Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
January-2021 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2021 Volume 21 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Regulation of microRNA‑497 expression in human cancer (Review)

  • Authors:
    • Guanshui Luo
    • Ke He
    • Zhenglin Xia
    • Shuai Liu
    • Hong Liu
    • Guoan Xiang
  • View Affiliations / Copyright

    Affiliations: Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, P.R. China
    Copyright: © Luo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 23
    |
    Published online on: November 11, 2020
       https://doi.org/10.3892/ol.2020.12284
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs/miRs) are a type of non‑coding single‑stranded RNA, with a length of ~22 nt, which are encoded by endogenous genes and are involved in the post‑transcriptional regulation of gene expression in animals and plants. Studies have demonstrated that miRNAs play an important role in the occurrence, development, metastasis, diagnosis and treatment of cancer. In recent years, miR‑497 has been identified as one of the key miRNAs in a variety of cancer types and has been shown to be downregulated in a variety of solid tumors. However, the regulation of miR‑497 expression involves a complex network, which is affected by several factors. The aim of the present review was to summarize the mechanism of regulation of miR‑497 expression at the pre‑transcriptional and transcriptional levels in cancer, as well as the role of miR‑497 expression imbalance in cancer diagnosis, treatment and prognosis. The regulatory mechanisms of miR‑497 expression may aid in our understanding of the causes of miR‑497 expression imbalance and provide a reference value for further research on the diagnosis and treatment of cancer.
View Figures

Figure 1

View References

1 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Shenouda SK and Alahari SK: MicroRNA function in cancer: Oncogene or a tumor suppressor? Cancer Metastasis Rev. 28:369–378. 2009. View Article : Google Scholar : PubMed/NCBI

3 

Lee RC, Feinbaum RL and Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI

4 

Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE and Mello CC: Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 391:806–811. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Kozomara A, Birgaoanu M and Griffiths-Jones S: miRBase: From microRNA sequences to function. Nucleic Acids Res. 47:D155–D162. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Joyce BT, Zheng Y, Zhang Z, Liu L, Kocherginsky M, Murphy R, Achenbach CJ, Musa J, Wehbe F, Just A, et al: miRNA-processing gene methylation and cancer risk. Cancer Epidemiol Biomarkers Prev. 27:550–557. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Yang G, Xiong G, Cao Z, Zheng S, You L, Zhang T and Zhao Y: miR-497 expression, function and clinical application in cancer. Oncotarget. 7:55900–55911. 2016. View Article : Google Scholar : PubMed/NCBI

8 

Menigatti M, Staiano T, Manser CN, Bauerfeind P, Komljenovic A, Robinson M, Jiricny J, Buffoli F and Marra G: Epigenetic silencing of monoallelically methylated miRNA loci in precancerous colorectal lesions. Oncogenesis. 2:e562013. View Article : Google Scholar : PubMed/NCBI

9 

Itesako T, Seki N, Yoshino H, Chiyomaru T, Yamasaki T, Hidaka H, Yonezawa T, Nohata N, Kinoshita T, Nakagawa M and Enokida H: The microRNA expression signature of bladder cancer by deep sequencing: The functional significance of the miR-195/497 cluster. PLoS One. 9:e843112014. View Article : Google Scholar : PubMed/NCBI

10 

Wang W, Danaher RJ, Miller CS, Berger JR, Nubia VG, Wilfred BS, Neltner JH, Norris CM and Nelson PT: Expression of miR-15/107 family microRNAs in human tissues and cultured rat brain cells. Genomics Proteomics Bioinformatics. 12:19–30. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Yan L, Huang X, Shao Q, Huang M, Deng L, Wu Q, Zeng Y and Shao J: MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 14:2348–2360. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Guo J, Miao Y, Xiao B, Huan R, Jiang Z, Meng D and Wang Y: Differential expression of microRNA species in human gastric cancer versus non-tumorous tissues. J Gastroen Hepatol. 24:652–657. 2009. View Article : Google Scholar

13 

Flavin RJ, Smyth PC, Laios A, O'Toole SA, Barrett C, Finn SP, Russell S, Ring M, Denning KM, Li J, et al: Potentially important microRNA cluster on chromosome 17p13.1 in primary peritoneal carcinoma. Mod Pathol. 22:197–205. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Özata DM, Caramuta S, Velázquez-Fernández D, Akçakaya P, Xie H, Höög A, Zedenius J, Bäckdahl M, Larsson C and Lui W: The role of microRNA deregulation in the pathogenesis of adrenocortical carcinoma. Endocr-Relat Cancer. 18:643–655. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Caramuta S, Lee L, Ozata DM, Akçakaya P, Xie H, Höög A, Zedenius J, Bäckdahl M, Larsson C and Lui WO: Clinical and functional impact of TARBP2 over-expression in adrenocortical carcinoma. Endocr Relat Cancer. 20:551–564. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Yang C, Wang C, Chen X, Chen S, Zhang Y, Zhi F, Wang J, Li L, Zhou X, Li N, et al: Identification of seven serum microRNAs from a genome-wide serum microRNA expression profile as potential noninvasive biomarkers for malignant astrocytomas. Int J Cancer. 132:116–127. 2013. View Article : Google Scholar : PubMed/NCBI

