Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Letters
Join Editorial Board Propose a Special Issue
Print ISSN: 1792-1074 Online ISSN: 1792-1082
Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2021 Volume 21 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review)

  • Authors:
    • Hongyue Zhou
    • Mengyu Jiang
    • Hongyan Yuan
    • Weihua Ni
    • Guixiang Tai
  • View Affiliations / Copyright

    Affiliations: Department of Immunology, College of Basic Medical Science, Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 149
    |
    Published online on: December 24, 2020
       https://doi.org/10.3892/ol.2020.12410
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Myeloid‑derived suppressor cells (MDSCs) are one of the major components of the tumor microenvironment (TME), and are the main mediators of tumor‑induced immunosuppression. Recent studies have reported that the survival, differentiation and immunosuppressive activity of MDSCs are affected by the Toll‑like receptor (TLR) signaling pathway. However, the regulatory effect of TLR signaling on MDSCs remains controversial. TLR‑induced MDSC can acquire different immunosuppressive activities to influence the immune response that can be either beneficial or detrimental to cancer immunotherapy. The present review summarizes the effects of TLR signals on the number, phenotype and inhibitory activity of MDSCs, and their role in cancer immunotherapy, which cannot be ignored if effective cancer immunotherapies are to be developed for the immunosuppression of the TME.
View Figures

Figure 1

Figure 2

View References

1 

Gabrilovich DI: Myeloid-derived suppressor cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI

2 

Kumar V, Patel S, Tcyganov E and Gabrilovich DI: The nature of myeloid-derived suppressor cells in the tumor microenvironment. Trends Immunol. 37:208–220. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Sica A and Bronte V: Altered macrophage differentiation and immune dysfunction in tumor development. J Clin Invest. 117:1155–1166. 2007. View Article : Google Scholar : PubMed/NCBI

4 

Gabrilovich DI and Nagaraj S: Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI

5 

Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ and Montero AJ: Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother. 58:49–59. 2009. View Article : Google Scholar : PubMed/NCBI

6 

Orillion A, Hashimoto A, Damayanti N, Shen L, Adelaiye-Ogala R, Arisa S, Chintala S, Ordentlich P, Kao C, Elzey B, et al: Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin Cancer Res. 23:5187–5201. 2017. View Article : Google Scholar : PubMed/NCBI

7 

Kim K, Skora AD, Li Z, Liu Q, Tam AJ, Blosser RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B and Zhou S: Eradication of metastatic mouse cancers resistant to immune checkpoint blockade by suppression of myeloid-derived cells. Proc Natl Acad Sci USA. 111:11774–11779. 2014. View Article : Google Scholar : PubMed/NCBI

8 

Zhang Q, Hossain DM, Duttagupta P, Moreira D, Zhao X, Won H, Buettner R, Nechaev S, Majka M, Zhang B, et al: Serum-resistant CpG-STAT3 decoy for targeting survival and immune checkpoint signaling in acute myeloid leukemia. Blood. 127:1687–1700. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Maruyama A, Shime H, Takeda Y, Azuma M, Matsumoto M and Seya T: Pam2 lipopeptides systemically increase myeloid-derived suppressor cells through TLR2 signaling. Biochem Biophys Res Commun. 457:445–450. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Katayama Y, Tachibana M, Kurisu N, Oya Y, Terasawa Y, Goda H, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H and Sakurai F: Oncolytic reovirus inhibits immunosuppressive activity of myeloid-derived suppressor cells in a TLR3-dependent manner. J Immunol. 200:2987–2999. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Tsukamoto H, Kozakai S, Kobayashi Y, Takanashi R, Aoyagi T, Numasaki M, Ohta S and Tomioka Y: Impaired antigen-specific lymphocyte priming in mice after Toll-like receptor 4 activation via induction of monocytic myeloid-derived suppressor cells. Eur J Immunol. 49:546–563. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Geng D, Kaczanowska S, Tsai A, Younger K, Ochoa A, Rapoport AP, Ostrand-Rosenberg S and Davila E: TLR5 ligand-secreting T cells reshape the tumor microenvironment and enhance antitumor activity. Cancer Res. 75:1959–1971. 2015. View Article : Google Scholar : PubMed/NCBI

