|
1
|
Bray F, Ferlay J, Soerjomataram I, Siegel
RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in
185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Qu X, Ben Q and Jiang Y: Consumption of
red and processed meat and risk for esophageal squamous cell
carcinoma based on a meta-analysis. Ann Epidemiol. 23:762–770.e1.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Prabhu A, Obi KO and Rubenstein JH: The
synergistic effects of alcohol and tobacco consumption on the risk
of esophageal squamous cell carcinoma: A meta-analysis. Am J
Gastroenterol. 109:822–827. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Andrici J and Eslick GD: Hot food and
beverage consumption and the risk of esophageal cancer: A
meta-analysis. Am J Prev Med. 49:952–960. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Wu C, Wang Z, Song X, Feng XS, Abnet CC,
He J, Hu N, Zuo XB, Tan W, Zhan Q, et al: Joint analysis of three
genome-wide association studies of esophageal squamous cell
carcinoma in Chinese populations. Nat Genet. 46:1001–1006. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wang SM, Abnet CC and Qiao YL: What have
we learned from Linxian esophageal cancer etiological studies?
Thorac Cancer. 10:1036–1042. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Spechler SJ: Barrett's esophagus. Curr
Opin Gastroenterol. 15:352–358. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Woodward TA, Klingler PD, Genko PV and
Wolfe JT: Barrett's esophagus, apoptosis and cell cycle regulation:
Correlation of p53 with Bax, Bcl-2 and p21 protein expression.
Anticancer Res. 20:2427–2432. 2000.PubMed/NCBI
|
|
9
|
Hong Y and Ding ZY: PD-1 inhibitors in the
advanced esophageal cancer. Front Pharmacol. 10:14182019.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Pennathur A, Gibson MK, Jobe BA and
Luketich JD: Oesophageal carcinoma. Lancet. 381:400–412. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
el-Deiry WS, Tokino T, Velculescu VE, Levy
DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and
Vogelstein B: WAF1, a potential mediator of p53 tumor suppression.
Cell. 75:817–825. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Harper JW, Adami GR, Wei N, Keyomarsi K
and Elledge SJ: The p21 Cdk-interacting protein Cip1 is a potent
inhibitor of G1 cyclin-dependent kinases. Cell. 75:805–816. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Petroni G, Formenti SC, Chen-Kiang S and
Galluzzi L: Immunomodulation by anticancer cell cycle inhibitors.
Nat Rev Immunol. 20:669–679. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhang Y, Miao Y, Shang M, Liu M, Liu R,
Pan E, Pu Y and Yin L: LincRNA-p21 leads to G1 arrest by p53
pathway in esophageal squamous cell carcinoma. Cancer Manag Res.
11:6201–6214. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Georgakilas AG, Martin OA and Bonner WM:
p21: A two-faced genome guardian. Trends Mol Med. 23:310–319. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Evans T, Rosenthal ET, Youngblom J, Distel
D and Hunt T: Cyclin: A protein specified by maternal mRNA in sea
urchin eggs that is destroyed at each cleavage division. Cell.
33:389–396. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bloom J and Cross FR: Multiple levels of
cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol.
8:149–160. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
LaBaer J, Garrett MD, Stevenson LF,
Slingerland JM, Sandhu C, Chou HS, Fattaey A and Harlow E: New
functional activities for the p21 family of CDK inhibitors. Genes
Dev. 11:847–862. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Waga S and Stillman B: The DNA replication
fork in eukaryotic cells. Annu Rev Biochem. 67:721–751. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Celis JE, Madsen P, Celis A, Nielsen HV
and Gesser B: Cyclin (PCNA, auxiliary protein of DNA polymerase
delta) is a central component of the pathway(s) leading to DNA
replication and cell division. FEBS Lett. 220:1–7. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Podust VN, Podust LM, Goubin F, Ducommun B
and Hübscher U: Mechanism of inhibition of proliferating cell
nuclear antigen-dependent DNA synthesis by the cyclin-dependent
kinase inhibitor p21. Biochemistry. 34:8869–8875. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Waga S, Hannon GJ, Beach D and Stillman B:
The p21 inhibitor of cyclin-dependent kinases controls DNA
replication by interaction with PCNA. Nature. 369:574–578. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang H, Xiong Y and Beach D:
Proliferating cell nuclear antigen and p21 are components of
multiple cell cycle kinase complexes. Mol Biol Cell. 4:897–906.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Asada M, Yamada T, Ichijo H, Delia D,
Miyazono K, Fukumuro K and Mizutani S: Apoptosis inhibitory
activity of cytoplasmic p21(Cip1/WAF1) in monocytic
differentiation. EMBO J. 18:1223–1234. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tanaka H, Yamashita T, Asada M, Mizutani
S, Yoshikawa H and Tohyama M: Cytoplasmic p21(Cip1/WAF1) regulates
neurite remodeling by inhibiting Rho-kinase activity. J Cell Biol.
