|
1
|
Gabrilovich DI: Myeloid-derived suppressor
cells. Cancer Immunol Res. 5:3–8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kumar V, Patel S, Tcyganov E and
Gabrilovich DI: The nature of myeloid-derived suppressor cells in
the tumor microenvironment. Trends Immunol. 37:208–220. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Sica A and Bronte V: Altered macrophage
differentiation and immune dysfunction in tumor development. J Clin
Invest. 117:1155–1166. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gabrilovich DI and Nagaraj S:
Myeloid-derived suppressor cells as regulators of the immune
system. Nat Rev Immunol. 9:162–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Diaz-Montero CM, Salem ML, Nishimura MI,
Garrett-Mayer E, Cole DJ and Montero AJ: Increased circulating
myeloid-derived suppressor cells correlate with clinical cancer
stage, metastatic tumor burden, and doxorubicin-cyclophosphamide
chemotherapy. Cancer Immunol Immunother. 58:49–59. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Orillion A, Hashimoto A, Damayanti N, Shen
L, Adelaiye-Ogala R, Arisa S, Chintala S, Ordentlich P, Kao C,
Elzey B, et al: Entinostat neutralizes myeloid-derived suppressor
cells and enhances the antitumor effect of PD-1 inhibition in
murine models of lung and renal cell carcinoma. Clin Cancer Res.
23:5187–5201. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kim K, Skora AD, Li Z, Liu Q, Tam AJ,
Blosser RL, Diaz LA Jr, Papadopoulos N, Kinzler KW, Vogelstein B
and Zhou S: Eradication of metastatic mouse cancers resistant to
immune checkpoint blockade by suppression of myeloid-derived cells.
Proc Natl Acad Sci USA. 111:11774–11779. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhang Q, Hossain DM, Duttagupta P, Moreira
D, Zhao X, Won H, Buettner R, Nechaev S, Majka M, Zhang B, et al:
Serum-resistant CpG-STAT3 decoy for targeting survival and immune
checkpoint signaling in acute myeloid leukemia. Blood.
127:1687–1700. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Maruyama A, Shime H, Takeda Y, Azuma M,
Matsumoto M and Seya T: Pam2 lipopeptides systemically increase
myeloid-derived suppressor cells through TLR2 signaling. Biochem
Biophys Res Commun. 457:445–450. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Katayama Y, Tachibana M, Kurisu N, Oya Y,
Terasawa Y, Goda H, Kobiyama K, Ishii KJ, Akira S, Mizuguchi H and
Sakurai F: Oncolytic reovirus inhibits immunosuppressive activity
of myeloid-derived suppressor cells in a TLR3-dependent manner. J
Immunol. 200:2987–2999. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Tsukamoto H, Kozakai S, Kobayashi Y,
Takanashi R, Aoyagi T, Numasaki M, Ohta S and Tomioka Y: Impaired
antigen-specific lymphocyte priming in mice after Toll-like
receptor 4 activation via induction of monocytic myeloid-derived
suppressor cells. Eur J Immunol. 49:546–563. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Geng D, Kaczanowska S, Tsai A, Younger K,
Ochoa A, Rapoport AP, Ostrand-Rosenberg S and Davila E: TLR5
ligand-secreting T cells reshape the tumor microenvironment and
enhance antitumor activity. Cancer Res. 75:1959–1971. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shirota Y, Shirota H and Klinman DM:
Intratumoral injection of CpG oligonucleotides induces the
differentiation and reduces the immunosuppressive activity of
myeloid-derived suppressor cells. J Immunol. 188:1592–1599. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang J, Shirota Y, Bayik D, Shirota H,
Tross D, Gulley JL, Wood LV, Berzofsky JA and Klinman DM: Effect of
TLR agonists on the differentiation and function of human monocytic
myeloid-derived suppressor cells. J Immunol. 194:4215–4221. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dang Y, Rutnam ZJ, Dietsch G, Lu H, Yang
Y, Hershberg R and Disis ML: TLR8 ligation induces apoptosis of
monocytic myeloid-derived suppressor cells. J Leukoc Biol.