13 

Shirota Y, Shirota H and Klinman DM: Intratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cells. J Immunol. 188:1592–1599. 2012. View Article : Google Scholar : PubMed/NCBI

14 

Wang J, Shirota Y, Bayik D, Shirota H, Tross D, Gulley JL, Wood LV, Berzofsky JA and Klinman DM: Effect of TLR agonists on the differentiation and function of human monocytic myeloid-derived suppressor cells. J Immunol. 194:4215–4221. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Dang Y, Rutnam ZJ, Dietsch G, Lu H, Yang Y, Hershberg R and Disis ML: TLR8 ligation induces apoptosis of monocytic myeloid-derived suppressor cells. J Leukoc Biol. 103:157–164. 2018. View Article : Google Scholar : PubMed/NCBI

16 

Spinetti T, Spagnuolo L, Mottas I, Secondini C, Treinies M, Rüegg C, Hotz C and Bourquin C: TLR7-based cancer immunotherapy decreases intratumoral myeloid-derived suppressor cells and blocks their immunosuppressive function. Oncoimmunology. 5:e12305782016. View Article : Google Scholar : PubMed/NCBI

17 

Zoglmeier C, Bauer H, Noerenberg D, Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S and Bourquin C: CpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing mice. Clin Cancer Res. 17:1765–1775. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Vascotto F, Petschenka J, Walzer KC, Vormehr M, Brkic M, Strobl S, Rösemann R, Diken M, Kreiter S, Türeci Ö and Sahin U: Intravenous delivery of the toll-like receptor 7 agonist SC1 confers tumor control by inducing a CD8+ T cell response. Oncoimmunology. 8:16014802019. View Article : Google Scholar : PubMed/NCBI

19 

Hong EH, Chang SY, Lee BR, Kim YS, Lee JM, Kang CY, Kweon MN and Ko HJ: Blockade of Myd88 signaling induces antitumor effects by skewing the immunosuppressive function of myeloid-derived suppressor cells. Int J Cancer. 132:2839–2848. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL, Antonenko S, Al-Quran SZ, et al: MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cell suppression and Th2 polarization in sepsis. J Exp Med. 204:1463–1474. 2007. View Article : Google Scholar : PubMed/NCBI

21 

Llitjos JF, Auffray C, Alby-Laurent F, Rousseau C, Merdji H, Bonilla N, Toubiana J, Belaïdouni N, Mira JP, Lucas B, et al: Sepsis-induced expansion of granulocytic myeloid-derived suppressor cells promotes tumour growth through Toll-like receptor 4. J Pathol. 239:473–483. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Hu CE, Gan J, Zhang RD, Cheng YR and Huang GJ: Up-regulated myeloid-derived suppressor cell contributes to hepatocellular carcinoma development by impairing dendritic cell function. Scand J Gastroenterol. 46:156–164. 2011. View Article : Google Scholar : PubMed/NCBI

23 

Savitsky D, Tamura T, Yanai H and Taniguchi T: Regulation of immunity and oncogenesis by the IRF transcription factor family. Cancer Immunol Immunother. 59:489–510. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Nam S, Kang K, Cha JS, Kim JW, Lee HG, Kim Y, Yang Y, Lee MS and Lim JS: Interferon regulatory factor 4 (IRF4) controls myeloid-derived suppressor cell (MDSC) differentiation and function. J Leukoc Biol. 100:1273–1284. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Xu W, Hiếu T, Malarkannan S and Wang L: The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol. 15:438–446. 2018. View Article : Google Scholar : PubMed/NCBI

26 

Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta HM, Miller HE, Olson M, Rajasekaran K, Ernstoff MS, et al: Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-mediated inflammation and immunosuppression. Cancer Immunol Res. 7:1497–1510. 2019. View Article : Google Scholar : PubMed/NCBI

27 

Peek EM, Song W, Zhang H, Huang J and Chin AI: Loss of MyD88 leads to more aggressive TRAMP prostate cancer and influences tumor infiltrating lymphocytes. Prostate. 75:463–473. 2015. View Article : Google Scholar : PubMed/NCBI

