W, Guyot R, Samarut J, Flamant F, Wong J and Gauthier KC: Methylcytosine dioxygenase TET3 interacts with thyroid hormone nuclear receptors and stabilizes their association to chromatin. Proc Natl Acad Sci USA. 114:8229–8234. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Phoomak C, Silsirivanit A, Park D, Sawanyawisuth K, Vaeteewoottacharn K, Wongkham C, Lam EW, Pairojkul C, Lebrilla CB and Wongkham S: O-GlcNAcylation mediates metastasis of cholangiocarcinoma through FOXO3 and MAN1A1. Oncogene. 37:5648–565. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Liberti MV and Locasale JW: The warburg effect: How does it benefit cancer cells? Trends Biochem Sci. 41:211–228. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Ma Z and Vosseller K: Cancer metabolism and elevated O-GlcNAc in oncogenic signaling. J Biol Chem. 289:34457–34465. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Yang WH, Kim JE, Nam HW, Ju JW, Kim HS, Kim YS and Cho JW: Modification of p53 with O-linked N-acetylglucosamine regulates p53 activity and stability. Nat Cell Biol. 8:1074–1083. 2026. View Article : Google Scholar

70 

Itkonen HM, Minner S, Guldvik IJ, Sandmann MJ, Tsourlakis MC, Berge V, Svindland A, Schlomm T and Mills IG: O-GlcNAc transferase integrates metabolic pathways to regulate the stability of c-MYC in human prostate cancer cells. Cancer Res. 73:5277–5287. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Olivier-Van Stichelen S, Guinez C, Mir AM, Perez-Cervera Y, Liu C, Michalski JC and Lefebvre T: The hexosamine biosynthetic pathway and O-GlcNAcylation drive the expression of β-catenin and cell proliferation. Am J Physiol Endocrinol Metab. 302:E417–E424. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Thomson JP, Ottaviano R, Unterberger EB, Lempiäinen H, Muller A, Terranova R, Illingworth RS, Webb S, Kerr AR, Lyall MJ, et al: Loss of Tet1-Associated 5-hydroxymethylcytosine is concomitant with aberrant promoter hypermethylation in liver cancer. Cancer Res. 76:3097–3108. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, Kosmider O, Le Couedic JP, Robert F, Alberdi A, et al: Mutation in TET2 in myeloid cancers. N Engl J Med. 360:2289–2301. 2029. View Article : Google Scholar

74 

Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, Berthon C, Adès L, Fenaux P, Beyne-Rauzy O, et al: Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 31:2428–2436. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Nibourel O, Kosmider O, Cheok M, Boissel N, Renneville A, Philippe N, Dombret H, Dreyfus F, Quesnel B, Geffroy S, et al: Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood. 116:1132–1135. 2010. View Article : Google Scholar : PubMed/NCBI

76 

Dominguez PM, Ghamlouch H, Rosikiewicz W, Kumar P, Béguelin W, Fontán L, Rivas MA, Pawlikowska P, Armand M, Mouly E, et al: TET2 deficiency causes germinal center hyperplasia, impairs plasma cell differentiation, and promotes B-cell lymphomagenesis. Cancer Discov. 8:1632–1653. 2018.PubMed/NCBI

77 

Cao T, Pan W, Sun X and Shen H: Increased expression of TET3 predicts unfavorable prognosis in patients with ovarian cancer-a bioinformatics integrative analysis. J Ovarian Res. 12:1012019. View Article : Google Scholar : PubMed/NCBI

78 

Carella A, Tejedor JR, García MG, Urdinguio RG, Bayón GF, Sierra M, López V, García-Toraño E, Santamarina-Ojeda P, Pérez RF, et al: Epigenetic downregulation of TET3 reduces genome-wide 5hmC levels and promotes glioblastoma tumorigenesis. Int J Cancer. 146:373–387. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li H, Wang Y, Li B, Yang Y, Guan F, Pang X and Li X: Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review). Oncol Lett 21: 1, 2021.
APA
Li, H., Wang, Y., Li, B., Yang, Y., Guan, F., Pang, X., & Li, X. (2021). Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review). Oncology Letters, 21, 1. https://doi.org/10.3892/ol.2020.12262
MLA
Li, H., Wang, Y., Li, B., Yang, Y., Guan, F., Pang, X., Li, X."Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review)". Oncology Letters 21.1 (2021): 1.
Chicago
Li, H., Wang, Y., Li, B., Yang, Y., Guan, F., Pang, X., Li, X."Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review)". Oncology Letters 21, no. 1 (2021): 1. https://doi.org/10.3892/ol.2020.12262
Copy and paste a formatted citation
x
Spandidos Publications style
Li H, Wang Y, Li B, Yang Y, Guan F, Pang X and Li X: Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review). Oncol Lett 21: 1, 2021.
APA
Li, H., Wang, Y., Li, B., Yang, Y., Guan, F., Pang, X., & Li, X. (2021). Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review). Oncology Letters, 21, 1. https://doi.org/10.3892/ol.2020.12262
MLA
Li, H., Wang, Y., Li, B., Yang, Y., Guan, F., Pang, X., Li, X."Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review)". Oncology Letters 21.1 (2021): 1.
Chicago
Li, H., Wang, Y., Li, B., Yang, Y., Guan, F., Pang, X., Li, X."Roles of ten‑eleven translocation family proteins and their O‑linked β‑N‑acetylglucosaminylated forms in cancer development (Review)". Oncology Letters 21, no. 1 (2021): 1. https://doi.org/10.3892/ol.2020.12262
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team