103:157–164. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Spinetti T, Spagnuolo L, Mottas I,
Secondini C, Treinies M, Rüegg C, Hotz C and Bourquin C: TLR7-based
cancer immunotherapy decreases intratumoral myeloid-derived
suppressor cells and blocks their immunosuppressive function.
Oncoimmunology. 5:e12305782016. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zoglmeier C, Bauer H, Noerenberg D,
Wedekind G, Bittner P, Sandholzer N, Rapp M, Anz D, Endres S and
Bourquin C: CpG blocks immunosuppression by myeloid-derived
suppressor cells in tumor-bearing mice. Clin Cancer Res.
17:1765–1775. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Vascotto F, Petschenka J, Walzer KC,
Vormehr M, Brkic M, Strobl S, Rösemann R, Diken M, Kreiter S,
Türeci Ö and Sahin U: Intravenous delivery of the toll-like
receptor 7 agonist SC1 confers tumor control by inducing a CD8+ T
cell response. Oncoimmunology. 8:16014802019. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hong EH, Chang SY, Lee BR, Kim YS, Lee JM,
Kang CY, Kweon MN and Ko HJ: Blockade of Myd88 signaling induces
antitumor effects by skewing the immunosuppressive function of
myeloid-derived suppressor cells. Int J Cancer. 132:2839–2848.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Delano MJ, Scumpia PO, Weinstein JS, Coco
D, Nagaraj S, Kelly-Scumpia KM, O'Malley KA, Wynn JL, Antonenko S,
Al-Quran SZ, et al: MyD88-dependent expansion of an immature
GR-1(+)CD11b(+) population induces T cell suppression and Th2
polarization in sepsis. J Exp Med. 204:1463–1474. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Llitjos JF, Auffray C, Alby-Laurent F,
Rousseau C, Merdji H, Bonilla N, Toubiana J, Belaïdouni N, Mira JP,
Lucas B, et al: Sepsis-induced expansion of granulocytic
myeloid-derived suppressor cells promotes tumour growth through
Toll-like receptor 4. J Pathol. 239:473–483. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hu CE, Gan J, Zhang RD, Cheng YR and Huang
GJ: Up-regulated myeloid-derived suppressor cell contributes to
hepatocellular carcinoma development by impairing dendritic cell
function. Scand J Gastroenterol. 46:156–164. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Savitsky D, Tamura T, Yanai H and
Taniguchi T: Regulation of immunity and oncogenesis by the IRF
transcription factor family. Cancer Immunol Immunother. 59:489–510.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Nam S, Kang K, Cha JS, Kim JW, Lee HG, Kim
Y, Yang Y, Lee MS and Lim JS: Interferon regulatory factor 4 (IRF4)
controls myeloid-derived suppressor cell (MDSC) differentiation and
function. J Leukoc Biol. 100:1273–1284. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Xu W, Hiếu T, Malarkannan S and Wang L:
The structure, expression, and multifaceted role of
immune-checkpoint protein VISTA as a critical regulator of
anti-tumor immunity, autoimmunity, and inflammation. Cell Mol
Immunol. 15:438–446. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xu W, Dong J, Zheng Y, Zhou J, Yuan Y, Ta
HM, Miller HE, Olson M, Rajasekaran K, Ernstoff MS, et al:
Immune-checkpoint protein VISTA regulates antitumor immunity by
controlling myeloid cell-mediated inflammation and
immunosuppression. Cancer Immunol Res. 7:1497–1510. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Peek EM, Song W, Zhang H, Huang J and Chin
AI: Loss of MyD88 leads to more aggressive TRAMP prostate cancer
and influences tumor infiltrating lymphocytes. Prostate.
