1
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2015. CA Cancer J Clin. 65:5–29. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Korja M, Raj R, Seppä K, Luostarinen T,
Malila N, Seppälä M, Mäenpää H and Pitkäniemi J: Glioblastoma
survival is improving despite increasing incidence rates: A
nationwide study between 2000 and 2013 in Finland. Neuro Oncol.
21:370–379. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Alexander BM and Cloughesy TF: Adult
glioblastoma. J Clin Oncol. 35:2402–2409. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Kim H, Leiby BE and Shi W: Too little, too
soon: Short-course radiotherapy in elderly patients with
glioblastoma. J Clin Oncol. 34:2191–2192. 2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cloughesy TF, Mochizuki AY, Orpilla JR,
Hugo W, Lee AH, Davidson TB, Wang AC, Ellingson BM, Rytlewski JA,
Sanders CM, et al: Neoadjuvant anti-PD-1 immunotherapy promotes a
survival benefit with intratumoral and systemic immune responses in
recurrent glioblastoma. Nat Med. 25:477–486. 2019. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sukumar UK, Bose RJC, Malhotra M, Babikir
HA, Afjei R, Robinson E, Zeng Y, Chang E, Habte F, Sinclair R, et
al: Intranasal delivery of targeted polyfunctional gold-iron oxide
nanoparticles loaded with therapeutic microRNAs for combined
theranostic multimodality imaging and presensitization of
glioblastoma to temozolomide. Biomaterials. 218:1193422019.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Ho KH, Cheng CH, Chou CM, Chen PH, Liu AJ,
Lin CW, Shih CM and Chen KC: miR-140 targeting CTSB signaling
suppresses the mesenchymal transition and enhances temozolomide
cytotoxicity in glioblastoma multiforme. Pharmacol Res.
147:1043902019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Cloughesy T, Finocchiaro G, Belda-Iniesta
C, Recht L, Brandes AA, Pineda E, Mikkelsen T, Chinot OL, Balana C,
Macdonald DR, et al: Randomized, double-blind, placebo-controlled,
multicenter phase II study of onartuzumab plus bevacizumab versus
placebo plus bevacizumab in patients with recurrent glioblastoma:
Efficacy, safety, and hepatocyte growth factor and
O(6)-Methylguanine-DNA methyltransferase biomarker analyses. J Clin
Oncol. 35:343–351. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Goswami S, Walle T, Cornish AE, Basu S,
Anandhan S, Fernandez I, Vence L, Blando J, Zhao H, Yadav SS, et
al: Immune profiling of human tumors identifies CD73 as a
combinatorial target in glioblastoma. Nat Med. 26:39–46. 2020.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee RC, Feinbaum RL and Ambros V: The
C. elegans heterochronic gene lin-4 encodes small RNAs with
antisense complementarity to lin-14. Cell. 75:843–854. 1993.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Citron F, Segatto I, Vinciguerra GLR,
Musco L, Russo F, Mungo G, D'Andrea S, Mattevi MC, Perin T,
Schiappacassi M, et al: Downregulation of miR-223 expression is an
early event during mammary transformation and confers resistance to
CDK4/6 inhibitors in luminal breast cancer. Cancer Res.
80:1064–1077. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Carotenuto P, Hedayat S, Fassan M,
Cardinale V, Lampis A, Guzzardo V, Vicentini C, Scarpa A, Cascione
L, Costantini D, et al: Modulation of biliary cancer
chemo-resistance through microRNA-mediated rewiring of the
expansion of CD133+ cells. Hepatology. 72:982–996. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Huang T, Wan X, Alvarez AA, James CD, Song
X, Yang Y, Sastry N, Nakano I, Sulman EP, Hu B and Cheng SY: MIR93
(microRNA-93) regulates tumorigenicity and therapy response of
glioblastoma by targeting autophagy. Autophagy. 15:1100–1111. 2019.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Han M, Wang S, Fritah S, Wang X, Zhou W,
Yang N, Ni S, Huang B, Chen A, Li G, et al: Interfering with long
non-coding RNA MIR22HG processing inhibits glioblastoma progression
through suppression of Wnt/β-catenin signalling. Brain.