28 

Di S, Zhou M, Pan Z, Sun R, Chen M, Jiang H, Shi B, Luo H and Li Z: Combined adjuvant of poly I:C improves antitumor effects of CAR-T cells. Front Oncol. 9:2412019. View Article : Google Scholar : PubMed/NCBI

29 

Bronte V, Brandau S, Chen SH, Colombo MP, Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A, Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI

30 

Rodriguez PC, Quiceno DG, Zabaleta J, Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J, Sotomayor EM, et al: Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res. 64:5839–5849. 2004. View Article : Google Scholar : PubMed/NCBI

31 

Schmielau J and Finn OJ: Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of t-cell function in advanced cancer patients. Cancer Res. 61:4756–4760. 2001.PubMed/NCBI

32 

Mazzoni A, Bronte V, Visintin A, Spitzer JH, Apolloni E, Serafini P, Zanovello P and Segal DM: Myeloid suppressor lines inhibit T cell responses by an NO-dependent mechanism. J Immunol. 168:689–695. 2002. View Article : Google Scholar : PubMed/NCBI

33 

Hanson EM, Clements VK, Sinha P, Ilkovitch D and Ostrand-Rosenberg S: Myeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cells. J Immunol. 183:937–944. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Molon B, Ugel S, Del Pozzo F, Soldani C, Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, et al: Chemokine nitration prevents intratumoral infiltration of antigen-specific T cells. J Exp Med. 208:1949–1962. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, Divino CM and Chen SH: Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host. Cancer Res. 66:1123–1131. 2006. View Article : Google Scholar : PubMed/NCBI

36 

Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W, Dolcetti L, Bronte V and Borrello I: Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 203:2691–2702. 2006. View Article : Google Scholar : PubMed/NCBI

37 

Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte V and Mandruzzato S: Myeloid-derived suppressor cells in cancer patients: A clinical perspective. J Immunother. 35:107–115. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Condamine T and Gabrilovich DI: Molecular mechanisms regulating myeloid-derived suppressor cell differentiation and function. Trends Immunol. 32:19–25. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Condamine T, Mastio J and Gabrilovich DI: Transcriptional regulation of myeloid-derived suppressor cells. J Leukoc Biol. 98:913–922. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Dowling JK and Mansell A: Toll-like receptors: The swiss army knife of immunity and vaccine development. Clin Transl Immunology. 5:e852016. View Article : Google Scholar : PubMed/NCBI

41 

Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp TR and Goodlett DR: The role of TLRs in anti-cancer immunity and tumor rejection. Front Immunol. 10:23882019. View Article : Google Scholar : PubMed/NCBI

42 

Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrié M, Meng Y, Richard M, Parizot C, Laigle-Donadey F, et al: Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: A phase II study. Neuro Oncol. 12:401–408. 2010. View Article : Google Scholar : PubMed/NCBI

43 

Carpentier A, Laigle-Donadey F, Zohar S, Capelle L, Behin A, Tibi A, Martin-Duverneuil N, Sanson M, Lacomblez L, Taillibert S, et al: Phase 1 trial of a CpG oligodeoxynucleotide for patients with recurrent glioblastoma. Neuro Oncol. 8:60–66. 2006. View Article : Google Scholar : PubMed/NCBI

44 

Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, Utikal J and Umansky V: Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI

45 

Shime H, Maruyama A, Yoshida S, Takeda Y, Matsumoto M and Seya T: Toll-like receptor 2 ligand and interferon-γ suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncoimmunology. 7:e13732312017. View Article : Google Scholar : PubMed/NCBI

46 

Cherfils-Vicini J, Iltis C, Cervera L, Pisano S, Croce O, Sadouni N, Győrffy B, Collet R, Renault VM, Rey-Millet M, et al: Cancer cells induce immune escape via glycocalyx changes controlled by the telomeric protein TRF2. EMBO J. 38:e1000122019. View Article : Google Scholar : PubMed/NCBI

47 

Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, Richaud S, Mjahed H, Isambert N, Clausse V, et al: Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer Inst. 108:2015.PubMed/NCBI