75:463–473. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Di S, Zhou M, Pan Z, Sun R, Chen M, Jiang
H, Shi B, Luo H and Li Z: Combined adjuvant of poly I:C improves
antitumor effects of CAR-T cells. Front Oncol. 9:2412019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bronte V, Brandau S, Chen SH, Colombo MP,
Frey AB, Greten TF, Mandruzzato S, Murray PJ, Ochoa A,
Ostrand-Rosenberg S, et al: Recommendations for myeloid-derived
suppressor cell nomenclature and characterization standards. Nat
Commun. 7:121502016. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Rodriguez PC, Quiceno DG, Zabaleta J,
Ortiz B, Zea AH, Piazuelo MB, Delgado A, Correa P, Brayer J,
Sotomayor EM, et al: Arginase I production in the tumor
microenvironment by mature myeloid cells inhibits T-cell receptor
expression and antigen-specific T-cell responses. Cancer Res.
64:5839–5849. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Schmielau J and Finn OJ: Activated
granulocytes and granulocyte-derived hydrogen peroxide are the
underlying mechanism of suppression of t-cell function in advanced
cancer patients. Cancer Res. 61:4756–4760. 2001.PubMed/NCBI
|
|
32
|
Mazzoni A, Bronte V, Visintin A, Spitzer
JH, Apolloni E, Serafini P, Zanovello P and Segal DM: Myeloid
suppressor lines inhibit T cell responses by an NO-dependent
mechanism. J Immunol. 168:689–695. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Hanson EM, Clements VK, Sinha P, Ilkovitch
D and Ostrand-Rosenberg S: Myeloid-derived suppressor cells
down-regulate L-selectin expression on CD4+ and CD8+ T cells. J
Immunol. 183:937–944. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Molon B, Ugel S, Del Pozzo F, Soldani C,
Zilio S, Avella D, De Palma A, Mauri P, Monegal A, Rescigno M, et
al: Chemokine nitration prevents intratumoral infiltration of
antigen-specific T cells. J Exp Med. 208:1949–1962. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Huang B, Pan PY, Li Q, Sato AI, Levy DE,
Bromberg J, Divino CM and Chen SH: Gr-1+CD115+ immature myeloid
suppressor cells mediate the development of tumor-induced T
regulatory cells and T-cell anergy in tumor-bearing host. Cancer
Res. 66:1123–1131. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Serafini P, Meckel K, Kelso M, Noonan K,
Califano J, Koch W, Dolcetti L, Bronte V and Borrello I:
Phosphodiesterase-5 inhibition augments endogenous antitumor
immunity by reducing myeloid-derived suppressor cell function. J
Exp Med. 203:2691–2702. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Montero AJ, Diaz-Montero CM, Kyriakopoulos
CE, Bronte V and Mandruzzato S: Myeloid-derived suppressor cells in
cancer patients: A clinical perspective. J Immunother. 35:107–115.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Condamine T and Gabrilovich DI: Molecular
mechanisms regulating myeloid-derived suppressor cell
differentiation and function. Trends Immunol. 32:19–25. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Condamine T, Mastio J and Gabrilovich DI:
Transcriptional regulation of myeloid-derived suppressor cells. J
Leukoc Biol. 98:913–922. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Dowling JK and Mansell A: Toll-like
receptors: The swiss army knife of immunity and vaccine
development. Clin Transl Immunology. 5:e852016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Urban-Wojciuk Z, Khan MM, Oyler BL,
Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, Hupp TR and Goodlett
DR: The role of TLRs in anti-cancer immunity and tumor rejection.
Front Immunol. 10:23882019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Carpentier A, Metellus P, Ursu R, Zohar S,
Lafitte F, Barrié M, Meng Y, Richard M, Parizot C, Laigle-Donadey
F, et al: Intracerebral administration of CpG oligonucleotide for
patients with recurrent glioblastoma: A phase II study. Neuro
Oncol. 12:401–408. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Carpentier A, Laigle-Donadey F, Zohar S,
Capelle L, Behin A, Tibi A, Martin-Duverneuil N, Sanson M,
Lacomblez L, Taillibert S, et al: Phase 1 trial of a CpG
oligodeoxynucleotide for patients with recurrent glioblastoma.