158:321–329. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhan J, Easton JB, Huang S, Mishra A, Xiao
L, Lacy ER, Kriwacki RW and Houghton PJ: Negative regulation of
ASK1 by p21Cip1 involves a small domain that includes Serine 98
that is phosphorylated by ASK1 in vivo. Mol Cell Biol.
27:3530–3541. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Xiong Y, Hannon GJ, Zhang H, Casso D,
Kobayashi R and Beach D: p21 is a universal inhibitor of cyclin
kinases. Nature. 366:701–704. 1993. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Liu S, Bishop WR and Liu M: Differential
effects of cell cycle regulatory protein p21(WAF1/Cip1) on
apoptosis and sensitivity to cancer chemotherapy. Drug Resist
Updat. 6:183–195. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim J, Bae S, An S, Park JK, Kim EM, Hwang
SG, Kim WJ and Um HD: Cooperative actions of p21WAF1 and p53 induce
Slug protein degradation and suppress cell invasion. EMBO Rep.
15:1062–1068. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim EM, Jung CH, Kim J, Hwang SG, Park JK
and Um HD: The p53/p21 complex regulates cancer cell invasion and
apoptosis by targeting Bcl-2 family proteins. Cancer Res.
77:3092–3100. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lu F, Chen H, Zhou C, Liu S, Guo M, Chen
P, Zhuang H, Xie D and Wu S: T-type Ca2+ channel expression in
human esophageal carcinomas: A functional role in proliferation.
Cell Calcium. 43:49–58. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li H, Zheng D, Zhang B, Liu L, Ou J, Chen
W, Xiong S, Gu Y and Yang J: Mir-208 promotes cell proliferation by
repressing SOX6 expression in human esophageal squamous cell
carcinoma. J Transl Med. 12:1962014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li L, Zhang C, Li X, Lu S and Zhou Y: The
candidate tumor suppressor gene ECRG4 inhibits cancer cells
migration and invasion in esophageal carcinoma. J Exp Clin Cancer
Res. 29:1332010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Qin YR, Tang H, Xie F, Liu H, Zhu Y, Ai J,
Chen L, Li Y, Kwong DL, Fu L and Guan XY: Characterization of
tumor-suppressive function of SOX6 in human esophageal squamous
cell carcinoma. Clin Cancer Res. 17:46–55. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang Y, Goldstein BG, Chao HH and Katz JP:
KLF4 and KLF5 regulate proliferation, apoptosis and invasion in
esophageal cancer cells. Cancer Biol Ther. 4:1216–1221. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Fan Y, Wang Y, Fu S, Liu D and Lin S:
Methylation-regulated ZNF545 inhibits growth of the p53-mutant
KYSE150 cell line by inducing p21 and Bax. Exp Ther Med.
18:1563–1570. 2019.PubMed/NCBI
|
|
37
|
Jiang XR, Yu XY, Fan JH, Guo L, Zhu C,
Jiang W and Lu SH: RFT2 is overexpressed in esophageal squamous
cell carcinoma and promotes tumorigenesis by sustaining cell
proliferation and protecting against cell death. Cancer Lett.
353:78–86. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhao N, Huang G, Guo L and Lu SH: ECRG1, a
novel candidate of tumor suppressor gene in the esophageal
carcinoma, triggers a senescent program in NIH3T3 cells. Exp Biol
Med (Maywood). 231:84–90. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jascur T, Brickner H, Salles-Passador I,
Barbier V, El Khissiin A, Smith B, Fotedar R and Fotedar A:
Regulation of p21(WAF1/CIP1) stability by WISp39, a Hsp90 binding
TPR protein. Mol Cell. 17:237–249. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Liu G and Lozano G: p21 stability: Linking
chaperones to a cell cycle checkpoint. Cancer Cell. 7:113–114.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Deng T, Yan G, Song X, Xie L, Zhou Y, Li
J, Hu X, Li Z, Hu J, Zhang Y, et al: Deubiquitylation and
stabilization of p21 by USP11 is critical for cell-cycle
progression and DNA damage responses. Proc Natl Acad Sci USA.