48 

Xiang X, Liu Y, Zhuang X, Zhang S, Michalek S, Taylor DD, Grizzle W and Zhang HG: TLR2-mediated expansion of MDSCs is dependent on the source of tumor exosomes. Am J Pathol. 177:1606–1610. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau D, et al: Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest. 120:457–471. 2010.PubMed/NCBI

50 

Diao J, Yang X, Song X, Chen S, He Y, Wang Q, Chen G, Luo C, Wu X and Zhang Y: Exosomal Hsp70 mediates immunosuppressive activity of the myeloid-derived suppressor cells via phosphorylation of Stat3. Med Oncol. 32:4532015. View Article : Google Scholar : PubMed/NCBI

51 

Lee JM, Kim EK, Seo H, Jeon I, Chae MJ, Park YJ, Song B, Kim YS, Kim YJ, Ko HJ and Kang CY: Serum amyloid A3 exacerbates cancer by enhancing the suppressive capacity of myeloid-derived suppressor cells via TLR2-dependent STAT3 activation. Eur J Immunol. 44:1672–1684. 2014. View Article : Google Scholar : PubMed/NCBI

52 

He XY, Gong FY, Chen Y, Zhou Z, Gong Z and Gao XM: Calreticulin fragment 39–272 promotes B16 melanoma malignancy through myeloid-derived suppressor cells in vivo. Front Immunol. 8:13062017. View Article : Google Scholar : PubMed/NCBI

53 

Huang M, Wu R, Chen L, Peng Q, Li S, Zhang Y, Zhou L and Duan L: S100A9 regulates MDSCs-mediated immune suppression via the RAGE and TLR4 signaling pathways in colorectal carcinoma. Front Immunol. 10:22432019. View Article : Google Scholar : PubMed/NCBI

54 

De Veirman K, De Beule N, Maes K, Menu E, De Bruyne E, De Raeve H, Fostier K, Moreaux J, Kassambara A, Hose D, et al: Extracellular S100A9 protein in bone marrow supports multiple myeloma survival by stimulating angiogenesis and cytokine secretion. Cancer Immunol Res. 5:839–846. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Xie Z, Ago Y, Okada N and Tachibana M: Valproic acid attenuates immunosuppressive function of myeloid-derived suppressor cells. J Pharmacol Sci. 137:359–365. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Deguchi A, Tomita T, Ohto U, Takemura K, Kitao A, Akashi-Takamura S, Miyake K and Maru Y: Eritoran inhibits S100A8-mediated TLR4/MD-2 activation and tumor growth by changing the immune microenvironment. Oncogene. 35:1445–1456. 2016. View Article : Google Scholar : PubMed/NCBI

57 

Chen J, Sun B, Zhao X, Liang D, Liu J, Huang Y, Lei W, Chen M and Sun W: Monophosphoryl lipid A induces bone marrow precursor cells to differentiate into myeloid-derived suppressor cells. Mol Med Rep. 8:1074–1078. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Li Q, Dai C, Xue R, Wang P, Chen L, Han Y, Erben U and Qin Z: S100A4 protects myeloid-derived suppressor cells from intrinsic apoptosis via TLR4-ERK1/2 signaling. Front Immunol. 9:3882018. View Article : Google Scholar : PubMed/NCBI

59 

Zambirinis CP, Levie E, Nguy S, Avanzi A, Barilla R, Xu Y, Seifert L, Daley D, Greco SH, Deutsch M, et al: TLR9 ligation in pancreatic stellate cells promotes tumorigenesis. J Exp Med. 212:2077–2094. 2015. View Article : Google Scholar : PubMed/NCBI

60 

Dajon M, Iribarren K, Petitprez F, Marmier S, Lupo A, Gillard M, Ouakrim H, Victor N, Vincenzo DB, Joubert PE, et al: Toll like receptor 7 expressed by malignant cells promotes tumor progression and metastasis through the recruitment of myeloid derived suppressor cells. Oncoimmunology. 8:e15051742018. View Article : Google Scholar : PubMed/NCBI