Neuro Oncol. 8:60–66. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Fleming V, Hu X, Weber R, Nagibin V, Groth
C, Altevogt P, Utikal J and Umansky V: Targeting myeloid-derived
suppressor cells to bypass tumor-induced immunosuppression. Front
Immunol. 9:3982018. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shime H, Maruyama A, Yoshida S, Takeda Y,
Matsumoto M and Seya T: Toll-like receptor 2 ligand and
interferon-γ suppress anti-tumor T cell responses by enhancing the
immunosuppressive activity of monocytic myeloid-derived suppressor
cells. Oncoimmunology. 7:e13732312017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cherfils-Vicini J, Iltis C, Cervera L,
Pisano S, Croce O, Sadouni N, Győrffy B, Collet R, Renault VM,
Rey-Millet M, et al: Cancer cells induce immune escape via
glycocalyx changes controlled by the telomeric protein TRF2. EMBO
J. 38:e1000122019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gobbo J, Marcion G, Cordonnier M, Dias
AMM, Pernet N, Hammann A, Richaud S, Mjahed H, Isambert N, Clausse
V, et al: Restoring anticancer immune response by targeting
tumor-derived exosomes with a HSP70 peptide aptamer. J Natl Cancer
Inst. 108:2015.PubMed/NCBI
|
|
48
|
Xiang X, Liu Y, Zhuang X, Zhang S,
Michalek S, Taylor DD, Grizzle W and Zhang HG: TLR2-mediated
expansion of MDSCs is dependent on the source of tumor exosomes. Am
J Pathol. 177:1606–1610. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chalmin F, Ladoire S, Mignot G, Vincent J,
Bruchard M, Remy-Martin JP, Boireau W, Rouleau A, Simon B, Lanneau
D, et al: Membrane-associated Hsp72 from tumor-derived exosomes
mediates STAT3-dependent immunosuppressive function of mouse and
human myeloid-derived suppressor cells. J Clin Invest. 120:457–471.
2010.PubMed/NCBI
|
|
50
|
Diao J, Yang X, Song X, Chen S, He Y, Wang
Q, Chen G, Luo C, Wu X and Zhang Y: Exosomal Hsp70 mediates
immunosuppressive activity of the myeloid-derived suppressor cells
via phosphorylation of Stat3. Med Oncol. 32:4532015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Lee JM, Kim EK, Seo H, Jeon I, Chae MJ,
Park YJ, Song B, Kim YS, Kim YJ, Ko HJ and Kang CY: Serum amyloid
A3 exacerbates cancer by enhancing the suppressive capacity of
myeloid-derived suppressor cells via TLR2-dependent STAT3
activation. Eur J Immunol. 44:1672–1684. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
He XY, Gong FY, Chen Y, Zhou Z, Gong Z and
Gao XM: Calreticulin fragment 39–272 promotes B16 melanoma
malignancy through myeloid-derived suppressor cells in vivo. Front
Immunol. 8:13062017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Huang M, Wu R, Chen L, Peng Q, Li S, Zhang
Y, Zhou L and Duan L: S100A9 regulates MDSCs-mediated immune
suppression via the RAGE and TLR4 signaling pathways in colorectal
carcinoma. Front Immunol. 10:22432019. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
De Veirman K, De Beule N, Maes K, Menu E,
De Bruyne E, De Raeve H, Fostier K, Moreaux J, Kassambara A, Hose
D, et al: Extracellular S100A9 protein in bone marrow supports
multiple myeloma survival by stimulating angiogenesis and cytokine
secretion. Cancer Immunol Res. 5:839–846. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Xie Z, Ago Y, Okada N and Tachibana M:
Valproic acid attenuates immunosuppressive function of
myeloid-derived suppressor cells. J Pharmacol Sci. 137:359–365.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Deguchi A, Tomita T, Ohto U, Takemura K,
Kitao A, Akashi-Takamura S, Miyake K and Maru Y: Eritoran inhibits
S100A8-mediated TLR4/MD-2 activation and tumor growth by changing
the immune microenvironment. Oncogene. 35:1445–1456. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chen J, Sun B, Zhao X, Liang D, Liu J,
Huang Y, Lei W, Chen M and Sun W: Monophosphoryl lipid A induces
bone marrow precursor cells to differentiate into myeloid-derived
suppressor cells. Mol Med Rep. 8:1074–1078. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Li Q, Dai C, Xue R, Wang P, Chen L, Han Y,
Erben U and Qin Z: S100A4 protects myeloid-derived suppressor cells
from intrinsic apoptosis via TLR4-ERK1/2 signaling. Front Immunol.