17 

Guo ST, Jiang CC, Wang GP, Li YP, Wang CY, Guo XY, Yang RH, Feng Y, Wang FH, Tseng HY, et al: MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene. 32:1910–1920. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Wang L, Jiang CF, Li DM, Ge X, Shi ZM, Li CY, Liu X, Yin Y, Zhen L, Liu LZ and Jiang BH: MicroRNA-497 inhibits tumor growth and increases chemosensitivity to 5-fluorouracil treatment by targeting KSR1. Oncotarget. 7:2660–2671. 2016. View Article : Google Scholar : PubMed/NCBI

19 

Zhang N, Shen Q and Zhang P: miR-497 suppresses epithelial-mesenchymal transition and metastasis in colorectal cancer cells by targeting fos-related antigen-1. Onco Targets Ther. 9:6597–6604. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Xu Y, Chen J, Gao C, Zhu D, Xu X, Wu C and Jiang J: MicroRNA-497 inhibits tumor growth through targeting insulin receptor substrate 1 in colorectal cancer. Oncol Lett. 14:6379–6386. 2017.PubMed/NCBI

21 

Hong S, Yan Z, Wang H, Ding L and Bi M: Up-regulation of microRNA-497-5p inhibits colorectal cancer cell proliferation and invasion via targeting PTPN3. Biosci Rep. 39:BSR201911232019. View Article : Google Scholar : PubMed/NCBI

22 

Namløs HM, Meza-Zepeda LA, Barøy T, Østensen IHG, Kresse SH, Kuijjer ML, Serra M, Bürger H, Cleton-Jansen AM and Myklebost O: Modulation of the osteosarcoma expression phenotype by microRNAs. PLoS One. 7:e480862012. View Article : Google Scholar : PubMed/NCBI

23 

Luo M, Shen D, Zhou X, Chen X and Wang W: MicroRNA-497 is a potential prognostic marker in human cervical cancer and functions as a tumor suppressor by targeting the insulin-like growth factor 1 receptor. Surgery. 153:836–847. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Xie Y, Wei RR, Huang GL, Zhang MY, Yuan YF and Wang HY: Checkpoint kinase 1 is negatively regulated by miR-497 in hepatocellular carcinoma. Med Oncol. 31:8442014. View Article : Google Scholar : PubMed/NCBI

25 

He XX, Kuang SZ, Liao JZ, Xu CR, Chang Y, Wu YL, Gong J, Tian DA, Guo AY and Lin JS: The regulation of microRNA expression by DNA methylation in hepatocellular carcinoma. Mol Biosyst. 11:532–539. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Furuta M, Kozaki K, Tanimoto K, Tanaka S, Arii S, Shimamura T, Niida A, Miyano S and Inazawa J: The tumor-suppressive miR-497-195 cluster targets multiple cell-cycle regulators in hepatocellular carcinoma. PLoS One. 8:e601552013. View Article : Google Scholar : PubMed/NCBI

27 

Yan JJ, Zhang YN, Liao JZ, Ke KP, Chang Y, Li PY, Wang M, Lin JS and He XX: miR-497 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting VEGFA and AEG-1. Oncotarget. 6:29527–29542. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Ding Q, He K, Luo T, Deng Y, Wang H, Liu H, Zhang J, Chen K, Xiao J, Duan X, et al: SSRP1 contributes to the malignancy of hepatocellular carcinoma and is negatively regulated by miR-497. Mol Ther. 24:903–914. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Shen L, Li J, Xu L, Ma J, Li H, Xiao X, Zhao J and Fang L: miR-497 induces apoptosis of breast cancer cells by targeting Bcl-w. Exp Ther Med. 3:475–480. 2012. View Article : Google Scholar : PubMed/NCBI

30 

Li D, Zhao Y, Liu C, Chen X, Qi Y, Jiang Y, Zou C, Zhang X, Liu S, Wang X, et al: Analysis of miR-195 and miR-497 expression, regulation and role in breast cancer. Clin Cancer Res. 17:1722–1730. 2011. View Article : Google Scholar : PubMed/NCBI

31 

Wei C, Luo Q, Sun X, Li D, Song H, Li X, Song J, Hua K and Fang L: MicroRNA-497 induces cell apoptosis by negatively regulating Bcl-2 protein expression at the posttranscriptional level in human breast cancer. Int J Clin Exp Pathol. 8:7729–7739. 2015.PubMed/NCBI

32 

Creevey L, Ryan J, Harvey H, Bray IM, Meehan M, Khan AR and Stallings RL: MicroRNA-497 increases apoptosis in MYCN amplified neuroblastoma cells by targeting the key cell cycle regulator WEE1. Mol Cancer. 12:232013. View Article : Google Scholar : PubMed/NCBI

33 

Zhao WY, Wang Y, An ZJ, Shi CG, Zhu GA, Wang B, Lu MY, Pan CK and Chen P: Downregulation of miR-497 promotes tumor growth and angiogenesis by targeting HDGF in non-small cell lung cancer. Biochem Biophys Res Commun. 435:466–471. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Yin Q, Han Y, Zhu D, Li Z, Shan S, Jin W, Lu Q and Ren T: miR-145 and miR-497 suppress TGF-β-induced epithelial-mesenchymal transition of non-small cell lung cancer by targeting MTDH. Cancer Cell Int. 18:1052018. View Article : Google Scholar : PubMed/NCBI

35 

Huang X, Wang L, Liu W and Li F: MicroRNA-497-5p inhibits proliferation and invasion of non-small cell lung cancer by regulating FGF2. Oncol Lett. 17:3425–3431. 2019.PubMed/NCBI

