Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer

  • Authors:
    • Harishini Rajaratinam
    • Nur Syahmina Rasudin
    • Tengku Ahmad Damitri Al Astani
    • Noor Fatmawati Mokhtar
    • Maya Mazuwin Yahya
    • Wan Zainira Wan Zain
    • Nurul Asma‑Abdullah
    • Wan Ezumi Mohd Fuad
  • View Affiliations / Copyright

    Affiliations: School of Health Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia, Department of Chemical Pathology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia, Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia, Department of Surgery, School of Medical Sciences, Health Campus, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan 16150, Malaysia
    Copyright: © Rajaratinam et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 108
    |
    Published online on: December 11, 2020
       https://doi.org/10.3892/ol.2020.12369
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Neonatal Nav1.5 (nNav1.5) is the alternative splice variant of Nav1.5 and it has been widely associated with the progression of breast cancer. The immunological context of nNav1.5 with respect to breast cancer metastases remains unexplored. The presence of antibodies against nNav1.5 may highlight the immunogenicity of nNav1.5. Hence, the aim of the present study was to detect the presence of antineonatal Nav1.5 antibodies (antinNav1.5‑Ab) in the serum of patients with breast cancer and to elucidate the effects of breast cancer therapy on its expression. A total of 32 healthy female volunteers and 64 patients with breast cancer were randomly recruited into the present study as the control and breast cancer group, respectively. Patients with breast cancer were divided equally based on their pre‑ and ongoing‑treatment status. Serum samples were tested with in‑house indirect enzyme‑linked immunosorbent assay (ELISA) to detect antinNav1.5‑Ab, CD25 (T regulatory cell marker) using an ELISA kit and Luminex assay to detect the expression of metastasis‑associated cytokines, such as vascular endothelial growth factor (VEGF), interleukin (IL)‑6, IL‑10, IL‑8, chemokine (C‑C motif) ligand 2 and tumor necrosis factor‑alpha (TNF‑α) The mean difference in the expression of antinNav1.5‑Ab among the three groups (control, pretreatment and ongoing‑treatment) was significant (P=0.0005) and the pretreatment breast cancer group exhibited the highest expression. The concentration of CD25 was highest in the pretreatment breast cancer group compared with the control and ongoing‑treatment groups. There was a significant positive correlation between antinNav1.5‑Ab and IL‑6 in the pretreatment group (r=0.7260; P=0.0210) and a significant negative correlation between antinNav1.5‑Ab and VEGF in the ongoing‑treatment group (r=‑0.842; P‑value=0.0040). The high expression of antinNav1.5‑Ab in the pretreatment group was in accordance with the uninterrupted presence of metastasis and highlighted the immunogenicity of nNav1.5 whereas the low expression of antinNav1.5‑Ab in the ongoing‑treatment group reflected the efficacy of breast cancer therapy in eliminating metastases. The augmented manifestation of T regulatory cells in the pretreatment group highlighted the functional role of nNav1.5 in promoting metastasis. The parallel expression of antinNav1.5‑Ab with the imbalanced expression of cytokines promoting metastasis (IL‑8, IL‑6 and TNF‑α) and cytokines that prevent metastasis (IL‑10) indicated the role of nNav1.5 in breast cancer growth. The expression of antinNav1.5‑Ab in accordance to the metastatic microenvironment indicates the immunogenicity of the protein and highlights the influence of breast cancer therapy on its expression level.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

International Agency for Research on Cancer (IARC). GLOBOCAN report. 2018..Retrieved from. simplehttps://www.iarc.fr/

2 

Centers for Disease Control and Prevention (CDC), Division of Cancer Prevention and Control. Breast Cancer Statistics. 2019.Retrieved from. simplehttps://www.cdc.gov/cancer/breast/basic_info/index.htm

3 

Feng Y, Spezia M, Huang S, Yuan C, Zeng Z, Zhang L, Ji X, Liu W, Huang B, Luo W, et al: Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis. 5:77–106. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Sharma GN, Dave R, Sanadya J, Sharma P and Sharma KK: Various types and management of breast cancer: An overview. J Adv Pharm Technol Res. 1:109–126. 2010.PubMed/NCBI