143:512–530. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Yang CH, Wang Y, Sims M, Cai C and Pfeffer
LM: MicroRNA-1 suppresses glioblastoma in preclinical models by
targeting fibronectin. Cancer Lett. 465:59–67. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jiang J, Wang X and Lu J: PWRN1 suppressed
cancer cell proliferation and migration in glioblastoma by
inversely regulating hsa-miR-21-5p. Cancer Manag Res. 12:5313–5322.
2020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Hu X, Yan P, Feng J and Zhang F:
Expression of microRNA-210 and the prognosis in glioma patients: A
meta-analysis. Biomark Med. 14:795–805. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xia W, Zhu J, Tang Y, Wang X, Wei X, Zheng
X, Hou M and Li S: PD-L1 inhibitor regulates the miR-33a-5p/PTEN
signaling pathway and can be targeted to sensitize glioblastomas to
radiation. Front Oncol. 10:8212020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chen Q, Gao J, Zhao Y and Hou R: Long
non-coding RNA LBX2-AS1 enhances glioma proliferation through
downregulating microRNA-491-5p. Cancer Cell Int. 20:4112020.
View Article : Google Scholar
|
20
|
Pan CM, Chan KH, Chen CH, Jan CI, Liu MC,
Lin CM, Cho DY, Tsai WC, Chu YT, Cheng CH, et al: MicroRNA-7
targets T-Box2 to inhibit epithelial-mesenchymal transition and
invasiveness in glioblastoma multiforme. Cancer Lett. 493:133–142.
2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lin H, Zuo D, He J, Ji T, Wang J and Jiang
T: Long noncoding RNA WEE2-AS1 plays an oncogenic role in
glioblastoma by functioning as a molecular sponge for
microRNA-520f-3p. Oncol Res. Aug 24–2020.doi:
10.3727/096504020X15982623243955 (Epub ahead of print). View Article : Google Scholar
|
22
|
Harel S, Sanchez-Gonzalez V, Echavarria R,
Mayaki D and Hussain SN: Roles of miR-640 and Zinc finger protein
91 (ZFP91) in angiopoietin-1-induced in vitro angiogenesis. Cells.
9:16022020. View Article : Google Scholar
|
23
|
Li X, Lu Y, Chen Y, Lu W and Xie X:
MicroRNA profile of paclitaxel-resistant serous ovarian carcinoma
based on formalin-fixed paraffin-embedded samples. BMC Cancer.
13:2162013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhai Z, Fu Q, Liu C, Zhang X, Jia P, Xia
P, Liu P, Liao S, Qin T and Zhang H: Emerging roles of
hsa-circ-0046600 targeting The miR-640/HIF-1α signalling pathway in
the progression of HCC. Onco Targets Ther. 12:9291–9302. 2019.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Lodes MJ, Caraballo M, Suciu D, Munro S,
Kumar A and Anderson B: Detection of cancer with serum miRNAs on an
oligonucleotide microarray. PLoS One. 4:e62292009. View Article : Google Scholar : PubMed/NCBI
|
26
|
Tong M, Jun T, Nie Y, Hao J and Fan D: The
role of the Slit/Robo signaling pathway. J Cancer. 10:2694–2705.
2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Blockus H and Chedotal A: Slit-Robo
signaling. Development. 143:3037–3044. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma L and Tessier-Lavigne M: Dual
branch-promoting and branch-repelling actions of Slit/Robo
signaling on peripheral and central branches of developing sensory
axons. J Neurosci. 27:6843–6851. 2007. View Article : Google Scholar : PubMed/NCBI
|
29
|
Marlow R, Strickland P, Lee JS, Wu X,
Pebenito M, Binnewies M, Le EK, Moran A, Macias H, Cardiff RD, et
al: SLITs suppress tumor growth in vivo by silencing Sdf1/Cxcr4
within breast epithelium. Cancer Res. 68:7819–7827. 2008.
View Article : Google Scholar : PubMed/NCBI
|
30
|
Jaworski A, Tom I, Tong RK, Gildea HK,
Koch AW, Gonzalez LC and Tessier-Lavigne M: Operational redundancy
in axon guidance through the multifunctional receptor Robo3 and its
ligand NELL2. Science. 350:961–965. 2015. View Article : Google Scholar : PubMed/NCBI
|
31
|
Shuai W, Wu J, Chen S, Liu R, Ye Z, Kuang
C, Fu X, Wang G, Li Y, Peng Q, et al: SUV39H2 promotes colorectal
cancer proliferation and metastasis via tri-methylation of the
SLIT1 promoter. Cancer Lett. 422:56–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kim M, Kim JH, Baek SJ, Kim SY and Kim YS:
Specific expression and methylation of SLIT1, SLIT2, SLIT3, and
miR-218 in gastric cancer subtypes. Int J Oncol. 48:2497–2507.