36 

Li W, Jin X, Deng X, Zhang G, Zhang B and Ma L: The putative tumor suppressor microRNA-497 modulates gastric cancer cell proliferation and invasion by repressing eIF4E. Biochem Biophys Res Commun. 449:235–240. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Xie G, Ke Q, Ji YZ, Wang AQ, Jing M and Zou LL: FGFR1 is an independent prognostic factor and can be regulated by miR-497 in gastric cancer progression. Braz J Med Biol Res. 52:e78162018. View Article : Google Scholar : PubMed/NCBI

38 

Feng L, Cheng K, Zang R, Wang Q and Wang J: miR-497-5p inhibits gastric cancer cell proliferation and growth through targeting PDK3. Biosci Rep. 39:BSR201906542019. View Article : Google Scholar : PubMed/NCBI

39 

Wang W, Ren F, Wu Q, Jiang D, Li H, Peng Z, Wang J and Shi H: MicroRNA-497 inhibition of ovarian cancer cell migration and invasion through targeting of SMAD specific E3 ubiquitin protein ligase 1. Biochem Biophys Res Commun. 449:432–437. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Wang S, Mo Y, Midorikawa K, Zhang Z, Huang G, Ma N, Zhao W, Hiraku Y, Oikawa S and Murata M: The potent tumor suppressor miR-497 inhibits cancer phenotypes in nasopharyngeal carcinoma by targeting ANLN and HSPA4L. Oncotarget. 6:35893–35907. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Ruan WD, Wang P, Feng S, Xue Y and Zhang B: MicroRNA-497 inhibits cell proliferation, migration, and invasion by targeting AMOT in human osteosarcoma cells. Onco Targets Ther. 9:303–313. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Sun Z, Li A, Yu Z, Li X, Guo X and Chen R: MicroRNA-497-5p suppresses tumor cell growth of osteosarcoma by targeting ADP ribosylation factor-like protein 2. Cancer Biother Radiopharm. 32:371–378. 2017. View Article : Google Scholar : PubMed/NCBI

43 

Chen Y, Kuang D, Zhao X, Chen D, Wang X, Yang Q, Wan J, Zhu Y, Wang Y, Zhang S, et al: miR-497-5p inhibits cell proliferation and invasion by targeting KCa3.1 in angiosarcoma. Oncotarget. 7:58148–58161. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji Y, Zhang YW, Xue SL, Zhang YX, Yang YF, et al: MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase. Am J Cancer Res. 6:2690–2699. 2016.PubMed/NCBI

45 

Chen Y, Du J, Wang Y, Shi H, Jiang Q, Wang' Y, Zhang H, Wei Y, Xue W, Pu Z, et al: MicroRNA-497-5p induces cell cycle arrest of cervical cancer cells in s phase by targeting CBX4. Onco Targets Ther. 12:10535–10545. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Wang P, Meng X, Huang Y, Lv Z, Liu J, Wang G, Meng W, Xue S, Zhang Q, Zhang P, et al: MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget. 8:2825–2834. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Zhuang J, Ye Y, Wang G, Ni J, He S, Hu C, Xia W and Lv Z: MicroRNA-497 inhibits cellular proliferation, migration and invasion of papillary thyroid cancer by directly targeting AKT3. Mol Med Rep. 16:5815–5822. 2017. View Article : Google Scholar : PubMed/NCBI

48 

Mizrahi A, Barzilai A, Gur-Wahnon D, Ben-Dov IZ, Glassberg S, Meningher T, Elharar E, Masalha M, Jacob-Hirsch J, Tabibian-Keissar H, et al: Alterations of microRNAs throughout the malignant evolution of cutaneous squamous cell carcinoma: The role of miR-497 in epithelial to mesenchymal transition of keratinocytes. Oncogene. 37:218–230. 2018. View Article : Google Scholar : PubMed/NCBI

49 

Wei XH, Gu XL, Zhou XT, Ma M and Lou CX: miR-497 promotes the progression of cutaneous squamous cell carcinoma through FAM114A2. Eur Rev Med Pharmacol Sci. 22:7348–7355. 2018.PubMed/NCBI

50 

Chai L, Kang XJ, Sun ZZ, Zeng MF, Yu SR, Ding Y, Liang JQ, Li TT and Zhao J: miR-497-5p, miR-195-5p and miR-455-3p function as tumor suppressors by targeting hTERT in melanoma A375 cells. Cancer Manag Res. 10:989–1003. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Lu F, Ye Y, Zhang H, He X, Sun X, Yao C, Mao H, He X, Qian C, Wang B, et al: miR-497/Wnt3a/c-jun feedback loop regulates growth and epithelial-to-mesenchymal transition phenotype in glioma cells. Int J Biol Macromol. 120:985–991. 2018. View Article : Google Scholar : PubMed/NCBI

52 

Qu F, Ye J, Pan X, Wang J, Gan S, Chu C, Chu J, Zhang X, Liu M, He H and Cui X: MicroRNA-497-5p down-regulation increases PD-L1 expression in clear cell renal cell carcinoma. J Drug Target. 27:67–74. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Hoareau-Aveilla C, Quelen C, Congras A, Caillet N, Labourdette D, Dozier C, Brousset P, Lamant L and Meggetto F: miR-497 suppresses cycle progression through an axis involving CDK6 in ALK-positive cells. Haematologica. 104:347–359. 2019. View Article : Google Scholar : PubMed/NCBI