9:3882018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Zambirinis CP, Levie E, Nguy S, Avanzi A,
Barilla R, Xu Y, Seifert L, Daley D, Greco SH, Deutsch M, et al:
TLR9 ligation in pancreatic stellate cells promotes tumorigenesis.
J Exp Med. 212:2077–2094. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Dajon M, Iribarren K, Petitprez F, Marmier
S, Lupo A, Gillard M, Ouakrim H, Victor N, Vincenzo DB, Joubert PE,
et al: Toll like receptor 7 expressed by malignant cells promotes
tumor progression and metastasis through the recruitment of myeloid
derived suppressor cells. Oncoimmunology. 8:e15051742018.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Dajon M, Iribarren K and Cremer I: Dual
roles of TLR7 in the lung cancer microenvironment. Oncoimmunology.
4:e9916152015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Jie J, Zhang Y, Zhou H, Zhai X, Zhang N,
Yuan H, Ni W and Tai G: CpG ODN1826 as a promising
mucin1-maltose-binding protein vaccine adjuvant induced DC
maturation and enhanced antitumor immunity. Int J Mol Sci.
19:9202018. View Article : Google Scholar
|
|
63
|
Schouppe E, Mommer C, Movahedi K, Laoui D,
Morias Y, Gysemans C, Luyckx A, De Baetselier P and Van
Ginderachter JA: Tumor-induced myeloid-derived suppressor cell
subsets exert either inhibitory or stimulatory effects on distinct
CD8+ T-cell activation events. Eur J Immunol. 43:2930–2942. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Sinha P, Okoro C, Foell D, Freeze HH,
Ostrand-Rosenberg S and Srikrishna G: Proinflammatory S100 proteins
regulate the accumulation of myeloid-derived suppressor cells. J
Immunol. 181:4666–4675. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Song J, Lee J, Kim J, Jo S, Kim YJ, Baek
JE, Kwon ES, Lee KP, Yang S, Kwon KS, et al: Pancreatic
adenocarcinoma up-regulated factor (PAUF) enhances the accumulation
and functional activity of myeloid-derived suppressor cells (MDSCs)
in pancreatic cancer. Oncotarget. 7:51840–51853. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Tachibana M: The immunosuppressive
function of myeloid-derived suppressor cells is regulated by the
HMGB1-TLR4 axis. Yakugaku Zasshi. 138:143–148. 2018.(In Japanese).
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li J, Yang F, Wei F and Ren X: The role of
toll-like receptor 4 in tumor microenvironment. Oncotarget.
8:66656–66667. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Bunt SK, Clements VK, Hanson EM, Sinha P
and Ostrand-Rosenberg S: Inflammation enhances myeloid-derived
suppressor cell cross-talk by signaling through Toll-like receptor
4. J Leukoc Biol. 85:996–1004. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Fleming V, Hu X, Weller C, Weber R, Groth
C, Riester Z, Hüser L, Sun Q, Nagibin V, Kirschning C, et al:
Melanoma extracellular vesicles generate immunosuppressive myeloid
cells by upregulating PD-L1 via TLR4 signaling. Cancer Res.
