|
1
|
Lander ES, Linton LM, Birren B, Nusbaum C,
Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al:
Initial sequencing and analysis of the human genome. Nature.
409:860–921. 2001. View Article : Google Scholar
|
|
2
|
Bannert N and Kurth R: The evolutionary
dynamics of human endogenous retroviral families. Annu Rev Genomics
Hum Genet. 7:149–173. 2006. View Article : Google Scholar
|
|
3
|
Hohn O, Hanke K and Bannert N:
HERV-K(HML-2), the best preserved family of HERVs: Endogenization,
expression, and implications in health and disease. Front Oncol.
3:2462013. View Article : Google Scholar
|
|
4
|
Garcia-Montojo M, Doucet-O'Hare T,
Henderson L and Nath A: Human endogenous retrovirus-K (HML-2): A
comprehensive review. Crit Rev Microbiol. 44:715–738. 2018.
View Article : Google Scholar
|
|
5
|
Henzy JE and Coffin JM: Betaretroviral
envelope subunits are noncovalently associated and restricted to
the mammalian class. J Virol. 87:1937–1946. 2013. View Article : Google Scholar
|
|
6
|
Schommer S, Sauter M, Kräusslich HG, Best
B and Mueller-Lantzsch N: Characterization of the human endogenous
retrovirus K proteinase. J Gen Virol. 77:375–379. 1996. View Article : Google Scholar
|
|
7
|
George M, Schwecke T, Beimforde N, Hohn O,
Chudak C, Zimmermann A, Kurth R, Naumann D and Bannert N:
Identification of the protease cleavage sites in a reconstituted
Gag polyprotein of an HERV-K(HML-2) element. Retrovirology.
8:302011. View Article : Google Scholar
|
|
8
|
Kjellman C, Sjögren HO and Widegren B:
HERV-F, a new group of human endogenous retrovirus sequences. J Gen
Virol. 80:2383–2392. 1999. View Article : Google Scholar
|
|
9
|
Kremer D, Gruchot J, Weyers V, Oldemeier
L, Göttle P, Healy L, Ho Jang J, Kang T, Xu Y, Volsko C, Dutta R,
et al: pHERV-W envelope protein fuels microglial cell-dependent
damage of myelinated axons in multiple sclerosis. Proc Natl Acad
Sci USA. 116:15216–15225. 2019. View Article : Google Scholar
|
|
10
|
Li W, Lee MH, Henderson L, Tyagi R,
Bachani M, Steiner J, Campanac E, Hoffman DA, von Geldern G,
Johnson K, et al: Human endogenous retrovirus-K contributes to
motor neuron disease. Sci Transl Med. 7:307ra1532015. View Article : Google Scholar
|
|
11
|
Terry SN, Manganaro L, Cuesta-Dominguez A,
Brinzevich D, Simon V and Mulder LCF: Expression of HERV-K108
envelope interferes with HIV-1 production. Virology. 509:52–59.
2017. View Article : Google Scholar
|
|
12
|
Monde K, Terasawa H, Nakano Y, Soheilian
F, Nagashima K, Maeda Y and Ono A: Molecular mechanisms by which
HERV-K Gag interferes with HIV-1 Gag assembly and particle
infectivity. Retrovirology. 14:272017. View Article : Google Scholar
|
|
13
|
Huang WJ, Liu ZC, Wei W, Wang GH, Wu JG
and Zhu F: Human endogenous retroviral pol RNA and protein detected
and identified in the blood of individuals with schizophrenia.
Schizophr Res. 83:193–199. 2006. View Article : Google Scholar
|
|
14
|
Yao Y, Schröder J, Nellåker C, Bottmer C,
Bachmann S, Yolken RH and Karlsson H: Elevated levels of human
endogenous retrovirus-W transcripts in blood cells from patients
with first episode schizophrenia. Genes Brain Behav. 7:103–112.
2008.
|
|
15
|
Vargas A, Toufaily C, LeBellego F, Rassart
E, Lafond J and Barbeau B: Reduced expression of both syncytin 1
and syncytin 2 correlates with severity of preeclampsia. Reprod
Sci. 18:1085–1091. 2011. View Article : Google Scholar
|
|
16
|
Levet S, Charvet B, Bertin A, Deschaumes
A, Perron H and Hober D: Human endogenous retroviruses and type 1
diabetes. Curr Diab Rep. 19:1412019. View Article : Google Scholar
|
|
17
|
Nogueira MA, Gavioli CF, Pereira NZ, de
Carvalho GC, Domingues R, Aoki V and Sato MN: Human endogenous
retrovirus expression is inversely related with the up-regulation
of interferon-inducible genes in the skin of patients with lichen
planus. Arch Dermatol Res. 307:259–264. 2015. View Article : Google Scholar
|
|
18
|
Ariza ME and Williams MV: A human
endogenous retrovirus K dUTPase triggers a TH1, TH17 cytokine
response: Does it have a role in psoriasis? J Invest Dermatol.