54 

Wang L, Li K, Lin X, Yao Z, Wang S, Xiong X, Ning Z, Wang J, Xu X, Jiang Y, et al: Metformin induces human esophageal carcinoma cell pyroptosis by targeting the miR-497/PELP1 axis. Cancer Lett. 450:22–31. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Zhang Y, Zhu Z, Huang S, Zhao Q, Huang C, Tang Y, Sun C, Zhang Z, Wang L, Chen H, et al: lncRNA XIST regulates proliferation and migration of hepatocellular carcinoma cells by acting as miR-497-5p molecular sponge and targeting PDCD4. Cancer Cell Int. 19:1982019. View Article : Google Scholar : PubMed/NCBI

56 

Maura F, Cutrona G, Mosca L, Matis S, Lionetti M, Fabris S, Agnelli L, Colombo M, Massucco C, Ferracin M, et al: Association between gene and miRNA expression profiles and stereotyped subset #4 B-cell receptor in chronic lymphocytic leukemia. Leuk Lymphoma. 56:3150–3158. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Wald AI, Hoskins EE, Wells SI, Ferris RL and Khan SA: Alteration of microRNA profiles in squamous cell carcinoma of the head and neck cell lines by human papillomavirus. Head Neck. 33:504–512. 2011. View Article : Google Scholar : PubMed/NCBI

58 

Matsuyama H and Suzuki HI: Systems and synthetic microRNA biology: From biogenesis to disease pathogenesis. Int J Mol Sci. 21:1322019. View Article : Google Scholar

59 

Daura-Oller E, Cabre M, Montero MA, Paternain JL and Romeu A: Specific gene hypomethylation and cancer: New insights into coding region feature trends. Bioinformation. 3:340–343. 2009. View Article : Google Scholar : PubMed/NCBI

60 

Esteller M: Relevance of DNA methylation in the management of cancer. Lancet Oncol. 4:351–358. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z and Shen F: Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int Mol Sci. 20:55732019. View Article : Google Scholar

62 

Loda A and Heard E: Xist RNA in action: Past, present, and future. PLoS Genet. 15:e10083332019. View Article : Google Scholar : PubMed/NCBI

63 

Yang Z, Jiang X, Jiang X and Zhao H: X-inactive-specific transcript: A long noncoding RNA with complex roles in human cancers. Gene. 679:28–35. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Ma L, Zhou Y, Luo X, Gao H, Deng X and Jiang Y: Long non-coding RNA XIST promotes cell growth and invasion through regulating miR-497/MACC1 axis in gastric cancer. Oncotarget. 8:4125–4135. 2017. View Article : Google Scholar : PubMed/NCBI

65 

Li M, Tang X, Fu Y, Wang T and Zhu J: Regulatory mechanisms and clinical applications of the long non-coding RNA PVT1 in cancer treatment. Front Oncol. 9:7872019. View Article : Google Scholar : PubMed/NCBI

66 

Song J, Wu X, Liu F, Li M, Sun Y, Wang Y, Wang C, Zhu K, Jia X, Wang B and Ma X: Long non-coding RNA PVT1 promotes glycolysis and tumor progression by regulating miR-497/HK2 axis in osteosarcoma. Biochem Biophys Res Commun. 490:217–2124. 2017. View Article : Google Scholar : PubMed/NCBI

67 

Guo D, Wang Y, Ren K and Han X: Knockdown of LncRNA PVT1 inhibits tumorigenesis in non-small-cell lung cancer by regulating miR-497 expression. Exp Cell Res. 362:172–179. 2018. View Article : Google Scholar : PubMed/NCBI

68 

Feng L, Zhu Y, Zhang Y and Rao M: LncRNA GACAT3 promotes gastric cancer progression by negatively regulating miR-497 expression. Biomed Pharmacother. 97:136–142. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Zhong H, Yang J, Zhang B, Wang X, Pei L, Zhang L, Lin Z, Wang Y and Wang C: LncRNA GACAT3 predicts poor prognosis and promotes cell proliferation in breast cancer through regulation of miR-497/CCND2. Cancer Biomark. 22:787–797. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Xia T, Chen J, Wu K, Zhang J and Yan Q: Long noncoding RNA NEAT1 promotes the growth of gastric cancer cells by regulating miR-497-5p/PIK3R1 axis. Eur Rev Med Pharmacol Sci. 23:6914–6926. 2019.PubMed/NCBI

71 

Sun Z, Guo X, Zang M, Wang P, Xue S and Chen G: Long non-coding RNA LINC00152 promotes cell growth and invasion of papillary thyroid carcinoma by regulating the miR-497/BDNF axis. J Cell Physiol. 234:1336–1345. 2019. View Article : Google Scholar : PubMed/NCBI

72 

Yu T, Xu Z, Zhang X, Men L and Nie H: Long intergenic non-protein coding RNA 152 promotes multiple myeloma progression by negatively regulating microRNA-497. Oncol Rep. 40:3763–3771. 2018.PubMed/NCBI

73 

Xu D, Chen Y, Yuan C, Zhang S and Peng W: Long non-coding RNA LINC00662 promotes proliferation and migration in oral squamous cell carcinoma. Onco Targets Ther. 12:647–656. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Liu Z, Yao Y, Huang S, Li L, Jiang B, Guo H, Lei W, Xiong J and Deng J: LINC00662 promotes gastric cancer cell growth by modulating the Hippo-YAP1 pathway. Biochem Bioph Res Commun. 505:843–859. 2018. View Article : Google Scholar