79:4715–4728. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Karwacz K, Bricogne C, MacDonald D, Arce
F, Bennett CL, Collins M and Escors D: PD-L1 co-stimulation
contributes to ligand-induced T cell receptor down-modulation on
CD8+ T cells. EMBO Mol Med. 3:581–592. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xu-Monette ZY, Zhang M, Li J and Young KH:
PD-1/PD-L1 blockade: Have we found the key to unleash the antitumor
immune response? Front Immunol. 8:15972017. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tcyganov E, Mastio J, Chen E and
Gabrilovich DI: Plasticity of myeloid-derived suppressor cells in
cancer. Curr Opin Immunol. 51:76–82. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Deng Y, Yang J, Qian J, Liu R, Huang E,
Wang Y, Luo F and Chu Y: TLR1/TLR2 signaling blocks the suppression
of monocytic myeloid-derived suppressor cell by promoting its
differentiation into M1-type macrophage. Mol Immunol. 112:266–273.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Blasius AL and Beutler B: Intracellular
toll-like receptors. Immunity. 32:305–315. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Boozari M, Butler AE and Sahebkar A:
Impact of curcumin on toll-like receptors. J Cell Physiol.
234:12471–12482. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Forghani P and Waller EK: Poly (I: C)
modulates the immunosuppressive activity of myeloid-derived
suppressor cells in a murine model of breast cancer. Breast Cancer
Res Treat. 153:21–30. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Chuang CM, Monie A, Hung CF and Wu TC:
Treatment with imiquimod enhances antitumor immunity induced by
therapeutic HPV DNA vaccination. J Biomed Sci. 17:322010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Cho JH, Lee HJ, Ko HJ, Yoon BI, Choe J,
Kim KC, Hahn TW, Han JA, Choi SS, Jung YM, et al: The TLR7 agonist
imiquimod induces anti-cancer effects via autophagic cell death and
enhances anti-tumoral and systemic immunity during radiotherapy for
melanoma. Oncotarget. 8:24932–24948. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu J, Hu Y, Guo Q, Yu X, Shao L and Zhang
C: Enhanced anti-melanoma efficacy of a Pim-3-targeting
bifunctional small hairpin RNA via single-stranded RNA-mediated
activation of plasmacytoid dendritic cells. Front Immunol.
10:27212019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Cerullo V, Diaconu I, Romano V, Hirvinen
M, Ugolini M, Escutenaire S, Holm SL, Kipar A, Kanerva A and
Hemminki A: An oncolytic adenovirus enhanced for toll-like receptor
9 stimulation increases antitumor immune responses and tumor
clearance. Mol Ther. 20:2076–2086. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
James BR, Anderson KG, Brincks EL, Kucaba
TA, Norian LA, Masopust D and Griffith TS: CpG-mediated modulation
of MDSC contributes to the efficacy of Ad5-TRAIL therapy against
renal cell carcinoma. Cancer Immunol Immunother. 63:1213–1227.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Tarhini AA, Butterfield LH, Shuai Y,
Gooding WE, Kalinski P and Kirkwood JM: Differing patterns of
circulating regulatory T cells and myeloid-derived suppressor cells
in metastatic melanoma patients receiving anti-CTLA4 antibody and
interferon-alpha or TLR-9 agonist and GM-CSF with peptide
vaccination. J Immunother. 35:702–710. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Lin YC, Hsu CY, Huang SK, Fan YH, Huang
CH, Yang CK, Su WT, Chang PC, Dutta A, Liu YJ, et al: Induction of
liver-specific intrahepatic myeloid cells aggregation expands CD8 T
cell and inhibits growth of murine hepatoma. Oncoimmunology.
7:e15021292018.PubMed/NCBI
|
|
84
|
Wang Y, Liu J, Yang X, Liu Y, Liu Y, Li Y,
Sun L, Yang X and Niu H: Bacillus Calmette-Guérin and anti-PD-L1
combination therapy boosts immune response against bladder cancer.