61 

Dajon M, Iribarren K and Cremer I: Dual roles of TLR7 in the lung cancer microenvironment. Oncoimmunology. 4:e9916152015. View Article : Google Scholar : PubMed/NCBI

62 

Jie J, Zhang Y, Zhou H, Zhai X, Zhang N, Yuan H, Ni W and Tai G: CpG ODN1826 as a promising mucin1-maltose-binding protein vaccine adjuvant induced DC maturation and enhanced antitumor immunity. Int J Mol Sci. 19:9202018. View Article : Google Scholar

63 

Schouppe E, Mommer C, Movahedi K, Laoui D, Morias Y, Gysemans C, Luyckx A, De Baetselier P and Van Ginderachter JA: Tumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation events. Eur J Immunol. 43:2930–2942. 2013. View Article : Google Scholar : PubMed/NCBI

64 

Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S and Srikrishna G: Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol. 181:4666–4675. 2008. View Article : Google Scholar : PubMed/NCBI

65 

Song J, Lee J, Kim J, Jo S, Kim YJ, Baek JE, Kwon ES, Lee KP, Yang S, Kwon KS, et al: Pancreatic adenocarcinoma up-regulated factor (PAUF) enhances the accumulation and functional activity of myeloid-derived suppressor cells (MDSCs) in pancreatic cancer. Oncotarget. 7:51840–51853. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Tachibana M: The immunosuppressive function of myeloid-derived suppressor cells is regulated by the HMGB1-TLR4 axis. Yakugaku Zasshi. 138:143–148. 2018.(In Japanese). View Article : Google Scholar : PubMed/NCBI

67 

Li J, Yang F, Wei F and Ren X: The role of toll-like receptor 4 in tumor microenvironment. Oncotarget. 8:66656–66667. 2017. View Article : Google Scholar : PubMed/NCBI

68 

Bunt SK, Clements VK, Hanson EM, Sinha P and Ostrand-Rosenberg S: Inflammation enhances myeloid-derived suppressor cell cross-talk by signaling through Toll-like receptor 4. J Leukoc Biol. 85:996–1004. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Fleming V, Hu X, Weller C, Weber R, Groth C, Riester Z, Hüser L, Sun Q, Nagibin V, Kirschning C, et al: Melanoma extracellular vesicles generate immunosuppressive myeloid cells by upregulating PD-L1 via TLR4 signaling. Cancer Res. 79:4715–4728. 2019. View Article : Google Scholar : PubMed/NCBI

70 

Karwacz K, Bricogne C, MacDonald D, Arce F, Bennett CL, Collins M and Escors D: PD-L1 co-stimulation contributes to ligand-induced T cell receptor down-modulation on CD8+ T cells. EMBO Mol Med. 3:581–592. 2011. View Article : Google Scholar : PubMed/NCBI

71 

Xu-Monette ZY, Zhang M, Li J and Young KH: PD-1/PD-L1 blockade: Have we found the key to unleash the antitumor immune response? Front Immunol. 8:15972017. View Article : Google Scholar : PubMed/NCBI

72 

Tcyganov E, Mastio J, Chen E and Gabrilovich DI: Plasticity of myeloid-derived suppressor cells in cancer. Curr Opin Immunol. 51:76–82. 2018. View Article : Google Scholar : PubMed/NCBI

73 

Deng Y, Yang J, Qian J, Liu R, Huang E, Wang Y, Luo F and Chu Y: TLR1/TLR2 signaling blocks the suppression of monocytic myeloid-derived suppressor cell by promoting its differentiation into M1-type macrophage. Mol Immunol. 112:266–273. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Blasius AL and Beutler B: Intracellular toll-like receptors. Immunity. 32:305–315. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Boozari M, Butler AE and Sahebkar A: Impact of curcumin on toll-like receptors. J Cell Physiol. 234:12471–12482. 2019. View Article : Google Scholar : PubMed/NCBI

76 

Forghani P and Waller EK: Poly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancer. Breast Cancer Res Treat. 153:21–30. 2015. View Article : Google Scholar : PubMed/NCBI