75 

Xu X, Gu J, Ding X, Ge G, Zang X, Ji R, Shao M, Mao Z, Zhang Y, Zhang J, et al: LINC00978 promotes the progression of hepatocellular carcinoma by regulating EZH2-mediated silencing of p21 and E-cadherin expression. Cell Death Dis. 10:7522019. View Article : Google Scholar : PubMed/NCBI

76 

Bu J, Lv W, Liao Y, Xiao X and Lv B: Long non-coding RNA LINC00978 promotes cell proliferation and tumorigenesis via regulating microRNA-497/NTRK3 axis in gastric cancer. Int J Biol Macromol. 123:1106–1114. 2019. View Article : Google Scholar : PubMed/NCBI

77 

Dong B, Chen X, Zhang Y, Zhu C and Dong Q: The prognostic value of lncRNA SNHG1 in cancer patients: A meta-analysis. BMC Cancer. 19:7802019. View Article : Google Scholar : PubMed/NCBI

78 

Li Z, Lu Q, Zhu D, Han Y, Zhou X and Ren T: Lnc-SNHG1 may promote the progression of non-small cell lung cancer by acting as a sponge of miR-497. Biochem Bioph Res Commun. 506:632–640. 2018. View Article : Google Scholar

79 

Bai J, Xu J, Zhao J and Zhang R: lncRNA SNHG1 cooperated with miR-497/miR-195-5p to modify epithelial-mesenchymal transition underlying colorectal cancer exacerbation. J Cell Physiol. 235:1453–1468. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Christensen LL, True K, Hamilton MP, Nielsen MM, Damas ND, Damgaard CK, Ongen H, Dermitzakis E, Bramsen JB, Pedersen JS, et al: SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol. 10:1266–1282. 2016. View Article : Google Scholar : PubMed/NCBI

81 

Wen Q, Zhao L, Wang T, Lv N, Cheng X, Zhang G and Bai L: LncRNA SNHG16 drives proliferation and invasion of papillary thyroid cancer through modulation of miR-497. Onco Targets Ther. 12:699–708. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Zhu Q, Li Y, Guo Y, Hu L, Xiao Z, Liu X, Wang J, Xu Q and Tong X: Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J Cell Mol Med. 23:7395–7405. 2019. View Article : Google Scholar : PubMed/NCBI

83 

Liu N, Wang Z, Liu D and Xie P: HOXC13-AS-miR-122-5p-SATB1-C-Myc feedback loop promotes migration, invasion and EMT process in glioma. Onco Targets Ther. 12:7165–7173. 2019. View Article : Google Scholar : PubMed/NCBI

84 

Li X, Wang Q, Rui Y, Zhang C, Wang W, Gu J, Tang J and Ding Y: HOXC13-AS promotes breast cancer cell growth through regulating miR-497-5p/PTEN axis. J Cell Physiol. 234:22343–22351. 2019. View Article : Google Scholar : PubMed/NCBI

85 

Zhang L, Wang Y, Li X, Xia X, Li N, He R, He H, Han C and Zhao W: ZBTB7A Enhances Osteosarcoma Chemoresistance by Transcriptionally Repressing lncRNALINC00473-IL24 Activity. Neoplasia. 19:908–918. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Bai J, Zhao W, Li W, Ying Z and Jiang D: Long noncoding RNA LINC00473 indicates a poor prognosis of breast cancer and accelerates tumor carcinogenesis by competing endogenous sponging miR-497. Eur Rev Med Pharmaco. 23:3410–3420. 2019.

87 

He Z: LINC00473/miR-497-5p regulates esophageal squamous cell carcinoma progression through targeting PRKAA1. Cancer Biother Radiopharm. 34:650–659. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Li Z, Zhu Q, Zhang H, Hu Y, Wang G and Zhu Y: MALAT1: A potential biomarker in cancer. Cancer Manag Res. 10:6757–6768. 2018. View Article : Google Scholar : PubMed/NCBI

89 

Hassan N, Zhao J, Glover A, Robinson BG and Sidhu SB: Reciprocal interplay of miR-497 and MALAT1 promotes tumourigenesis of adrenocortical cancer. Endocr Relat Cancer. 26:677–688. 2019. View Article : Google Scholar : PubMed/NCBI

90 

Zhao P, Guan H, Dai Z, Ma Y, Zhao Y and Liu D: Long noncoding RNA DLX6-AS1 promotes breast cancer progression via miR-505-3p/RUNX2 axis. Eur J Pharmacol. 865:1727782019. View Article : Google Scholar : PubMed/NCBI

91 

Yang J, Ye Z, Mei D, Gu H and Zhang J: Long noncoding RNA DLX6-AS1 promotes tumorigenesis by modulating miR-497-5p/FZD4/FZD6/Wnt/β-catenin pathway in pancreatic cancer. Cancer Manag Res. 11:4209–4221. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Zhang R, Hao S, Yang L, Xie J, Chen S and Gu G: LINC00339 promotes cell proliferation and metastasis in pancreatic cancer via miR-497-5p/IGF1R axis. J BUON. 24:729–738. 2019.PubMed/NCBI

93 

Zhang J, Chen Z, Chen D, Tian X, Wang C, Zhou Z, Gao Y, Xu Y, Chen C, Zheng Z, et al: LINC01410-miR-532-NCF2-NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis. Oncogene. 37:2660–2675. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Cai M, Xu L, Shen L and Zhang J: The expression of long non-coding RNA-LINC01410 in pancreatic cancer and its effect on proliferation and migration of pancreatic cancer cells. Zhonghua Yi Xue Za Zhi. 99:1406–1411. 2019.(In Chinese). PubMed/NCBI