131:2419–2427. 2011. View Article : Google Scholar
|
|
19
|
Fali T, Le Dantec C, Thabet Y, Jousse S,
Hanrotel C, Youinou P, Brooks WH, Perl A and Renaudineau Y: DNA
methylation modulates HRES1/p28 expression in B cells from patients
with Lupus. Autoimmunity. 47:265–271. 2014. View Article : Google Scholar
|
|
20
|
Reynier F, Verjat T, Turrel F, Imbert PE,
Marotte H, Mougin B and Miossec P: Increase in human endogenous
retrovirus HERV-K (HML-2) viral load in active rheumatoid
arthritis. Scand J Immunol. 70:295–299. 2009. View Article : Google Scholar
|
|
21
|
Johanning GL, Malouf GG, Zheng X, Esteva
FJ, Weinstein JN, Wang-Johanning F and Su X: Expression of human
endogenous retrovirus-K is strongly associated with the basal-like
breast cancer phenotype. Sci Rep. 7:419602017. View Article : Google Scholar
|
|
22
|
Ma W, Hong Z, Liu H, Chen X, Ding L, Liu
Z, Zhou F and Yuan Y: Human Endogenous retroviruses-K (HML-2)
expression is correlated with prognosis and progress of
hepatocellular carcinoma. Biomed Res Int. 2016:82016422016.
View Article : Google Scholar
|
|
23
|
Li M, Radvanyi L, Yin B, Rycaj K, Li J,
Chivukula R, Lin K, Lu Y, Shen J, Chang DZ, et al: Downregulation
of human endogenous retrovirus type K (HERV-K) Viral env RNA in
pancreatic cancer cells decreases cell proliferation and tumor
growth. Clin Cancer Res. 23:5892–5911. 2017. View Article : Google Scholar
|
|
24
|
Chen T, Meng Z, Gan Y, Wang X, Xu F, Gu Y,
Xu X, Tang J, Zhou H, Zhang X, et al: The viral oncogene Np9 acts
as a critical molecular switch for co-activating β-catenin, ERK,
Akt and Notch1 and promoting the growth of human leukemia
stem/progenitor cells. Leukemia. 27:1469–1478. 2013. View Article : Google Scholar
|
|
25
|
Mangeney M, Renard M, Schlecht-Louf G,
Bouallaga I, Heidmann O, Letzelter C, Richaud A, Ducos B and
Heidmann T: Placental syncytins: Genetic disjunction between the
fusogenic and immunosuppressive activity of retroviral envelope
proteins. Proc Natl Acad Sci USA. 104:20534–20539. 2007. View Article : Google Scholar
|
|
26
|
Panda A, de Cubas AA, Stein M, Riedlinger
G, Kra J, Mayer T, Smith CC, Vincent BG, Serody JS, Beckermann KE,
et al: Endogenous retrovirus expression is associated with response
to immune checkpoint blockade in clear cell renal cell carcinoma.
JCI Insight. 3:e1215222018. View Article : Google Scholar
|
|
27
|
Tavakolian S, Goudarzi H and Faghihloo E:
Evaluating the expression level of HERV-K env, np9, rec and gag in
breast tissue. Infect Agent Cancer. 14:422019. View Article : Google Scholar
|
|
28
|
Ibba G, Piu C, Uleri E, Serra C and Dolei
A: Disruption by SaCas9 endonuclease of HERV-Kenv, a retroviral
gene with oncogenic and neuropathogenic potential, inhibits
molecules involved in cancer and amyotrophic lateral sclerosis.
Viruses. 10:4122018. View Article : Google Scholar
|
|
29
|
Galli UM, Sauter M, Lecher B, Maurer S,
Herbst H, Roemer K and Mueller-Lantzsch N: Human endogenous
retrovirus rec interferes with germ cell development in mice and
may cause carcinoma in situ, the predecessor lesion of germ cell
tumors. Oncogene. 24:3223–3228. 2005. View Article : Google Scholar
|
|
30
|
Kreimer U, Schulz WA, Koch A, Niegisch G
and Goering W: HERV-K and LINE-1 DNA methylation and reexpression
in urothelial carcinoma. Front Oncol. 3:2552013. View Article : Google Scholar
|
|
31
|
Rycaj K, Plummer JB, Yin B, Li M, Garza J,
Radvanyi L, Ramondetta LM, Lin K, Johanning GL, Tang DG and
Wang-Johanning F: Cytotoxicity of human endogenous retrovirus
K-specific T cells toward autologous ovarian cancer cells. Clin
Cancer Res. 21:471–483. 2015. View Article : Google Scholar
|
|
32
|
Zare M, Mostafaei S, Ahmadi A, Azimzadeh
Jamalkandi S, Abedini A, Esfahani-Monfared Z, Dorostkar R and
Saadati M: Human endogenous retrovirus env genes: Potential blood
biomarkers in lung cancer. Microb Pathog. 115:189–193. 2018.
View Article : Google Scholar
|
|
33
|
Bergallo M, Montanari P, Mareschi K,
Merlino C, Berger M, Bini I, Daprà V, Galliano I and Fagioli F:
Expression of the pol gene of human endogenous retroviruses HERV-K
and -W in leukemia patients. Arch Virol. 162:3639–3644. 2017.
View Article : Google Scholar
|
|
34
|
Barth M, Gröger V, Cynis H and Staege MS:
Identification of human endogenous retrovirus transcripts in
Hodgkin Lymphoma cells. Mol Biol Rep. 46:1885–1893. 2019.