77 

Chuang CM, Monie A, Hung CF and Wu TC: Treatment with imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. J Biomed Sci. 17:322010. View Article : Google Scholar : PubMed/NCBI

78 

Cho JH, Lee HJ, Ko HJ, Yoon BI, Choe J, Kim KC, Hahn TW, Han JA, Choi SS, Jung YM, et al: The TLR7 agonist imiquimod induces anti-cancer effects via autophagic cell death and enhances anti-tumoral and systemic immunity during radiotherapy for melanoma. Oncotarget. 8:24932–24948. 2017. View Article : Google Scholar : PubMed/NCBI

79 

Liu J, Hu Y, Guo Q, Yu X, Shao L and Zhang C: Enhanced anti-melanoma efficacy of a Pim-3-targeting bifunctional small hairpin RNA via single-stranded RNA-mediated activation of plasmacytoid dendritic cells. Front Immunol. 10:27212019. View Article : Google Scholar : PubMed/NCBI

80 

Cerullo V, Diaconu I, Romano V, Hirvinen M, Ugolini M, Escutenaire S, Holm SL, Kipar A, Kanerva A and Hemminki A: An oncolytic adenovirus enhanced for toll-like receptor 9 stimulation increases antitumor immune responses and tumor clearance. Mol Ther. 20:2076–2086. 2012. View Article : Google Scholar : PubMed/NCBI

81 

James BR, Anderson KG, Brincks EL, Kucaba TA, Norian LA, Masopust D and Griffith TS: CpG-mediated modulation of MDSC contributes to the efficacy of Ad5-TRAIL therapy against renal cell carcinoma. Cancer Immunol Immunother. 63:1213–1227. 2014. View Article : Google Scholar : PubMed/NCBI

82 

Tarhini AA, Butterfield LH, Shuai Y, Gooding WE, Kalinski P and Kirkwood JM: Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-alpha or TLR-9 agonist and GM-CSF with peptide vaccination. J Immunother. 35:702–710. 2012. View Article : Google Scholar : PubMed/NCBI

83 

Lin YC, Hsu CY, Huang SK, Fan YH, Huang CH, Yang CK, Su WT, Chang PC, Dutta A, Liu YJ, et al: Induction of liver-specific intrahepatic myeloid cells aggregation expands CD8 T cell and inhibits growth of murine hepatoma. Oncoimmunology. 7:e15021292018.PubMed/NCBI

84 

Wang Y, Liu J, Yang X, Liu Y, Liu Y, Li Y, Sun L, Yang X and Niu H: Bacillus Calmette-Guérin and anti-PD-L1 combination therapy boosts immune response against bladder cancer. Onco Targets Ther. 11:2891–2899. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Ghochikyan A, Pichugin A, Bagaev A, Davtyan A, Hovakimyan A, Tukhvatulin A, Davtyan H, Shcheblyakov D, Logunov D, Chulkina M, et al: Targeting TLR-4 with a novel pharmaceutical grade plant derived agonist, Immunomax®, as a therapeutic strategy for metastatic breast cancer. J Transl Med. 12:3222014. View Article : Google Scholar : PubMed/NCBI

86 

Liu Y, Zhang L, Zhu X, Wang Y, Liu W and Gong W: Polysaccharide Agaricus blazei Murill stimulates myeloid derived suppressor cell differentiation from M2 to M1 type, which mediates inhibition of tumour immune-evasion via the Toll-like receptor 2 pathway. Immunology. 146:379–391. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Zhang Y, Luo F, Li A, Qian J, Yao Z, Feng X and Chu Y: Systemic injection of TLR1/2 agonist improves adoptive antigen-specific T cell therapy in glioma-bearing mice. Clin Immunol. 154:26–36. 2014. View Article : Google Scholar : PubMed/NCBI

88 

Shime H, Matsumoto M and Seya T: Double-stranded RNA promotes CTL-independent tumor cytolysis mediated by CD11b+Ly6G+ intratumor myeloid cells through the TICAM-1 signaling pathway. Cell Death Differ. 24:385–396. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin resistance in colorectal cancer via directing the myeloid-derived suppressor cells to tumoricidal M1-macrophages. Cancer Lett. 469:173–185. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Lee M, Park CS, Lee YR, Im SA, Song S and Lee CK: Resiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cells. Arch Pharm Res. 37:1234–1240. 2014. View Article : Google Scholar : PubMed/NCBI