2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Amodeo V, A D, Betts J, Bartesaghi S,
Zhang Y, Richard-Londt A, Ellis M, Roshani R, Vouri M, Galavotti S,
et al: A PML/Slit axis controls physiological cell migration and
cancer invasion in the CNS. Cell Rep. 20:411–426. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Long H, Liang C, Zhang X, Fang L, Wang G,
Qi S, Huo H and Song Y: Prediction and analysis of key genes in
glioblastoma based on bioinformatics. Biomed Res Int.
2017:76531012017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Sciuscio D, Diserens AC, van Dommelen K,
Martinet D, Jones G, Janzer RC, Pollo C, Hamou MF, Kaina B, Stupp
R, et al: Extent and patterns of MGMT promoter methylation in
glioblastoma- and respective glioblastoma-derived spheres. Clin
Cancer Res. 17:255–266. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Porter AG and Jänicke RU: Emerging roles
of caspase-3 in apoptosis. Cell Death Differ. 6:99–104. 1999.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Pomeroy SL: Neural development and the
ontogeny of central nervous system tumors. Neuron Glia Biol.
1:127–133. 2004. View Article : Google Scholar : PubMed/NCBI
|
40
|
Nawaz Z, Patil V, Thinagararjan S, Rao SA,
Hegde AS, Arivazhagan A, Santosh V and Somasundaram K: Impact of
somatic copy number alterations on the glioblastoma miRNome:
miR-4484 is a genomically deleted tumour suppressor. Mol Oncol.
11:927–944. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Piao XY, Li W, Li Z, Zhang N, Fang H,
Zahid D and Qu Q: Forced FoxO1:S249V expression
suppressed glioma cell proliferation through G2/M cell cycle
arrests and increased apoptosis. Neurol Res. 41:189–198. 2019.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Liang HX, Sun LB and Liu NJ: Neferine
inhibits proliferation, migration and invasion of U251 glioma cells
by down-regulation of miR-10b. Biomed Pharmacother. 109:1032–1040.
2019. View Article : Google Scholar : PubMed/NCBI
|
43
|
Russo MA, Paolillo M, Sanchez-Hernandez Y,
Curti D, Ciusani E, Serra M, Colombo L and Schinelli S: A
small-molecule RGD-integrin antagonist inhibits cell adhesion, cell
migration and induces anoikis in glioblastoma cells. Int J Oncol.
42:83–92. 2013. View Article : Google Scholar : PubMed/NCBI
|
44
|
Li Y, Cai T, Zhang W, Zhu W and Lv S:
Effects of Saikosaponin D on apoptosis in human U87 glioblastoma
cells. Mol Med Rep. 16:1459–1464. 2017. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mazumder S, Plesca D and Almasan A:
Caspase-3 activation is a critical determinant of genotoxic
stress-induced apoptosis. Methods Mol Biol. 414:13–21.
2008.PubMed/NCBI
|
46
|
Leyva-Diaz E, del Toro D, Menal MJ,
Cambray S, Susín R, Tessier-Lavigne M, Klein R, Egea J and
López-Bendito G: FLRT3 is a Robo1-interacting protein that
determines Netrin-1 attraction in developing axons. Curr Biol.
24:494–508. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Kaneko N, Herranz-Pérez V, Otsuka T, Sano
H, Ohno N, Omata T, Nguyen HB, Thai TQ, Nambu A, Kawaguchi Y, et
al: New neurons use Slit-Robo signaling to migrate through the
glial meshwork and approach a lesion for functional regeneration.
Sci Adv. 4:eaav06182018. View Article : Google Scholar : PubMed/NCBI
|
48
|
Dickinson RE, Dallol A, Bieche I, Krex D,
Morton D, Maher ER and Latif F: Epigenetic inactivation of SLIT3
and SLIT1 genes in human cancers. Br J Cancer. 91:2071–2078. 2004.
View Article : Google Scholar : PubMed/NCBI
|