View Article : Google Scholar
|
|
35
|
Aagaard L, Bjerregaard B, Kjeldbjerg AL,
Pedersen FS, Larsson LI and Rossi JJ: Silencing of endogenous
envelope genes in human choriocarcinoma cells shows that envPb1 is
involved in heterotypic cell fusions. J Gen Virol. 93:1696–1699.
2012. View Article : Google Scholar
|
|
36
|
Liang Q, Xu Z, Xu R, Wu L and Zheng S:
Expression patterns of non-coding spliced transcripts from human
endogenous retrovirus HERV-H elements in colon cancer. PLoS One.
7:e299502012. View Article : Google Scholar
|
|
37
|
Giebler M, Staege MS, Blauschmidt S, Ohm
LI, Kraus M, Würl P, Taubert H and Greither T: Elevated HERV-K
expression in soft tissue sarcoma is associated with worsened
relapse-free survival. Front Microbiol. 9:2112018. View Article : Google Scholar
|
|
38
|
Dai L, Del Valle L, Miley W, Whitby D,
Ochoa AC, Flemington EK and Qin Z: Transactivation of human
endogenous retrovirus K (HERV-K) by KSHV promotes Kaposi's sarcoma
development. Oncogene. 37:4534–4545. 2018. View Article : Google Scholar
|
|
39
|
Montesion M, Bhardwaj N, Williams ZH,
Kuperwasser C and Coffin JM: Mechanisms of HERV-K (HML-2)
transcription during human mammary epithelial cell transformation.
J Virol. 92:e01258–17. 2018.
|
|
40
|
Zhou F, Li M, Wei Y, Lin K, Lu Y, Shen J,
Johanning GL and Wang-Johanning F: Activation of HERV-K Env protein
is essential for tumorigenesis and metastasis of breast cancer
cells. Oncotarget. 7:84093–84117. 2016. View Article : Google Scholar
|
|
41
|
Chan SM, Sapir T, Park SS, Rual JF,
Contreras-Galindo R, Reiner O and Markovitz DM: The HERV-K
accessory protein Np9 controls viability and migration of
teratocarcinoma cells. PLoS One. 14:e02129702019. View Article : Google Scholar
|
|
42
|
van de Lagemaat LN, Medstrand P and Mager
DL: Multiple effects govern endogenous retrovirus survival patterns
in human gene introns. Genome Biol. 7:R862006. View Article : Google Scholar
|
|
43
|
Lee Y and Rio DC: Mechanisms and
regulation of alternative pre-mRNA splicing. Annu Rev Biochem.
84:291–323. 2015. View Article : Google Scholar
|
|
44
|
Leib-Mösch C, Haltmeier M, Werner T, Geigl
EM, Brack-Werner R, Francke U, Erfle V and Hehlmann R: Genomic
distribution and transcription of solitary HERV-K LTRs. Genomics.
18:261–269. 1993. View Article : Google Scholar
|
|
45
|
Ng KW, Attig J, Young GR, Ottina E,
Papamichos SI, Kotsianidis I and Kassiotis G: Soluble PD-L1
generated by endogenous retroelement exaptation is a receptor
antagonist. Elife. 8:e502562019. View Article : Google Scholar
|
|
46
|
Hassounah NB, Malladi VS, Huang Y, Freeman
SS, Beauchamp EM, Koyama S, Souders N, Martin S, Dranoff G, Wong
KK, et al: Identification and characterization of an alternative
cancer-derived PD-L1 splice variant. Cancer Immunol Immunother.
68:407–420. 2019. View Article : Google Scholar
|
|
47
|
Bassani-Sternberg M, Bräunlein E, Klar R,
Engleitner T, Sinitcyn P, Audehm S, Straub M, Weber J,
Slotta-Huspenina J, Specht K, et al: Direct identification of
clinically relevant neoepitopes presented on native human melanoma
tissue by mass spectrometry. Nat Commun. 7:134042016. View Article : Google Scholar
|
|
48
|
Attig J, Young GR, Hosie L, Perkins D,
Encheva-Yokoya V, Stoye JP, Snijders AP, Ternette N and Kassiotis
G: LTR retroelement expansion of the human cancer transcriptome and
immunopeptidome revealed by de novo transcript assembly. Genome
Res. 29:1578–1590. 2019. View Article : Google Scholar
|
|
49
|
Laumont CM, Daouda T, Laverdure JP,
Bonneil É, Caron-Lizotte O, Hardy MP, Granados DP, Durette C,
Lemieux S, Thibault P and Perreault C: Global proteogenomic
analysis of human MHC class I-associated peptides derived from
non-canonical reading frames. Nat Commun. 7:102382016. View Article : Google Scholar
|
|
50
|
Zhu Y, Orre LM, Johansson HJ, Huss M,
Boekel J, Vesterlund M, Fernandez-Woodbridge A, Branca RMM and
Lehtiö J: Discovery of coding regions in the human genome by
integrated proteogenomics analysis workflow. Nat Commun. 9:9032018.
View Article : Google Scholar
|
|
51
|
Montesion M, Williams ZH, Subramanian RP,
Kuperwasser C and Coffin JM: Promoter expression of HERV-K (HML-2)
provirus-derived sequences is related to LTR sequence variation and
polymorphic transcription factor binding sites. Retrovirology.
15:572018. View Article : Google Scholar
|
|
52
|
Knossl M, Lower R and Lower J: Expression
of the human endogenous retrovirus HTDV/HERV-K is enhanced by
cellular transcription factor YY1. J Virol. 73:1254–1261. 1999.