91 

Butchi NB, Pourciau S, Du M, Morgan TW and Peterson KE: Analysis of the neuroinflammatory response to TLR7 stimulation in the brain: Comparison of multiple TLR7 and/or TLR8 agonists. J Immunol. 180:7604–7612. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Gorden KB, Gorski KS, Gibson SJ, Kedl RM, Kieper WC, Qiu X, Tomai MA, Alkan SS and Vasilakos JP: Synthetic TLR agonists reveal functional differences between human TLR7 and TLR8. J Immunol. 174:1259–1268. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Le Mercier I, Poujol D, Sanlaville A, Sisirak V, Gobert M, Durand I, Dubois B, Treilleux I, Marvel J, Vlach J, et al: Tumor promotion by intratumoral plasmacytoid dendritic cells is reversed by TLR7 ligand treatment. Cancer Res. 73:4629–4640. 2013. View Article : Google Scholar : PubMed/NCBI

94 

Zhou H, Zhang Z, Liu G, Jiang M, Wang J, Liu Y and Tai G: The effect of different immunization cycles of a recombinant mucin1-maltose-binding protein vaccine on T cell responses to B16-MUC1 melanoma in mice. Int J Mol Sci. 21:58102020. View Article : Google Scholar

95 

Kawai T and Akira S: Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Tan RS, Ho B, Leung BP and Ding JL: TLR cross-talk confers specificity to innate immunity. Int Rev Immunol. 33:443–453. 2014. View Article : Google Scholar : PubMed/NCBI

97 

Zhao BG, Vasilakos JP, Tross D, Smirnov D and Klinman DM: Combination therapy targeting toll like receptors 7, 8 and 9 eliminates large established tumors. J Immunother Cancer. 2:122014. View Article : Google Scholar : PubMed/NCBI

98 

Triozzi PL, Aldrich W and Ponnazhagan S: Regulation of the activity of an adeno-associated virus vector cancer vaccine administered with synthetic Toll-like receptor agonists. Vaccine. 28:7837–7843. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Chang LS, Leng CH, Yeh YC, Wu CC, Chen HW, Huang HM and Liu SJ: Toll-like receptor 9 agonist enhances anti-tumor immunity and inhibits tumor-associated immunosuppressive cells numbers in a mouse cervical cancer model following recombinant lipoprotein therapy. Mol Cancer. 13:602014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou H, Jiang M, Yuan H, Ni W and Tai G: Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review). Oncol Lett 21: 149, 2021.
APA
Zhou, H., Jiang, M., Yuan, H., Ni, W., & Tai, G. (2021). Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review). Oncology Letters, 21, 149. https://doi.org/10.3892/ol.2020.12410
MLA
Zhou, H., Jiang, M., Yuan, H., Ni, W., Tai, G."Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review)". Oncology Letters 21.2 (2021): 149.
Chicago
Zhou, H., Jiang, M., Yuan, H., Ni, W., Tai, G."Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review)". Oncology Letters 21, no. 2 (2021): 149. https://doi.org/10.3892/ol.2020.12410
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou H, Jiang M, Yuan H, Ni W and Tai G: Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review). Oncol Lett 21: 149, 2021.
APA
Zhou, H., Jiang, M., Yuan, H., Ni, W., & Tai, G. (2021). Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review). Oncology Letters, 21, 149. https://doi.org/10.3892/ol.2020.12410
MLA
Zhou, H., Jiang, M., Yuan, H., Ni, W., Tai, G."Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review)". Oncology Letters 21.2 (2021): 149.
Chicago
Zhou, H., Jiang, M., Yuan, H., Ni, W., Tai, G."Dual roles of myeloid‑derived suppressor cells induced by Toll‑like receptor signaling in cancer (Review)". Oncology Letters 21, no. 2 (2021): 149. https://doi.org/10.3892/ol.2020.12410
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team