5 

Akram M, Iqbal M, Daniyal M and Khan AU: Awareness and current knowledge of breast cancer. Biol Res. 50:33. 2017. View Article : Google Scholar : PubMed/NCBI

6 

van Zijl F, Krupitza G and Mikulits W: Initial steps of metastasis: Cell invasion and endothelial transmigration. Mutat Res. 728:23–34. 2011. View Article : Google Scholar

7 

Seyfried TN and Huysentruyt LC: On the origin of cancer metastasis. Crit Rev Oncog. 18:43–73. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Djamgoz MB, Coombes RC and Schwab A: Ion transport and cancer: From initiation to metastasis. Philos Trans R Soc Lond B Biol Sci. 369:201300922014. View Article : Google Scholar : PubMed/NCBI

9 

Koltai T: Cancer: Fundamentals behind pH targeting and the double-edged approach. Onco Targets Ther. 9:6343–6360. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Brackenbury WJ: Voltage-gated sodium channels and metastatic disease. Channels. 6:352–361. 2012. View Article : Google Scholar : PubMed/NCBI

11 

Roger S, Besson P and Le Guennec JY: Involvement of a novel fast inward sodium current in the invasion capacity of a breast cancer cell line. Biochim Biophys Acta. 1616:107–111. 2003. View Article : Google Scholar : PubMed/NCBI

12 

Fraser SP, Diss JK, Chioni AM, Mycielska ME, Pan H, Yamaci RF, Pani F, Siwy Z, Krasowska M, Grzywna Z, et al: Voltage-gated sodium channel expression and potentiation of human breast cancer metastasis. Clin Cancer Res. 11:5381–5389. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Onganer PU, Seckl MJ and Djamgoz MB: Neuronal characteristics of small-cell lung cancer. Br J Cancer. 93:1197–1201. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Diaz D, Delgadillo DM, Hernández-Gallegos E, Ramírez-Domínguez ME, Hinojosa LM, Ortiz CS, Berumen J, Camacho J and Gomora JC: Functional expression of voltage-gated sodium channels in primary cultures of human cervical cancer. J Cell Physiol. 210:469–478. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Gao R, Shen Y, Cai J, Lei M and Wang Z: Expression of voltage-gated sodium channel α subunit in human ovarian cancer. Oncol Rep. 23:1293–1299. 2010.PubMed/NCBI

16 

Guzel RM, Ogmen K, Ilieva KM, Fraser SP and Djamgoz MBA: Colorectal cancer invasiveness in vitro: Predominant contribution of neonatal Nav1.5 under normoxia and hypoxia. J Cell Physiol. 234:6582–6593. 2019. View Article : Google Scholar : PubMed/NCBI

17 

House CD, Vaske CJ, Schwartz AM, Obias V, Frank B, Luu T, Sarvazyan N, Irby R, Strausberg RL, Hales TG, et al: Voltage-gated Na+ channel SCN5A is a key regulator of a gene transcriptional network that controls colon cancer invasion. Cancer Res. 70:6957–6967. 2010. View Article : Google Scholar : PubMed/NCBI

18 

Ma RSY, Kayani K, Whyte-Oshodi D, Whyte-Oshodi A, Nachiappan N, Gnanarajah S and Mohammed R: Voltage gated sodium channels as therapeutic targets for chronic pain. J Pain Res. 12:2709–2722. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Utrilla RG, Nieto-Marín P, Alfayate S, Tinaquero D, Matamoros M, Pérez-Hernández M, Sacristán S, Ondo L, de Andrés R, Díez-Guerra FJ, et al: Kir2. 1-Nav1. 5 channel complexes are differently regulated than Kir2. 1 and Nav1. 5 channels alone. Front Physiol. 8:9032017. View Article : Google Scholar : PubMed/NCBI