View Article : Google Scholar
|
|
53
|
Ohtani H, Liu M, Zhou W, Liang G and Jones
PA: Switching roles for DNA and histone methylation depend on
evolutionary ages of human endogenous retroviruses. Genome Res.
28:1147–1157. 2018. View Article : Google Scholar
|
|
54
|
Gonzalez-Hernandez MJ, Cavalcoli JD,
Sartor MA, Contreras-Galindo R, Meng F, Dai M, Dube D, Saha AK,
Gitlin SD, Omenn GS, et al: Regulation of the human endogenous
retrovirus K (HML-2) transcriptome by the HIV-1 Tat protein. J
Virol. 88:8924–8935. 2014. View Article : Google Scholar
|
|
55
|
Conti A, Rota F, Ragni E, Favero C, Motta
V, Lazzari L, Bollati V, Fustinoni S and Dieci G: Hydroquinone
induces DNA hypomethylation-independent overexpression of
retroelements in human leukemia and hematopoietic stem cells.
Biochem Biophys Res Commun. 474:691–695. 2016. View Article : Google Scholar
|
|
56
|
Subramanian RP, Wildschutte JH, Russo C
and Coffin JM: Identification, characterization, and comparative
genomic distribution of the HERV-K (HML-2) group of human
endogenous retroviruses. Retrovirology. 8:902011. View Article : Google Scholar
|
|
57
|
Liang Q, Ding J, Xu R, Xu Z and Zheng S:
Identification of a novel human endogenous retrovirus and promoter
activity of its 5′ U3. Biochem Biophys Res Commun. 382:468–472.
2009. View Article : Google Scholar
|
|
58
|
Fuchs NV, Kraft M, Tondera C, Hanschmann
KM, Löwer J and Löwer R: Expression of the human endogenous
retrovirus (HERV) group HML-2/HERV-K does not depend on canonical
promoter elements but is regulated by transcription factors Sp1 and
Sp3. J Virol. 85:3436–3448. 2011. View Article : Google Scholar
|
|
59
|
Yu H, Liu T, Zhao Z, Chen Y, Zeng J, Liu S
and Zhu F: Mutations in 3′-long terminal repeat of HERV-W family in
chromosome 7 upregulate syncytin-1 expression in urothelial cell
carcinoma of the bladder through interacting with c-Myb. Oncogene.
33:3947–3958. 2014. View Article : Google Scholar
|
|
60
|
Katoh I, Mírová A, Kurata S, Murakami Y,
Horikawa K, Nakakuki N, Sakai T, Hashimoto K, Maruyama A, Yonaga T,
et al: Activation of the long terminal repeat of human endogenous
retrovirus K by melanoma-specific transcription factor MITF-M.
Neoplasia. 13:1081–1092. 2011. View Article : Google Scholar
|
|
61
|
Stacey KJ and Sagulenko V: A clear link
between endogenous retroviral LTR activity and Hodgkin's lymphoma.
Cell Res. 20:869–871. 2010. View Article : Google Scholar
|
|
62
|
Kriaucionis S and Tahiliani M: Expanding
the epigenetic landscape: Novel modifications of cytosine in
genomic DNA. Cold Spring Harb Perspect Biol. 6:a0186302014.
View Article : Google Scholar
|
|
63
|
Brookes E and Shi Y: Diverse epigenetic
mechanisms of human disease. Annu Rev Genet. 48:237–268. 2014.
View Article : Google Scholar
|
|
64
|
Lavie L, Kitova M, Maldener E, Meese E and
Mayer J: CpG methylation directly regulates transcriptional
activity of the human endogenous retrovirus family HERV-K(HML-2). J
Virol. 79:876–883. 2005. View Article : Google Scholar
|
|
65
|
Florl AR, Löwer R, Schmitz-Dräger BJ and
Schulz WA: DNA methylation and expression of LINE-1 and HERV-K
provirus sequences in urothelial and renal cell carcinomas. Br J
Cancer. 80:1312–1321. 1999. View Article : Google Scholar
|
|
66
|
Menendez L, Benigno BB and McDonald JF: L1
and HERV-W retrotransposons are hypomethylated in human ovarian
carcinomas. Mol Cancer. 3:122004. View Article : Google Scholar
|
|
67
|
Stengel S, Fiebig U, Kurth R and Denner J:
Regulation of human endogenous retrovirus-K expression in melanomas
by CpG methylation. Genes Chromosomes Cancer. 49:401–411. 2010.
View Article : Google Scholar
|
|
68
|
Strissel PL, Ruebner M, Thiel F, Wachter
D, Ekici AB, Wolf F, Thieme F, Ruprecht K, Beckmann MW and Strick
R: Reactivation of codogenic endogenous retroviral (ERV) envelope
genes in human endometrial carcinoma and prestages: Emergence of
new molecular targets. Oncotarget. 3:1204–1219. 2012. View Article : Google Scholar
|
|
69
|
Hu L, Uzhameckis D, Hedborg F and Blomberg
J: Dynamic and selective HERV RNA expression in neuroblastoma cells
subjected to variation in oxygen tension and demethylation. APMIS.
124:140–149. 2016. View Article : Google Scholar
|
|
70
|
Bannister AJ and Kouzarides T: Regulation
of chromatin by histone modifications. Cell Res. 21:381–395. 2011.