115:4678–4683. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang W, Nacusi L, Sheaff RJ and Liu X:
Ubiquitination of p21Cip1/WAF1 by SCFSkp2: Substrate requirement
and ubiquitination site selection. Biochemistry. 44:14553–14564.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bornstein G, Bloom J, Sitry-Shevah D,
Nakayama K, Pagano M and Hershko A: Role of the SCFSkp2 ubiquitin
ligase in the degradation of p21Cip1 in S phase. J Biol Chem.
278:25752–25757. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li Q, Li X, Tang H, Jiang B, Dou Y,
Gorospe M and Wang W: NSUN2-mediated m5C methylation and
METTL3/METTL14-mediated m6A methylation cooperatively enhance p21
translation. J Cell Biochem. 118:2587–2598. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Lal A, Mazan-Mamczarz K, Kawai T, Yang X,
Martindale JL and Gorospe M: Concurrent versus individual binding
of HuR and AUF1 to common labile target mRNAs. EMBO J.
23:3092–3102. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu J, Liu L, Wu F, Qiu L, Luo M, Ke Q,
Deng X and Luo Z: Clinical and prognostic implications of P21
(WAF1/CIP1) expression in patients with esophageal cancer: A
systematic review and meta-analysis. Dis Markers. 2020:65202592020.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Ishida M, Morita M, Saeki H, Ohga T,
Sadanaga N, Watanabe M, Kakeji Y and Maehara Y: Expression of p53
and p21 and the clinical response for hyperthermochemoradiotherapy
in patients with squamous cell carcinoma of the esophagus.
Anticancer Res. 27:3501–3506. 2007.PubMed/NCBI
|
|
48
|
Kuwahara M, Hirai T, Yoshida K, Yamashita
Y, Hihara J, Inoue H and Toge T: p53, p21(Waf1/Cip1) and cyclin D1
protein expression and prognosis in esophageal cancer. Dis
Esophagus. 12:116–119. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lin Y, Shen LY, Fu H, Dong B, Yang HL, Yan
WP, Kang XZ, Dai L, Zhou HT, Yang YB, et al: P21, COX-2, and
E-cadherin are potential prognostic factors for esophageal squamous
cell carcinoma. Dis Esophagus. 30:1–10. 2017.
|
|
50
|
Nakamura T, Hayashi K, Ota M, Ide H,
Takasaki K and Mitsuhashi M: Expression of p21(Waf1/Cip1) predicts
response and survival of esophageal cancer patients treated by
chemoradiotherapy. Dis Esophagus. 17:315–321. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sohda M, Ishikawa H, Masuda N, Kato H,
Miyazaki T, Nakajima M, Fukuchi M, Manda R, Fukai Y, Sakurai H and
Kuwano H: Pretreatment evaluation of combined HIF-1alpha, p53 and
p21 expression is a useful and sensitive indicator of response to
radiation and chemotherapy in esophageal cancer. Int J Cancer.
110:838–844. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Heeren PA, Kloppenberg FW, Hollema H,
Mulder NH, Nap RE and Plukker JT: Predictive effect of p53 and p21
alteration on chemotherapy response and survival in locally
advanced adenocarcinoma of the esophagus. Anticancer Res.
24:2579–2883. 2004.PubMed/NCBI
|
|
53
|
Ingham M and Schwartz GK: Cell-cycle
therapeutics come of age. J Clin Oncol. 35:2949–2959. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Clark AS, Karasic TB, DeMichele A, Vaughn
DJ, O'Hara M, Perini R, Zhang P, Lal P, Feldman M, Gallagher M and
O'Dwyer PJ: Palbociclib (PD0332991)-a selective and potent
cyclin-dependent kinase inhibitor: A review of pharmacodynamics and
clinical development. JAMA Oncol. 2:253–260. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yin X, Zhang R, Feng C, Zhang J, Liu D, Xu
K, Wang X, Zhang S, Li Z, Liu X and Ma H: Diallyl disulfide induces
G2/M arrest and promotes apoptosis through the p53/p21 and MEK-ERK
pathways in human esophageal squamous cell carcinoma. Oncol Rep.