20 

Onkal R, Mattis JH, Fraser SP, Diss JK, Shao D, Okuse K and Djamgoz MB: Alternative splicing of Nav1.5: An electrophysiological comparison of ‘neonatal’ and ‘adult’ isoforms and critical involvement of a lysine residue. J Cell Physiol. 216:716–726. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Yamaci RF, Fraser SP, Battaloglu E, Kaya H, Erguler K, Foster CS and Djamgoz MBA: Neonatal Nav1.5 protein expression in normal adult human tissues and breast cancer. Pathol Res Pract. 213:900–907. 2017. View Article : Google Scholar : PubMed/NCBI

22 

Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A and Weinberg RA: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet. 40:499–507. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Brackenbury WJ, Chioni AM, Diss JK and Djamgoz MB: The neonatal splice variant of Nav1.5 potentiates in vitro invasive behaviour of MDA-MB-231 human breast cancer cells. Breast Cancer Res Treat. 101:149–160. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Isbilen B, Fraser SP and Djamgoz MB: Docosahexaenoic acid (omega-3) blocks voltage-gated sodium channel activity and migration of MDA-MB-231 human breast cancer cells. Int J Biochem Cell Biol. 38:2173–2182. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Erdogan MA and Ozpolat B: Targeting of Voltage-gated sodium channel NaV1. 5 inhibits cell proliferation and colony formation in breast and ovarian cancer cells. Cancer Res. 73 (8 Suppl):2013.doi: 10.1158/1538-7445.AM2013-514.

26 

Nelson M, Yang M, Millican-Slater R and Brackenbury WJ: Nav1.5 regulates breast tumor growth and metastatic dissemination in vivo. Oncotarget. 6:32914–32929. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar

28 

Norsa'adah B: Univariable Analyses Using IBM SPSS statistics version 20.0, Universiti Sains Malaysia, Malaysia. 2013.

29 

George D and Mallery P: Chapter 7: Descriptive Statistics. SPSS for Windows Step by Step: a Simple Study Guide and Reference 17.0 Update. 10th edition. Pearson; Boston, MA: 2010

30 

Schmider E, Ziegler M, Danay E, Beyer L and Bühner M: Is it really robust? Reinvestigating the robustness of ANOVA against violations of the normal distribution. Methodology. 6:147–151. 2010. View Article : Google Scholar

31 

Breen EJ, Tan W and Khan A: The statistical value of raw fluorescence signal in Luminex xMAP Based Multiplex Immunoassays. Sci Rep. 6:26996. 2016. View Article : Google Scholar : PubMed/NCBI

32 

Rhana P, Trivelato RRJ, Beirao PSL, Cruz JS and Rodrigues ALP: Is there a role for voltage-gated Na+ channels in the aggressiveness of breast cancer? Braz J Med Biol Res. 50:e60112017. View Article : Google Scholar : PubMed/NCBI

33 

Pagani O, Senkus E, Wood W, Colleoni M, Cufer T, Kyriakides S, Costa A, Winer EP and Cardoso F; ESO-MBC Task Force, : International guidelines for management of metastatic breast cancer: Can metastatic breast cancer be cured? J Natl Cancer Inst. 102:456–463. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Waks AG and Winer EP: Breast cancer treatment: A review. JAMA. 321:288–300. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Fujii T, Le Du F, Xiao L, Kogawa T, Barcenas CH, Alvarez RH, Valero V, Shen Y and Ueno NT: Effectiveness of an adjuvant chemotherapy regimen for early-stage breast cancer: A systematic review and network meta-analysis. JAMA Oncol. 1:1311–1318. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Krug D: Adjuvant radiotherapy for breast cancer: More than meets the eye. Breast Care (Basel). 15:109–111. 2020. View Article : Google Scholar : PubMed/NCBI

37 

Tremont A, Lu J and Cole JT: Endocrine therapy for early breast cancer: Updated review. Ochsner J. 17:405–411. 2017.PubMed/NCBI

38 

Munagala R, Aqil F and Gupta RC: Promising molecular targeted therapies in breast cancer. Indian J Pharmacol. 43:236–245. 2011. View Article : Google Scholar : PubMed/NCBI

39 

U.S Food and Drug Administration (FDA), . FDA approves Atezolizumab for PD-L1 positive unresectable locally advanced or metastatic triple-negative breast cancer. Retrieved from. simplehttps://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-atezolizumab-pd-l1-positive-unresectable-locally-advanced-or-metastatic-triple-negative