95 

Yu C and Zhang F: LncRNA AC009022.1 enhances colorectal cancer cells proliferation, migration, and invasion by promoting ACTR3B expression via suppressing miR-497-5p. J Cell Biochem. 121:1934–1944. 2020. View Article : Google Scholar : PubMed/NCBI

96 

Cui X, Yu T, Shang J, Xiao D and Wang X: Long Non-Coding RNA CDKN2B-AS1 facilitates laryngeal squamous cell cancer through regulating miR-497/CDK6 Pathway. Onco Targets Ther. 12:8853–8862. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Yin Y, Long J, He Q, Li Y, Liao Y, He P and Zhu W: Emerging roles of circRNA in formation and progression of cancer. J Cancer. 10:5015–5021. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Gao Y, Zhang M, Xu B, Han L, Lan S, Chen J, Dong Y and Cao L: Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis. Oncotarget. 8:86625–86633. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Adhikary J, Chakraborty S, Dalal S, Basu S, Dey A and Ghosh A: Circular PVT1: An oncogenic non-coding RNA with emerging clinical importance. J Clin Pathol. 72:513–519. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Verduci L, Ferraiuolo M, Sacconi A, Ganci F, Vitale J, Colombo T, Paci P, Strano S, Macino G, Rajewsky N and Blandino G: The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biol. 18:2372017. View Article : Google Scholar : PubMed/NCBI

101 

Qin S, Zhao Y, Lim G, Lin H and Zhang X and Zhang X: Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression. Biomed Pharmacother. 111:244–250. 2019. View Article : Google Scholar : PubMed/NCBI

102 

Mechtler P, Singhal R, Kichina JV, Bard JE, Buck MJ and Kandel ES: MicroRNA analysis suggests an additional level of feedback regulation in the NF-κB signaling cascade. Oncotarget. 6:17097–17106. 2015. View Article : Google Scholar : PubMed/NCBI

103 

Kong X, Duan L, Qian X, Xu D, Liu H, Zhu Y and Qi J: Tumor-suppressive microRNA-497 targets IKKβ to regulate NF-κB signaling pathway in human prostate cancer cells. Am J Cancer Res. 5:1795–1804. 2015.PubMed/NCBI

104 

Zhao B, Wang Y, Tan X, Ke K, Zheng X, Wang F, Lan S, Liao N, Cai Z, Shi Y, et al: Inflammatory Micro-environment contributes to stemness properties and metastatic potential of HCC via the NF-κB/miR-497/SALL4 Axis. Mol Ther Oncolytics. 15:79–90. 2019. View Article : Google Scholar : PubMed/NCBI

105 

Huang C, Ma R, Yue J, Li N, Li Z and Qi D: miR-497 Suppresses YAP1 and Inhibits Tumor Growth in Non-Small Cell Lung Cancer. Cell Physiol Biochem. 37:342–352. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Zhang L, Yu Z, Xian Y and Lin X: microRNA-497 inhibits cell proliferation and induces apoptosis by targeting YAP1 in human hepatocellular carcinoma. FEBS Open Bio. 6:155–164. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Cheng H, Dong H, Feng J, Tian H, Zhang H and Xu L: miR-497 inhibited proliferation, migration and invasion of thyroid papillary carcinoma cells by negatively regulating YAP1 expression. Onco Targets Ther. 11:4711–4721. 2018. View Article : Google Scholar : PubMed/NCBI

108 

Wu Z, Li X, Cai X, Huang C and Zheng M: miR-497 inhibits epithelial mesenchymal transition in breast carcinoma by targeting Slug. Tumour Biol. 37:7939–7950. 2016. View Article : Google Scholar : PubMed/NCBI

109 

Lin D and Wu J: Hypoxia inducible factor in hepatocellular carcinoma: A therapeutic target. World J Gastroenterol. 21:12171–12178. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Lan J, Xue Y, Chen H, Zhao S, Wu Z, Fang J, Han C and Lou M: Hypoxia-induced miR-497 decreases glioma cell sensitivity to TMZ by inhibiting apoptosis. FEBS Lett. 588:3333–3339. 2014. View Article : Google Scholar : PubMed/NCBI

111 

Wu Z, Cai X, Huang C, Xu J and Liu A: miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1α. Oncol Rep. 35:1696–1702. 2016. View Article : Google Scholar : PubMed/NCBI

112 

Qiao W, Jia Z, Liu H, Liu Q, Zhang T, Guo W, Li P, Deng M and Li S: Prognostic and clinicopathological value of Twist expression in breast cancer: A meta-analysis. PLoS One. 12:e1861912017. View Article : Google Scholar

113 

Liu A, Huang C, Cai X, Xu J and Yang D: Twist promotes angiogenesis in pancreatic cancer by targeting miR-497/VEGFA axis. Oncotarget. 7:25801–25814. 2016. View Article : Google Scholar : PubMed/NCBI

114 

Gu YY, Liu XS, Huang XR, Yu XQ and Lan HY: Diverse role of TGF-β in kidney disease. Front Cell Dev Biol. 8:1232020. View Article : Google Scholar : PubMed/NCBI

115 

Jafarzadeh M, Soltani BM, Dokanehiifard S, Kay M, Aghdami N and Hosseinkhani S: Experimental evidences for hsa-miR-497-5p as a negative regulator of SMAD3 gene expression. Gene. 586:216–221. 2016. View Article : Google Scholar : PubMed/NCBI