32:1748–1756. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhong D, Gu C, Shi L, Xun T, Li X, Liu S
and Yu L: Obatoclax induces G1/G0-phase arrest via
p38/p21(waf1/Cip1) signaling pathway in human esophageal cancer
cells. J Cell Biochem. 115:1624–1635. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Deng X, Sheng J, Liu H, Wang N, Dai C,
Wang Z, Zhang J, Zhao J and Dai E: Cinobufagin promotes cell cycle
arrest and apoptosis to block human esophageal squamous cell
carcinoma cells growth via the p73 signalling pathway. Biol Pharm
Bull. 42:1500–1509. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li S, Shen XY, Ouyang T, Qu Y, Luo T and
Wang HQ: Synergistic anticancer effect of combined crocetin and
cisplatin on KYSE-150 cells via p53/p21 pathway. Cancer Cell Int.
17:982017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu YM, Liu YK, Huang PI, Tsai TH and Chen
YJ: Antrodia cinnamomea mycelial fermentation broth inhibits
the epithelial-mesenchymal transition of human esophageal
adenocarcinoma cancer cells. Food Chem Toxicol. 119:380–386. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Guo L, Lv G, Qiu L, Yang H, Zhang L, Yu H,
Zou M and Lin J: Insights into anticancer activity and mechanism of
action of a ruthenium(II) complex in human esophageal squamous
carcinoma EC109 cells. Eur J Pharmacol. 786:60–71. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hua P, Sun M, Zhang G, Zhang Y, Song G,
Liu Z, Li X, Zhang X and Li B: Costunolide induces apoptosis
through generation of ROS and activation of P53 in human esophageal
cancer Eca-109 cells. J Biochem Mol Toxicol. 30:462–469. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jiang JH, Pi J, Jin H and Cai JY:
Oridonin-induced mitochondria-dependent apoptosis in esophageal
cancer cells by inhibiting PI3K/AKT/mTOR and Ras/Raf pathways. J
Cell Biochem. 120:3736–3746. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kwak AW, Choi JS, Liu K, Lee MH, Jeon YJ,
Cho SS, Yoon G, Oh HN, Chae JI and Shim JH: Licochalcone C induces
cell cycle G1 arrest and apoptosis in human esophageal squamous
carcinoma cells by activation of the ROS/MAPK signaling pathway. J
Chemother. 32:132–143. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Liu YM, Liu YK, Wang LW, Huang YC, Huang
PI, Tsai TH and Chen YJ: The medicinal fungus Antrodia
cinnamomea regulates DNA repair and enhances the
radiosensitivity of human esophageal cancer cells. Onco Targets
Ther. 9:6651–6661. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tzao C, Jin JS, Chen BH, Chung HY, Chang
CC, Hsu TY and Sun GH: Anticancer effects of suberoylanilide
hydroxamic acid in esophageal squamous cancer cells in vitro and in
vivo. Dis Esophagus. 27:693–702. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang JF, Feng JG, Han J, Zhang BB and Mao
WM: The molecular mechanisms of Tanshinone IIA on the apoptosis and
arrest of human esophageal carcinoma cells. Biomed Res Int.
2014:5827302014.PubMed/NCBI
|
|
67
|
Ma J, Zhang Y, Deng H, Liu Y, Lei X, He P
and Dong W: Thymoquinone inhibits the proliferation and invasion of
esophageal cancer cells by disrupting the AKT/GSK-3β/Wnt signaling
pathway via PTEN upregulation. Phytother Res. Sep 9–2020.(Epub
ahead of print). doi: 10.1002/ptr.6795. View Article : Google Scholar
|
|
68
|
Galanos P, Vougas K, Walter D, Polyzos A,
Maya-Mendoza A, Haagensen EJ, Kokkalis A, Roumelioti FM, Gagos S,
Tzetis M, et al: Chronic p53-independent p21 expression causes
genomic instability by deregulating replication licensing. Nat Cell
Biol. 18:777–789. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
El-Deiry WS: p21(WAF1) mediates cell-cycle
inhibition, relevant to cancer suppression and therapy. Cancer Res.
76:5189–5191. 2016. View Article : Google Scholar : PubMed/NCBI
|