View Article : Google Scholar
|
|
71
|
Krönung SK, Beyer U, Chiaramonte ML,
Dolfini D, Mantovani R and Dobbelstein M: LTR12 promoter activation
in a broad range of human tumor cells by HDAC inhibition.
Oncotarget. 7:33484–33497. 2016. View Article : Google Scholar
|
|
72
|
Rajagopalan D, Tirado-Magallanes R, Bhatia
SS, Teo WS, Sian S, Hora S, Lee KK, Zhang Y, Jadhav SP, Wu Y, et
al: TIP60 represses activation of endogenous retroviral elements.
Nucleic Acids Res. 46:9456–9470. 2018. View Article : Google Scholar
|
|
73
|
Sheng W, LaFleur MW, Nguyen TH, Chen S,
Chakravarthy A, Conway JR, Li Y, Chen H, Yang H, Hsu PH, et al:
LSD1 ablation stimulates anti-tumor immunity and enables checkpoint
blockade. Cell. 174:549–563.e19. 2018. View Article : Google Scholar
|
|
74
|
Liu M, Thomas SL, DeWitt AK, Zhou W, Madaj
ZB, Ohtani H, Baylin SB, Liang G and Jones PA: Dual inhibition of
DNA and histone methyltransferases increases viral mimicry in
ovarian cancer cells. Cancer Res. 78:5754–5766. 2018.
|
|
75
|
Audergon PN, Catania S, Kagansky A, Tong
P, Shukla M, Pidoux AL and Allshire RC: Epigenetics. Restricted
epigenetic inheritance of H3K9 methylation. Science. 348:132–135.
2015. View Article : Google Scholar
|
|
76
|
Matsui T, Leung D, Miyashita H, Maksakova
IA, Miyachi H, Kimura H, Tachibana M, Lorincz MC and Shinkai Y:
Proviral silencing in embryonic stem cells requires the histone
methyltransferase ESET. Nature. 464:927–931. 2010. View Article : Google Scholar
|
|
77
|
Sharma S, Gerke DS, Han HF, Jeong S,
Stallcup MR, Jones PA and Liang G: Lysine methyltransferase G9a is
not required for DNMT3A/3B anchoring to methylated nucleosomes and
maintenance of DNA methylation in somatic cells. Epigenetics
Chromatin. 5:32012. View Article : Google Scholar
|
|
78
|
Adoue V, Binet B, Malbec A, Fourquet J,
Romagnoli P, van Meerwijk JPM, Amigorena S and Joffre OP: The
histone methyltransferase SETDB1 controls T helper cell lineage
integrity by repressing endogenous retroviruses. Immunity.
50:629–644.e8. 2019. View Article : Google Scholar
|
|
79
|
Imbeault M, Helleboid P-Y and Trono D:
KRAB zinc-finger proteins contribute to the evolution of gene
regulatory networks. Nature. 543:550–554. 2017. View Article : Google Scholar
|
|
80
|
Thomas JH and Schneider S: Coevolution of
retroelements and tandem zinc finger genes. Genome Res.
21:1800–1812. 2011. View Article : Google Scholar
|
|
81
|
Voon HPJ and Gibbons RJ: Maintaining
memory of silencing at imprinted differentially methylated regions.
Cell Mol Life Sci. 73:1871–1879. 2016. View Article : Google Scholar
|
|
82
|
Toufaily C, Landry S, Leib-Mosch C,
Rassart E and Barbeau B: Activation of LTRs from different human
endogenous retrovirus (HERV) families by the HTLV-1 tax protein and
T-cell activators. Viruses. 3:2146–2159. 2011. View Article : Google Scholar
|
|
83
|
Sutkowski N, Conrad B, Thorley-Lawson DA
and Huber BT: Epstein-Barr virus transactivates the human
endogenous retrovirus HERV-K18 that encodes a superantigen.
Immunity. 15:579–589. 2001. View Article : Google Scholar
|
|
84
|
Karimi A, Sheervalilou R and Kahroba H: A
new insight on activation of human endogenous retroviruses (HERVs)
in malignant melanoma upon exposure to CuSO4. Biol Trace Elem Res.
191:70–74. 2019. View Article : Google Scholar
|
|
85
|
Alqahtani S, Promtong P, Oliver AW, He XT,
Walker TD, Povey A, Hampson L and Hampson IN: Silver nanoparticles
exhibit size-dependent differential toxicity and induce expression
of syncytin-1 in FA-AML1 and MOLT-4 leukaemia cell lines.
Mutagenesis. 31:695–702. 2016. View Article : Google Scholar
|
|
86
|
Reiche J, Pauli G and Ellerbrok H:
Differential expression of human endogenous retrovirus K
transcripts in primary human melanocytes and melanoma cell lines
after UV irradiation. Melanoma Res. 20:435–440. 2010.
|
|
87
|
Tsilimigras MC, Fodor A and Jobin C:
Carcinogenesis and therapeutics: The microbiota perspective. Nat
Microbiol. 2:170082017. View Article : Google Scholar
|
|
88
|
Simanshu DK, Nissley DV and McCormick F:
RAS proteins and their regulators in human disease. Cell.