116 

Liu J, Zhou Y, Shi Z, Hu Y, Meng T, Zhang X, Zhang S and Zhang J: microRNA-497 modulates breast cancer cell proliferation, invasion, and survival by targeting SMAD7. DNA Cell Biol. 35:521–529. 2016. View Article : Google Scholar : PubMed/NCBI

117 

Hu J, Xu J and Ge W: miR-497 enhances metastasis of oral squamous cell carcinoma through SMAD7 suppression. Am J Transl Res. 8:3023–3031. 2016.PubMed/NCBI

118 

Al-Hujaily EM, Tang Y, Yao DS, Carmona E, Garson K and Vanderhyden BC: Divergent roles of PAX2 in the etiology and progression of ovarian cancer. Cancer Prev Res (Phila). 8:1163–1173. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Lin Z, Zhao J, Wang X, Zhu X and Gong L: Overexpression of microRNA-497 suppresses cell proliferation and induces apoptosis through targeting paired box 2 in human ovarian cancer. Oncol Rep. 36:2101–2107. 2016. View Article : Google Scholar : PubMed/NCBI

120 

Zhang Y, Zhang Z, Li Z, Gong D, Zhan B, Man X and Kong C: MicroRNA-497 inhibits the proliferation, migration and invasion of human bladder transitional cell carcinoma cells by targeting E2F3. Oncol Rep. 36:1293–1300. 2016. View Article : Google Scholar : PubMed/NCBI

121 

Han H, Du Y, Zhao W, Li S, Chen D, Zhang J, Liu J, Suo Z, Bian X, Xing B and Zhang Z: PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells. Nat Commun. 6:82712015. View Article : Google Scholar : PubMed/NCBI

122 

Yu T, Zhang X, Zhang L, Wang Y, Pan H, Xu Z and Pang X: MicroRNA-497 suppresses cell proliferation and induces apoptosis through targeting PBX3 in human multiple myeloma. Am J Cancer Res. 6:2880–2889. 2016.PubMed/NCBI

123 

Ma S, Chan YP, Woolcock B, Hu L, Wong KY, Ling MT, Bainbridge T, Webber D, Chan TH, Guan XY, et al: DNA fingerprinting tags novel altered chromosomal regions and identifies the involvement of SOX5 in the progression of prostate cancer. Int J Cancer. 124:2323–2332. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Li G, Wang K, Wang J, Qin S, Sun X and Ren H: miR-497-5p inhibits tumor cell growth and invasion by targeting SOX5 in non-small-cell lung cancer. J Cell Biochem. 120:10587–10595. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Han L, Liu B, Jiang L, Liu J and Han S: MicroRNA-497 downregulation contributes to cell proliferation, migration, and invasion of estrogen receptor alpha negative breast cancer by targeting estrogen-related receptor alpha. Tumour Biol. 37:13205–13214. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Waters PS, McDermott AM, Wall D, Heneghan HM, Miller N, Newell J, Kerin MJ and Dwyer RM: Relationship between circulating and tissue microRNAs in a murine model of breast cancer. PLoS One. 7:e504592012. View Article : Google Scholar : PubMed/NCBI

127 

Regazzo G, Terrenato I, Spagnuolo M, Carosi M, Cognetti G, Cicchillitti L, Sperati F, Villani V, Carapella C, Piaggio G, et al: A restricted signature of serum miRNAs distinguishes glioblastoma from lower grade gliomas. J Exp Clin Cancer Res. 35:1242016. View Article : Google Scholar : PubMed/NCBI

128 

Murata M: Inflammation and cancer. Environ Health Prev Med. 23:502018. View Article : Google Scholar : PubMed/NCBI

129 

Du M, Shi D, Yuan L, Li P, Chu H, Qin C, Yin C, Zhang Z and Wang M: Circulating miR-497 and miR-663b in plasma are potential novel biomarkers for bladder cancer. Sci Rep. 5:104372015. View Article : Google Scholar : PubMed/NCBI

130 

Zhang Y, Zhang D, Wang F, Xu D, Guo Y and Cui W: Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer. Sci Rep. 5:179422015. View Article : Google Scholar : PubMed/NCBI

131 

Zou G, Wang R and Wang M: Clinical response and prognostic significance of serum miR-497 expression in colorectal cancer. Cancer Biomark. 25:11–18. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Shao X, Miao M, Xue J, Xue J, Ji X and Zhu H: The Down-regulation of MicroRNA-497 contributes to cell growth and cisplatin resistance through PI3K/Akt pathway in osteosarcoma. Cell Physiol Biochem. 36:2051–2062. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Xu S, Fu G, Tao Z, OuYang J, Kong F, Jiang B, Wan X and Chen K: miR-497 decreases cisplatin resistance in ovarian cancer cells by targeting mTOR/P70S6K1. Oncotarget. 6:26457–26471. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Xu J, Wang T, Cao Z, Huang H, Li J, Liu W, Liu S, You L, Zhou L, Zhang T and Zhao Y: miR-497 downregulation contributes to the malignancy of pancreatic cancer and associates with a poor prognosis. Oncotarget. 5:6983–6993. 2014. View Article : Google Scholar : PubMed/NCBI

135 

Troppan K, Wenzl K, Pichler M, Pursche B, Schwarzenbacher D, Feichtinger J, Thallinger GG, Beham-Schmid C, Neumeister P and Deutsch A: miR-199a and miR-497 are associated with better overall survival due to increased chemosensitivity in diffuse large B-cell lymphoma patients. Int J Mol Sci. 16:18077–18095. 2015. View Article : Google Scholar : PubMed/NCBI

