Open Access

Molecular design and anti‑melanoma activity of a novel bullfrog antibacterial peptide RGD‑chimera

  • Authors:
    • Mengyue Liu
    • Xuan Jiang
    • Chao Fu
    • Ruili Zhao
    • Tianming Jin
    • Jifei Ma
    • Shunyi Qin
    • Liu An Li
    • Ye Hu
    • Xin Zhang
  • View Affiliations

  • Published online on: December 15, 2020     https://doi.org/10.3892/ol.2020.12376
  • Article Number: 115
  • Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Melanoma is a common malignant skin tumor, which is the only fatal skin tumor at present. Melanoma has a high degree of malignancy and metastasis. The activity of modified Temporin‑La (T‑La) peptides from bullfrog skin were evaluated for antitumor activity and improved targeting in melanoma cells. The amino acid sequence of T‑La was modified, resulting in the antitumor peptide, T‑La (FS). T‑La and T‑La (FS) were coupled to the RGD small molecule polypeptide to form the chimeric peptides RGD‑T‑La and RGD‑T‑La (FS), respectively. The secondary structures for the peptides, evaluated using circular dichroism, were found to be α‑helical. The structure of T‑La was evaluated using bioinformatics. In addition, the antitumor effects of the modified peptide and the targeting of RGD chimeric peptide to the tumor in vivo and in vitro were analyzed. Antitumor activity was measured in vitro using the MTT assay. Tumor cells with high integrin αvβ3 expression were detected using flow cytometry, and tumor cells were screened for sensitivity to RGD‑T‑La (FS) to establish a tumor model in nude mice. The effects of the peptides on tumor cells were measured using laser confocal microscopy in real‑time. The mechanism of the peptide antitumor activity in tumor cells was evaluated with scanning electron microscopy. B16 melanoma cells were the most sensitive to the peptides, for which the cell survival rate was 24.65% for 10 µg/ml RGD‑T‑La (FS). RGD‑La (FS) had a rapid effect on tumor cells. RGD chimeric polypeptides exhibited site‑targeting cytotoxic effects in tumor cells. In the B16 melanoma mouse model, the peptides exhibited antitumor effects against early melanoma development and induced tumor apoptosis, possibly by inhibiting VEGF and promoting caspase‑3 expression. Overall, the present study provides a scientific basis for the application of small molecule antimicrobial peptides as targeted antitumor agents and lays the foundation for the clinical application of these peptides as antitumor drugs.
View Figures
View References

Related Articles

Journal Cover

February-2021
Volume 21 Issue 2

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Liu M, Jiang X, Fu C, Zhao R, Jin T, Ma J, Qin S, Li LA, Hu Y, Zhang X, Zhang X, et al: Molecular design and anti‑melanoma activity of a novel bullfrog antibacterial peptide RGD‑chimera. Oncol Lett 21: 115, 2021
APA
Liu, M., Jiang, X., Fu, C., Zhao, R., Jin, T., Ma, J. ... Zhang, X. (2021). Molecular design and anti‑melanoma activity of a novel bullfrog antibacterial peptide RGD‑chimera. Oncology Letters, 21, 115. https://doi.org/10.3892/ol.2020.12376
MLA
Liu, M., Jiang, X., Fu, C., Zhao, R., Jin, T., Ma, J., Qin, S., Li, L. A., Hu, Y., Zhang, X."Molecular design and anti‑melanoma activity of a novel bullfrog antibacterial peptide RGD‑chimera". Oncology Letters 21.2 (2021): 115.
Chicago
Liu, M., Jiang, X., Fu, C., Zhao, R., Jin, T., Ma, J., Qin, S., Li, L. A., Hu, Y., Zhang, X."Molecular design and anti‑melanoma activity of a novel bullfrog antibacterial peptide RGD‑chimera". Oncology Letters 21, no. 2 (2021): 115. https://doi.org/10.3892/ol.2020.12376