40 

Zurrida S, Bassi F, Arnone P, Martella S, Del Castillo A, Ribeiro Martini R, Semenkiw ME and Caldarella P: The changing face of mastectomy (from Mutilation to Aid to Breast Reconstruction). Int J Surg Oncol. 2011:9801582011.PubMed/NCBI

41 

Evans RL, Pottala JV, Nagata S and Egland KA: Longitudinal autoantibody responses against tumor-associated antigens decrease in breast cancer patients according to treatment modality. BMC Cancer. 18:1192018. View Article : Google Scholar : PubMed/NCBI

42 

Witkowska AM: On the role of sIL-2R measurements in rheumatoid arthritis and cancers. Mediators Inflamm. 2005:121–130. 2005. View Article : Google Scholar : PubMed/NCBI

43 

Lundin K, Tuukkanen AM, Jansson C, Nordström T and Lindqvist C: No soluble common cytokine receptor gamma chain (gamma(c)) in activated human lymphocyte cultures-comparison with soluble IL-2Ralpha. Immunol Lett. 82:235–240. 2002. View Article : Google Scholar : PubMed/NCBI

44 

Gotoh Y, Okamoto Y, Uemura O, Mori N, Tanaka S, Ando T and Nishida M: Determination of age-related changes in human soluble interleukin 2 receptor in body fluids of normal subjects as a control value against disease states. Clin Chim Acta. 289:89–97. 1999. View Article : Google Scholar : PubMed/NCBI

45 

Mougiakakos D, Choudhury A, Lladser A, Kiessling R and Johansson CC: Regulatory T cells in cancer. Adv Cancer Res. 107:57–117. 2010. View Article : Google Scholar : PubMed/NCBI

46 

Dwarakanath BS, Farooque A and Gupta S: Targeting regulatory T cells for improving cancer therapy: Challenges and prospects. Cancer Rep (Hoboken). 1:e211052018. View Article : Google Scholar : PubMed/NCBI

47 

Halvorsen EC, Hamilton MJ, Young A, Wadsworth BJ, LePard NE, Lee HN, Firmino N, Collier JL and Bennewith KL: Maraviroc decreases CCL8-mediated migration of CCR5+ regulatory T cells and reduces metastatic tumor growth in the lungs. Oncoimmunology. 5:e11503982016. View Article : Google Scholar : PubMed/NCBI

48 

Shang B and Liu Y, Jiang SJ and Liu Y: Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: A systematic review and meta-analysis. Sci Rep. 5:151792015. View Article : Google Scholar : PubMed/NCBI

49 

Sakaguchi S, Sakaguchi N, Asano M, Itoh M and Toda M: Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 155:1151–1164. 1995.PubMed/NCBI

50 

Wei S, Kryczek I, Edwards RP, Zou L, Szeliga W, Banerjee M, Cost M, Cheng P, Chang A, Redman B, et al: Interleukin-2 administration alters the CD4+FOXP3+ T-cell pool and tumor trafficking in patients with ovarian carcinoma. Cancer Res. 67:7487–7494. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Liu S and Sun X, Luo J, Zhu H, Yang X, Guo Q, Song Y and Sun X: Effects of radiation on T regulatory cells in normal states and cancer: Mechanisms and clinical implications. Am J Cancer Res. 5:3276–3285. 2015.PubMed/NCBI

52 

Yu P, Lee Y, Liu W, Krausz T, Chong A, Schreiber H and Fu YX: Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors. J Exp Med. 201:779–791. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Nishikawa H, Kato T, Tanida K, Hiasa A, Tawara I, Ikeda H, Ikarashi Y, Wakasugi H, Kronenberg M, Nakayama T, et al: CD4+ CD25+ T cells responding to serologically defined autoantigens suppress antitumor immune responses. Proc Natl Acad Sci USA. 100:10902–10906. 2003. View Article : Google Scholar : PubMed/NCBI