Onco Targets Ther. 11:2891–2899. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ghochikyan A, Pichugin A, Bagaev A,
Davtyan A, Hovakimyan A, Tukhvatulin A, Davtyan H, Shcheblyakov D,
Logunov D, Chulkina M, et al: Targeting TLR-4 with a novel
pharmaceutical grade plant derived agonist, Immunomax®,
as a therapeutic strategy for metastatic breast cancer. J Transl
Med. 12:3222014. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Liu Y, Zhang L, Zhu X, Wang Y, Liu W and
Gong W: Polysaccharide Agaricus blazei Murill stimulates myeloid
derived suppressor cell differentiation from M2 to M1 type, which
mediates inhibition of tumour immune-evasion via the Toll-like
receptor 2 pathway. Immunology. 146:379–391. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang Y, Luo F, Li A, Qian J, Yao Z, Feng
X and Chu Y: Systemic injection of TLR1/2 agonist improves adoptive
antigen-specific T cell therapy in glioma-bearing mice. Clin
Immunol. 154:26–36. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Shime H, Matsumoto M and Seya T:
Double-stranded RNA promotes CTL-independent tumor cytolysis
mediated by CD11b+Ly6G+ intratumor myeloid
cells through the TICAM-1 signaling pathway. Cell Death Differ.
24:385–396. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Liu Z, Xie Y, Xiong Y, Liu S, Qiu C, Zhu
Z, Mao H, Yu M and Wang X: TLR 7/8 agonist reverses oxaliplatin
resistance in colorectal cancer via directing the myeloid-derived
suppressor cells to tumoricidal M1-macrophages. Cancer Lett.
469:173–185. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lee M, Park CS, Lee YR, Im SA, Song S and
Lee CK: Resiquimod, a TLR7/8 agonist, promotes differentiation of
myeloid-derived suppressor cells into macrophages and dendritic
cells. Arch Pharm Res. 37:1234–1240. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Butchi NB, Pourciau S, Du M, Morgan TW and
Peterson KE: Analysis of the neuroinflammatory response to TLR7
stimulation in the brain: Comparison of multiple TLR7 and/or TLR8
agonists. J Immunol. 180:7604–7612. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Gorden KB, Gorski KS, Gibson SJ, Kedl RM,
Kieper WC, Qiu X, Tomai MA, Alkan SS and Vasilakos JP: Synthetic
TLR agonists reveal functional differences between human TLR7 and
TLR8. J Immunol. 174:1259–1268. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Le Mercier I, Poujol D, Sanlaville A,
Sisirak V, Gobert M, Durand I, Dubois B, Treilleux I, Marvel J,
Vlach J, et al: Tumor promotion by intratumoral plasmacytoid
dendritic cells is reversed by TLR7 ligand treatment. Cancer Res.
73:4629–4640. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Zhou H, Zhang Z, Liu G, Jiang M, Wang J,
Liu Y and Tai G: The effect of different immunization cycles of a
recombinant mucin1-maltose-binding protein vaccine on T cell
responses to B16-MUC1 melanoma in mice. Int J Mol Sci. 21:58102020.
View Article : Google Scholar
|
|
95
|
Kawai T and Akira S: Toll-like receptors
and their crosstalk with other innate receptors in infection and
immunity. Immunity. 34:637–650. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tan RS, Ho B, Leung BP and Ding JL: TLR
cross-talk confers specificity to innate immunity. Int Rev Immunol.
33:443–453. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Zhao BG, Vasilakos JP, Tross D, Smirnov D
and Klinman DM: Combination therapy targeting toll like receptors
7, 8 and 9 eliminates large established tumors. J Immunother
Cancer. 2:122014. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Triozzi PL, Aldrich W and Ponnazhagan S:
Regulation of the activity of an adeno-associated virus vector
cancer vaccine administered with synthetic Toll-like receptor
agonists. Vaccine. 28:7837–7843. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chang LS, Leng CH, Yeh YC, Wu CC, Chen HW,
Huang HM and Liu SJ: Toll-like receptor 9 agonist enhances
anti-tumor immunity and inhibits tumor-associated immunosuppressive
cells numbers in a mouse cervical cancer model following
recombinant lipoprotein therapy. Mol Cancer. 13:602014. View Article : Google Scholar : PubMed/NCBI
|