170:17–33. 2017. View Article : Google Scholar
|
|
89
|
Vieler M and Sanyal S: p53 Isoforms and
their implications in cancer. Cancers (Basel). 10:2882018.
View Article : Google Scholar
|
|
90
|
McLane LM, Abdel-Hakeem MS and Wherry EJ:
CD8 T cell exhaustion during chronic viral infection and cancer.
Annu Rev Immunol. 37:457–495. 2019. View Article : Google Scholar
|
|
91
|
Chan SL, Wong VW, Qin S and Chan HL:
Infection and cancer: The case of hepatitis B. J Clin Oncol.
34:83–90. 2016. View Article : Google Scholar
|
|
92
|
Roden RBS and Stern PL: Opportunities and
challenges for human papillomavirus vaccination in cancer. Nat Rev
Cancer. 18:240–254. 2018. View Article : Google Scholar
|
|
93
|
Cianciolo GJ, Copeland TD, Oroszlan S and
Snyderman R: Inhibition of lymphocyte proliferation by a synthetic
peptide homologous to retroviral envelope proteins. Science.
230:453–455. 1985. View Article : Google Scholar
|
|
94
|
Mangeney M, de Parseval N, Thomas G and
Heidmann T: The full-length envelope of an HERV-H human endogenous
retrovirus has immunosuppressive properties. J Gen Virol.
82:2515–2518. 2001. View Article : Google Scholar
|
|
95
|
Hummel J, Kämmerer U, Müller N, Avota E
and Schneider-Schaulies S: Human endogenous retrovirus envelope
proteins target dendritic cells to suppress T-cell activation. Eur
J Immunol. 45:1748–1759. 2015. View Article : Google Scholar
|
|
96
|
Lv H, Han J, Liu J, Zheng J, Zhong D and
Liu R: ISDTool: A computational model for predicting
immunosuppressive domain of HERVs. Comput Biol Chem. 49:45–50.
2014. View Article : Google Scholar
|
|
97
|
Kraus B, Fischer K, Büchner SM, Wels WS,
Löwer R, Sliva K and Schnierle BS: Vaccination directed against the
human endogenous retrovirus-K envelope protein inhibits tumor
growth in a murine model system. PLoS One. 8:e727562013. View Article : Google Scholar
|
|
98
|
Wang-Johanning F, Rycaj K, Plummer JB, Li
M, Yin B, Frerich K, Garza JG, Shen J, Lin K, Yan P, et al:
Immunotherapeutic potential of anti-human endogenous retrovirus-K
envelope protein antibodies in targeting breast tumors. J Natl
Cancer Inst. 104:189–210. 2012. View Article : Google Scholar
|
|
99
|
Kim HJ, Moon BI, Lee JW, Kim SC and Kim
HJ: Age-related reduction of antibody response against the human
endogenous retrovirus K envelope in women. Oncotarget.
7:17327–17337. 2016. View Article : Google Scholar
|
|
100
|
Mastrangelo G, Pavanello S, Fadda E, Buja
A and Fedeli U: Yellow fever vaccine 17D administered to healthy
women aged between 40 and 54 years halves breast cancer risk: An
observational study. Eur J Cancer Prev. 27:303–309. 2018.
View Article : Google Scholar
|
|
101
|
Zhou F, Krishnamurthy J, Wei Y, Li M, Hunt
K, Johanning GL, Cooper LJ and Wang-Johanning F: Chimeric antigen
receptor T cells targeting HERV-K inhibit breast cancer and its
metastasis through downregulation of Ras. Oncoimmunology.
4:e10475822015. View Article : Google Scholar
|
|
102
|
Wang Z, Zheng Y, Park HJ, Li J, Carr JR,
Chen YJ, Kiefer MM, Kopanja D, Bagchi S, Tyner AL and Raychaudhuri
P: Targeting FoxM1 effectively retards p53-null lymphoma and
sarcoma. Mol Cancer Ther. 12:759–767. 2013. View Article : Google Scholar
|
|
103
|
von Lintig FC, Dreilinger AD, Varki NM,
Wallace AM, Casteel DE and Boss GR: Ras activation in human breast
cancer. Breast Cancer Res Treat. 62:51–62. 2000. View Article : Google Scholar
|
|
104
|
Lemaître C, Tsang J, Bireau C, Heidmann T
and Dewannieux M: A human endogenous retrovirus-derived gene that
can contribute to oncogenesis by activating the ERK pathway and
inducing migration and invasion. PLoS Pathog. 13:e10064512017.
View Article : Google Scholar
|
|
105
|
Bjerregaard B, Holck S, Christensen IJ and
Larsson LI: Syncytin is involved in breast cancer-endothelial cell
fusions. Cell Mol Life Sci. 63:1906–1911. 2006. View Article : Google Scholar
|
|
106
|
Duelli D and Lazebnik Y: Cell fusion: A
hidden enemy? Cancer Cell. 3:445–448. 2003. View Article : Google Scholar
|
|
107
|
Anderson MJ and Stanbridge EJ: Tumor
suppressor genes studied by cell hybridization and chromosome
transfer. FASEB J. 7:826–833. 1993. View Article : Google Scholar
|
|
108
|
Köhler G and Milstein C: Continuous
cultures of fused cells secreting antibody of predefined
specificity. Nature. 256:495–497. 1975. View Article : Google Scholar
|
|
109
|
Li N, Li Y, Lv J, Zheng X, Wen H, Shen H,
Zhu G, Chen TY, Dhar SS, Kan PY, et al: ZMYND8 reads the dual
histone mark H3K4me1-H3K14ac to antagonize the expression of
metastasis-linked genes. Mol Cell. 63:470–484. 2016. View Article : Google Scholar
|
|
110
|
Jin X, Xu XE, Jiang YZ, Liu YR, Sun W, Guo
YJ, Ren YX, Zuo WJ, Hu X, Huang SL, et al: The endogenous
retrovirus-derived long noncoding RNA TROJAN promotes
triple-negative breast cancer progression via ZMYND8 degradation.