54 

Rech AJ and Vonderheide RH: Clinical use of Anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann N Y Acad Sci. 1174:99–106. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Wu L, Yun Z, Tagawa T, Rey-McIntyre K, Anraku M and Perrot M: Tumor cell repopulation between cycles of chemotherapy is inhibited by regulatory T-cell depletion in a murine mesothelioma model. J Thorac Oncol. 6:1578–1586. 2011. View Article : Google Scholar : PubMed/NCBI

56 

Lissoni P, Brivio F, Fumagalli L, Messina G, Meregalli S, Porro G, Rovelli F, Vigorè L, Tisi E and D'Amico G: Effects of the conventional antitumor therapies surgery, chemotherapy, radiotherapy and immunotherapy on regulatory T lymphocytes in cancer patients. Anticancer Res. 29:1847–1852. 2009.PubMed/NCBI

57 

Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI and Morales-Montor J: The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res. 35:1–16. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpé S, Vermeulen PB and Dirix LY: Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res. 10:71572004. View Article : Google Scholar : PubMed/NCBI

59 

Singh JK, Farnie G, Bundred NJ, Simões BM, Shergill A, Landberg G, Howell SJ and Clarke RB: Targeting CXCR1/2 significantly reduces breast cancer stem cell activity and increases the efficacy of inhibiting HER2 via HER2-dependent and -independent mechanisms. Clin Cancer Res. 19:643–656. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Chang Q, Bournazou E, Sansone P, Berishaj M, Gao SP, Daly L, Wels J, Theilen T, Granitto S, Zhang X, et al: The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis. Neoplasia. 15:848–862. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M and Jadidi-Niaragh F: The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother. 108:1415–1424. 2018. View Article : Google Scholar : PubMed/NCBI

62 

Lin S, Gan Z, Han K, Yao Y and Min D: Interleukin-6 as a prognostic marker for breast cancer: A meta-analysis. Tumori. 101:535–541. 2015. View Article : Google Scholar : PubMed/NCBI

63 

Shibayama O, Yoshiuchi K, Inagaki M, Matsuoka Y, Yoshikawa E, Sugawara Y, Akechi T, Wada N, Imoto S, Murakami K, et al: Association between adjuvant regional radiotherapy and cognitive function in breast cancer patients treated with conservation therapy. Cancer Med. 3:702–709. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Wolczyk D, Zaremba-Czogalla M, Hryniewicz-Jankowska A, Tabola R, Grabowski K, Sikorski AF and Augoff K: TNF-α promotes breast cancer cell migration and enhances the concentration of membrane-associated proteases in lipid rafts. Cell Oncol (Dordr). 39:353–363. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Osawa Y, Nagaki M, Banno Y, Brenner DA, Asano T, Nozawa Y, Moriwaki H and Nakashima S: Tumor necrosis factor alpha-induced interleukin-8 production via NF-kappaB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes. Infect Immun. 70:6294–6301. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Kulbe H, Hagemann T, Szlosarek PW, Balkwill FR and Wilson JL: The inflammatory cytokine tumor necrosis factor-alpha regulates chemokine receptor expression on ovarian cancer cells. Cancer Res. 65:10355–10362. 2005. View Article : Google Scholar : PubMed/NCBI

67 

Sheikhpour E, Noorbakhsh P, Foroughi E, Farahnak S, Nasiri R and Neamatzadeh H: A survey on the role of interleukin-10 in breast cancer: A narrative. Rep Biochem Mol Biol. 7:30–37. 2018.PubMed/NCBI

68 

Li Y, Gao P, Yang J, Yu H, Zhu Y and Si W: Relationship between IL-10 expression and prognosis in patients with primary breast cancer. Tumour Biol. 35:11533–11540. 2014. View Article : Google Scholar : PubMed/NCBI

69 

Dutta P, Sarkissyan M, Paico K, Wu Y and Vadgama JV: MCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasis. Breast Cancer Res Treat. 170:477–486. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Lim SY, Yuzhalin AE, Gordon-Weeks AN and Muschel RJ: Targeting the CCL2-CCR2 signaling axis in cancer metastasis. Oncotarget. 7:28697–28710. 2016. View Article : Google Scholar : PubMed/NCBI

71 

Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, Kato Y, Li J and Pollard JW: CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J Exp Med. 212:1043–1059. 2015. View Article : Google Scholar : PubMed/NCBI