136 

Tian F, Zhan Y, Zhu W, Li J, Tang M, Chen X and Jiang J: MicroRNA-497 inhibits multiple myeloma growth and increases susceptibility to bortezomib by targeting Bcl-2. Int J Mol Med. 43:1058–1066. 2019.PubMed/NCBI

137 

Poel D, Boyd LNC, Beekhof R, Schelfhorst T, Pham TV, Piersma SR, Knol JC, Jimenez CR, Verheul HMW and Buffart TE: Proteomic analysis of miR-195 and miR-497 replacement reveals potential candidates that increase sensitivity to oxaliplatin in MSI/P53wt colorectal cancer cells. Cells. 8:11112019. View Article : Google Scholar

138 

Ma W, Kang Y, Ning L, Tan J, Wang H and Ying Y: Identification of microRNAs involved in gefitinib resistance of non-small-cell lung cancer through the insulin-like growth factor receptor 1 signaling pathway. Exp Ther Med. 14:2853–2862. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Zhu D, Tu M, Zeng B, Cai L, Zheng W, Su Z and Yu Z: Up-regulation of miR-497 confers resistance to temozolomide in human glioma cells by targeting mTOR/Bcl-2. Cancer Med. 6:452–462. 2017. View Article : Google Scholar : PubMed/NCBI

140 

Pang P, Shi X, Huang W and Sun K: miR-497 as a potential serum biomarker for the diagnosis and prognosis of osteosarcoma. Eur Rev Med Pharmacol Sci. 20:3765–3769. 2016.PubMed/NCBI

141 

Svedman FC, Lohcharoenkal W, Bottai M, Brage SE, Sonkoly E, Hansson J, Pivarcsi A and Eriksson H: Extracellular microvesicle microRNAs as predictive biomarkers for targeted therapy in metastastic cutaneous malignant melanoma. PLoS One. 13:e2069422018. View Article : Google Scholar

142 

Sandhu V, Bowitz Lothe IM, Labori KJ, Lingjærde OC, Buanes T, Dalsgaard AM, Skrede ML, Hamfjord J, Haaland T, Eide TJ, et al: Molecular signatures of mRNAs and miRNAs as prognostic biomarkers in pancreatobiliary and intestinal types of periampullary adenocarcinomas. Mol Oncol. 9:758–771. 2015. View Article : Google Scholar : PubMed/NCBI

143 

Wong N, Khwaja SS, Baker CM, Gay HA, Thorstad WL, Daly MD, Lewis JS Jr and Wang X: Prognostic microRNA signatures derived from The Cancer Genome Atlas for head and neck squamous cell carcinomas. Cancer Med. 5:1619–1628. 2016. View Article : Google Scholar : PubMed/NCBI

144 

Feng J, Gu X, Liu L, Lu M, Ma X, Cao Y, Jiang R, Wang B and Zhao Q: Prognostic role of microRNA-497 in cancer patients: A Meta-analysis. J Cancer. 9:3334–3342. 2018. View Article : Google Scholar : PubMed/NCBI

145 

Liu Z, Wu S, Wang L, Kang S, Zhao B, He F, Liu X, Zeng Y and Liu J: Prognostic value of MicroRNA-497 in various cancers: A systematic review and Meta-analysis. Dis Markers. 2019:24912912019. View Article : Google Scholar : PubMed/NCBI

146 

Department of Medical Administration, National Health and Health Commission of the People's Republic of China: Guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition). Zhonghua Gan Zang Bing Za Zhi. 28:112–128. 2020.(In Chinese). PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Luo G, He K, Xia Z, Liu S, Liu H and Xiang G: Regulation of microRNA‑497 expression in human cancer (Review). Oncol Lett 21: 23, 2021.
APA
Luo, G., He, K., Xia, Z., Liu, S., Liu, H., & Xiang, G. (2021). Regulation of microRNA‑497 expression in human cancer (Review). Oncology Letters, 21, 23. https://doi.org/10.3892/ol.2020.12284
MLA
Luo, G., He, K., Xia, Z., Liu, S., Liu, H., Xiang, G."Regulation of microRNA‑497 expression in human cancer (Review)". Oncology Letters 21.1 (2021): 23.
Chicago
Luo, G., He, K., Xia, Z., Liu, S., Liu, H., Xiang, G."Regulation of microRNA‑497 expression in human cancer (Review)". Oncology Letters 21, no. 1 (2021): 23. https://doi.org/10.3892/ol.2020.12284
Copy and paste a formatted citation
x
Spandidos Publications style
Luo G, He K, Xia Z, Liu S, Liu H and Xiang G: Regulation of microRNA‑497 expression in human cancer (Review). Oncol Lett 21: 23, 2021.
APA
Luo, G., He, K., Xia, Z., Liu, S., Liu, H., & Xiang, G. (2021). Regulation of microRNA‑497 expression in human cancer (Review). Oncology Letters, 21, 23. https://doi.org/10.3892/ol.2020.12284
MLA
Luo, G., He, K., Xia, Z., Liu, S., Liu, H., Xiang, G."Regulation of microRNA‑497 expression in human cancer (Review)". Oncology Letters 21.1 (2021): 23.
Chicago
Luo, G., He, K., Xia, Z., Liu, S., Liu, H., Xiang, G."Regulation of microRNA‑497 expression in human cancer (Review)". Oncology Letters 21, no. 1 (2021): 23. https://doi.org/10.3892/ol.2020.12284
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team