Sci Adv. 5:eaat98202019. View Article : Google Scholar
|
|
111
|
Galiè M: RAS as supporting actor in breast
cancer. Front Oncol. 9:11992019. View Article : Google Scholar
|
|
112
|
Kaufmann S, Sauter M, Schmitt M, Baumert
B, Best B, Boese A, Roemer K and Mueller-Lantzsch N: Human
endogenous retrovirus protein Rec interacts with the testicular
zinc-finger protein and androgen receptor. J Gen Virol.
91:1494–1502. 2010. View Article : Google Scholar
|
|
113
|
Benešová M, Trejbalová K, Kovářová D,
Vernerová Z, Hron T, Kučerová D and Hejnar J: DNA hypomethylation
and aberrant expression of the human endogenous retrovirus
ERVWE1/syncytin-1 in seminomas. Retrovirology. 14:202017.
View Article : Google Scholar
|
|
114
|
Jiang B, Yang B, Wang Q, Zheng X, Guo Y
and Lu W: lncRNA PVT1 promotes hepatitis B virus-positive liver
cancer progression by disturbing histone methylation on the c-Myc
promoter. Oncol Rep. 43:718–726. 2020.
|
|
115
|
de Souza CR, Leal MF, Calcagno DQ, Costa
Sozinho EK, Borges Bdo N, Montenegro RC, Dos Santos AK, Dos Santos
SE, Ribeiro HF, Assumpção PP, et al: MYC deregulation in gastric
cancer and its clinicopathological implications. PLoS One.
8:e644202013. View Article : Google Scholar
|
|
116
|
Denne M, Sauter M, Armbruester V, Licht
JD, Roemer K and Mueller-Lantzsch N: Physical and functional
interactions of human endogenous retrovirus proteins Np9 and rec
with the promyelocytic leukemia zinc finger protein. J Virol.
81:5607–5616. 2007. View Article : Google Scholar
|
|
117
|
Hanke K, Chudak C, Kurth R and Bannert N:
The Rec protein of HERV-K(HML-2) upregulates androgen receptor
activity by binding to the human small glutamine-rich
tetratricopeptide repeat protein (hSGT). Int J Cancer. 132:556–567.
2013. View Article : Google Scholar
|
|
118
|
Armbruester V, Sauter M, Roemer K, Best B,
Hahn S, Nty A, Schmid A, Philipp S, Mueller A and Mueller-Lantzsch
N: Np9 protein of human endogenous retrovirus K interacts with
ligand of numb protein X. J Virol. 78:10310–10319. 2004. View Article : Google Scholar
|
|
119
|
Shao X, Ding Z, Zhao M, Liu K, Sun H, Chen
J, Liu X, Zhang Y, Hong Y and Li H and Li H: Mammalian Numb protein
antagonizes Notch by controlling postendocytic trafficking of the
Notch ligand Delta-like 4. J Biol Chem. 292:20628–20643. 2017.
View Article : Google Scholar
|
|
120
|
Fischer S, Echeverría N, Moratorio G,
Landoni AI, Dighiero G, Cristina J, Oppezzo P and Moreno P: Human
endogenous retrovirus np9 gene is over expressed in chronic
lymphocytic leukemia patients. Leuk Res Rep. 3:70–72. 2014.
|
|
121
|
Hu Y, Chen Y, Douglas L and Li S:
beta-Catenin is essential for survival of leukemic stem cells
insensitive to kinase inhibition in mice with BCR-ABL-induced
chronic myeloid leukemia. Leukemia. 23:109–116. 2009. View Article : Google Scholar
|
|
122
|
Polak R and Buitenhuis M: The PI3K/PKB
signaling module as key regulator of hematopoiesis: Implications
for therapeutic strategies in leukemia. Blood. 119:911–923. 2012.
View Article : Google Scholar
|
|
123
|
Wu B, Gan Y, Xu Y, Wu Z, Xu G, Wang P,
Wang C, Meng Z, Li M, Zhang J, et al: Identification of the novel
Np17 oncogene in human leukemia. Aging (Albany NY). 12:2020.
|
|
124
|
Chen J, Foroozesh M and Qin Z:
Transactivation of human endogenous retroviruses by tumor viruses
and their functions in virus-associated malignancies. Oncogenesis.
8:62019. View Article : Google Scholar
|
|
125
|
Gabaev I, Williamson JC, Crozier TWM,
Schulz TF and Lehner PJ: Quantitative proteomics analysis of lytic
KSHV infection in human endothelial cells reveals targets of viral
immune modulation. Cell Rep. 33:1082492020. View Article : Google Scholar
|
|
126
|
Wang-Johanning F, Li M, Esteva FJ, Hess
KR, Yin B, Rycaj K, Plummer JB, Garza JG, Ambs S and Johanning GL:
Human endogenous retrovirus type K antibodies and mRNA as serum
biomarkers of early-stage breast cancer. Int J Cancer. 134:587–595.