72 

Low-Marchelli JM, Ardi VC, Vizcarra EA, van Rooijen N, Quigley JP and Yang J: Twist1 induces CCL2 and recruits macrophages to promote angiogenesis. Cancer Res. 73:662–671. 2013. View Article : Google Scholar : PubMed/NCBI

73 

Qian BZ, Li J, Zhang H, Kitamura T, Zhang J, Campion LR, Kaiser EA, Snyder LA and Pollard JW: CCL2 recruits inflammatory monocytes to facilitate breast-tumor metastasis. Nature. 475:222–225. 2011. View Article : Google Scholar : PubMed/NCBI

74 

Andrikopoulos P, Fraser SP, Patterson L, Ahmad Z, Burcu H, Ottaviani D, Diss JK, Box C, Eccles SA and Djamgoz MB: Angiogenic functions of voltage-gated Na+ channels in human endothelial cells: Modulation of vascular endothelial growth factor (VEGF) signaling. J Biol Chem. 286:16846–16860. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Fiorio Pla A and Munaron L: Functional properties of ion channels and transporters in tumor vascularization. Philos Trans R Soc Lond B Biol Sci. 369:201301032014. View Article : Google Scholar

76 

Andrikopoulos P, Baba A, Matsuda T, Djamgoz MBA, Yaqoob MM and Eccles SA: Ca2+ influx through reverse mode Na+/Ca2+ exchange is critical for vascular endothelial growth factor-mediated extracellular signal-regulated kinase (ERK) 1/2 activation and angiogenic functions of human endothelial cells. J Biol Chem. 286:37919–37931. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D, Guan JL, et al: CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest. 120:485–497. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Todorović-Raković N and Milovanović J: Interleukin-8 in breast cancer progression. J Interferon Cytokine Res. 33:563–570. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Rajaratinam H, Rasudin N, Al Astani T, Mokhtar N, Yahya M, Wan Zain W, Asma‑Abdullah N and Mohd Fuad W: Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncol Lett 21: 108, 2021.
APA
Rajaratinam, H., Rasudin, N., Al Astani, T., Mokhtar, N., Yahya, M., Wan Zain, W. ... Mohd Fuad, W. (2021). Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncology Letters, 21, 108. https://doi.org/10.3892/ol.2020.12369
MLA
Rajaratinam, H., Rasudin, N., Al Astani, T., Mokhtar, N., Yahya, M., Wan Zain, W., Asma‑Abdullah, N., Mohd Fuad, W."Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer". Oncology Letters 21.2 (2021): 108.
Chicago
Rajaratinam, H., Rasudin, N., Al Astani, T., Mokhtar, N., Yahya, M., Wan Zain, W., Asma‑Abdullah, N., Mohd Fuad, W."Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer". Oncology Letters 21, no. 2 (2021): 108. https://doi.org/10.3892/ol.2020.12369
Copy and paste a formatted citation
x
Spandidos Publications style
Rajaratinam H, Rasudin N, Al Astani T, Mokhtar N, Yahya M, Wan Zain W, Asma‑Abdullah N and Mohd Fuad W: Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncol Lett 21: 108, 2021.
APA
Rajaratinam, H., Rasudin, N., Al Astani, T., Mokhtar, N., Yahya, M., Wan Zain, W. ... Mohd Fuad, W. (2021). Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer. Oncology Letters, 21, 108. https://doi.org/10.3892/ol.2020.12369
MLA
Rajaratinam, H., Rasudin, N., Al Astani, T., Mokhtar, N., Yahya, M., Wan Zain, W., Asma‑Abdullah, N., Mohd Fuad, W."Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer". Oncology Letters 21.2 (2021): 108.
Chicago
Rajaratinam, H., Rasudin, N., Al Astani, T., Mokhtar, N., Yahya, M., Wan Zain, W., Asma‑Abdullah, N., Mohd Fuad, W."Breast cancer therapy affects the expression of antineonatal Nav1.5 antibodies in the serum of patients with breast cancer". Oncology Letters 21, no. 2 (2021): 108. https://doi.org/10.3892/ol.2020.12369
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team