2014. View Article : Google Scholar
|
|
127
|
Tokuyama M, Kong Y, Song E, Jayewickreme
T, Kang I and Iwasaki A: ERVmap analysis reveals genome-wide
transcription of human endogenous retroviruses. Proc Natl Acad Sci
USA. 115:12565–12572. 2018. View Article : Google Scholar
|
|
128
|
Mullins CS and Linnebacher M: Endogenous
retrovirus sequences as a novel class of tumor-specific antigens:
An example of HERV-H env encoding strong CTL epitopes. Cancer
Immunol Immunother. 61:1093–1100. 2012. View Article : Google Scholar
|
|
129
|
Wang-Johanning F, Radvanyi L, Rycaj K,
Plummer JB, Yan P, Sastry KJ, Piyathilake CJ, Hunt KK and Johanning
GL: Human endogenous retrovirus K triggers an antigen-specific
immune response in breast cancer patients. Cancer Res.
68:5869–5877. 2008. View Article : Google Scholar
|
|
130
|
Kudo-Saito C, Yura M, Yamamoto R and
Kawakami Y: Induction of immunoregulatory CD271+ cells
by metastatic tumor cells that express human endogenous retrovirus
H. Cancer Res. 74:1361–1370. 2014. View Article : Google Scholar
|
|
131
|
Humer J, Waltenberger A, Grassauer A, Kurz
M, Valencak J, Rapberger R, Hahn S, Löwer R, Wolff K, Bergmann M,
et al: Identification of a melanoma marker derived from
melanoma-associated endogenous retroviruses. Cancer Res.
66:1658–1663. 2006. View Article : Google Scholar
|
|
132
|
Reis BS, Jungbluth AA, Frosina D, Holz M,
Ritter E, Nakayama E, Ishida T, Obata Y, Carver B, Scher H, et al:
Prostate cancer progression correlates with increased humoral
immune response to a human endogenous retrovirus GAG protein. Clin
Cancer Res. 19:6112–6125. 2013. View Article : Google Scholar
|
|
133
|
Chiappinelli KB, Strissel PL, Desrichard
A, Li H, Henke C, Akman B, Hein A, Rote NS, Cope LM, Snyder A, et
al: Inhibiting DNA methylation causes an interferon response in
cancer via dsRNA including endogenous retroviruses. Cell.
162:974–986. 2015. View Article : Google Scholar
|
|
134
|
Roulois D, Loo Yau H, Singhania R, Wang Y,
Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al:
DNA-demethylating agents target colorectal cancer cells by inducing
viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015.
View Article : Google Scholar
|
|
135
|
Haffner MC, Taheri D, Luidy-Imada E,
Palsgrove DN, Eich ML, Netto GJ, Matoso A, Nirschl TR, Zheng Q,
Hicks JL, et al: Hypomethylation, endogenous retrovirus expression,
and interferon signaling in testicular germ cell tumors. Proc Natl
Acad Sci USA. 115:E8580–E8582. 2018. View Article : Google Scholar
|
|
136
|
Argaw-Denboba A, Balestrieri E, Serafino
A, Cipriani C, Bucci I, Sorrentino R, Sciamanna I, Gambacurta A,
Sinibaldi-Vallebona P and Matteucci C: HERV-K activation is
strictly required to sustain CD133+ melanoma cells with stemness
features. J Exp Clin Cancer Res. 36:202017. View Article : Google Scholar
|
|
137
|
Saini SK, Ørskov AD, Bjerregaard AM,
Unnikrishnan A, Holmberg-Thydén S, Borch A, Jensen KV, Anande G,
Bentzen AK, Marquard AM, et al: Human endogenous retroviruses form
a reservoir of T cell targets in hematological cancers. Nat Commun.
11:56602020. View Article : Google Scholar
|
|
138
|
Tatkiewicz W, Dickie J, Bedford F, Jones
A, Atkin M, Kiernan M, Maze EA, Agit B, Farnham G, Kanapin A and
Belshaw R: Characterising a human endogenous
retrovirus(HERV)-derived tumour-associated antigen: Enriched
RNA-Seq analysis of HERV-K(HML-2) in mantle cell lymphoma cell
lines. Mob DNA. 11:92020. View Article : Google Scholar
|
|
139
|
Ficial M, Jegede OA, Sant'Angelo M, Hou Y,
Flaifel A, Pignon JC, Braun DA, Wind-Rotolo M, Sticco-Ivins M,
Catalano PJ, et al: Expression of T-cell exhaustion molecules and
human endogenous retroviruses as predictive biomarkers for response
to nivolumab in metastatic clear cell renal cell carcinoma. Clin
Cancer Res. 30842020.
|
|
140
|
Siebenthall KT, Miller CP, Vierstra JD,
Mathieu J, Tretiakova M, Reynolds A, Sandstrom R, Rynes E, Haugen
E, Johnson A, et al: Integrated epigenomic profiling reveals
endogenous retrovirus reactivation in renal cell carcinoma.
EBioMedicine. 41:427–442. 2019. View Article : Google Scholar
|